共查询到20条相似文献,搜索用时 0 毫秒
1.
We examined the use of the ratio of serum urea to serum creatinine as a physiological biomarker of fasting to monitor temporal
patterns in the feeding ecology of polar bears (Ursus maritimus). Blood was collected from 436 polar bears in the eastern Beaufort Sea during April and May of 1985–1986 and 2005–2006. The
proportions of polar bears fasting were 9.6% in 1985, 10.5% in 1986, 21.4% in 2005, and 29.3% in 2006. We used stepwise logistic
regression analysis to evaluate factors that could influence the binary response variable of fasting or not fasting. Significant
predictor variables of fasting were: the 2005 and 2006 capture years, solitary adult male bears, and adult male bears that
were accompanying an estrous female. The increased number of polar bears in a physiological fasting state from all sex, age,
and reproductive classes in 2005 and 2006 corresponded with broad scale changes in Arctic sea ice composition, which may have
affected prey availability. The higher proportion of adult males fasting from all years was attributed to spring breeding
behavior. 相似文献
2.
Indirect effects of sea ice loss on summer‐fall habitat and behaviour for sympatric populations of an Arctic marine predator 下载免费PDF全文
Donna D. W. Hauser Kristin L. Laidre Harry L. Stern Robert S. Suydam Pierre R. Richard 《Diversity & distributions》2018,24(6):791-799
Aim
Climate change is fundamentally altering habitats, with complex consequences for species across the globe. The Arctic has warmed 2–3 times faster than the global average, and unprecedented sea ice loss can have multiple outcomes for ice‐associated marine predators. Our goal was to assess impacts of sea ice loss on population‐specific habitat and behaviour of a migratory Arctic cetacean.Location
Arctic Ocean.Methods
Using satellite telemetry data collected during summer‐fall from sympatric beluga whale (Delphinapterus leucas) populations (“Chukchi” and “Beaufort” belugas), we applied generalized estimating equations to evaluate shifts in sea ice habitat associations and diving behaviour during two periods: 1993–2002 (“early”) and 2004–2012 (“late”). We used resource selection functions to assess changes in sea ice selection as well as predict trends in habitat selection and “optimal” habitat, based on satellite‐derived sea ice data from 1990 to 2014.Results
Sea ice cover declined substantially between periods, and Chukchi belugas specifically used significantly lower sea ice concentrations during the late than early period. Use of bathymetric features did not change between periods for either population. Population‐specific sea ice selection, predicted habitat and the amount of optimal habitat also generally did not change during 1990–2014. Chukchi belugas tracked during 2007–2012 made significantly more long‐duration and deeper dives than those tracked during 1998–2002.Main conclusions
Taken together, our results suggest bathymetric parameters are consistent predictors of summer‐fall beluga habitat rather than selection for specific sea ice conditions during recent sea ice loss. Beluga whales were able to mediate habitat change despite their sea ice associations. However, trends towards prolonged and deeper diving possibly indicate shifting foraging opportunities associated with ecological changes that occur in concert with sea ice loss. Our results highlight that responses by some Arctic marine wildlife can be indirect and variable among populations, which could be included in predictions for the future.3.
Climate‐driven sea ice loss has led to changes in the timing of key biological events in the Arctic, however, the consequences and rate of these changes remain largely unknown. Polar bears (Ursus maritimus) undergo seasonal changes in energy stores in relation to foraging opportunities and habitat conditions. Declining sea ice has been linked to reduced body condition in some subpopulations, however, the specific timing and duration of the feeding period when bears acquire most of their energy stores and its relationship to the timing of ice break‐up is poorly understood. We used community‐based sampling to investigate seasonality in body condition (energy stores) of polar bears in Nunavut, Canada, and examined the influence of sea ice variables. We used adipose tissue lipid content as an index of body condition for 1,206 polar bears harvested from 2010–2017 across five subpopulations with varying seasonal ice conditions: Baffin Bay (October–August), Davis Strait and Foxe Basin (year‐round), Gulf of Boothia and Lancaster Sound (August–May). Similar seasonal patterns were found in body condition across subpopulations with bears at their nadir of condition in the spring, followed by fat accumulation past break‐up date and subsequent peak body condition in autumn, indicating that bears are actively foraging in late spring and early summer. Late season feeding implies that even minor advances in the timing of break‐up may have detrimental effects on foraging opportunities, body condition, and subsequent reproduction and survival. The magnitude of seasonal changes in body condition varied across the study area, presumably driven by local environmental conditions. Our results demonstrate how community‐based monitoring of polar bears can reveal population‐level responses to climate warming in advance of detectable demographic change. Our data on the seasonal timing of polar bear foraging and energy storage should inform predictive models of the effects of climate‐mediated sea ice loss. 相似文献
4.
Detection and avoidance of predator cues can be costly, so it is important for prey to balance the benefits of gaining food against the costs of avoiding predators. Balancing these factors becomes more complicated when prey are threatened by more than one type of predator. Hence, the ability to recognize species‐specific predator odours and prioritize behaviours according to the level of risk is essential for survival. We investigated how rock rats, Zyzomys spp. modify their foraging behaviour and giving‐up density (GUD) in the presence of an apex predator, the dingo Canis dingo, a mesopredator, the northern quoll Dasyurus hallucatus, a herbivore, the rock wallaby Petrogale brachyotis as a pungency control and water as a procedural control. Both dingoes and quolls consume rock rats, but because quolls can enter small crevices inhabited by rock rats, they pose a greater threat to rock rats than dingoes. Rock rats demonstrated a stronger avoidance to quoll odour than dingo odour, and no avoidance of the pungency control (rock wallaby) and the procedural control (water). GUD values declined significantly over the duration of the study, but did not differ between odour treatments. Our results support the hypothesis that prey vary behaviour according to perceived predator threat, and show stronger responses to potentially more dangerous predators. 相似文献
5.
Arctic cisco Coregonus autumnalis young-of-year (YOY) growth was used as a proxy to examine the long-term response of a high-latitude fish population to changing climate from 1978 to 2004. YOY growth increased over time (r2 = 0·29) and was correlated with monthly averages of the Arctic oscillation index, air temperature, east wind speed, sea-ice concentration and river discharge with and without time lags. Overall, the most prevalent correlates to YOY growth were sea-ice concentration lagged 1 year (significant correlations in 7 months; r2 = 0·14-0·31) and Mackenzie River discharge lagged 2 years (significant correlations in 8 months; r2 = 0·13-0·50). The results suggest that decreased sea-ice concentrations and increased river discharge fuel primary production and that life cycles of prey species linking increased primary production to fish growth are responsible for the time lag. Oceanographic studies also suggest that sea ice concentration and fluvial inputs from the Mackenzie River are key factors influencing productivity in the Beaufort Sea. Future research should assess the possible mechanism relating sea ice concentration and river discharge to productivity at upper trophic levels. 相似文献
6.
Multi-decadal time-series of biological indices that reflect the state of a population are rare in ecological studies, but invaluable for assessing environmental regulation of population dynamics. We utilized canine teeth extracted from ringed seals (Pusa hispida) killed by polar bears (Ursus maritimus) in the Beaufort Sea, Canada, in 1985–2011, to obtain widths of annual growth layers in the cementum. Canine teeth for 75 individuals were measured and compared across years using a proportional width index (PWI) spanning 1965–2007. PWI was positively correlated with ringed seal ovulation rate obtained independently from other studies and was significantly lower than normal during ringed seal reproductive declines in 1974–75, 1984–87, 1991–93, and 2004–05, suggesting that PWI reflects ringed seal reproductive capacity. The PWI was also examined against climatic and sea ice factors to assess environmental regulation of ringed seal reproduction. Results suggest that ringed seals benefit from cyclonic circulation regimes in the Beaufort Sea, and an earlier breakup of sea ice in summer that may positively influence the quality and quantity of food during the open water season. Results highlight how cementum annuli in the canine teeth of ringed seals can provide an index of body state and linkages to sea ice conditions. Canine teeth from ringed seals can function as a means to monitor the effects of past Arctic marine variability on area-specific populations for which there are few independent empirical data. 相似文献
7.
Top predator control of plant biodiversity and productivity in an old-field ecosystem 总被引:7,自引:2,他引:7
Oswald J. Schmitz 《Ecology letters》2003,6(2):156-163
Abstract Predators can have strong indirect effects on plants by altering the way herbivores impact plants. Yet, many current evaluations of plant species diversity and ecosystem function ignore the effects of predators and focus directly on the plant trophic level. This report presents results of a 3‐year field experiment in a temperate old‐field ecosystem that excluded either predators, or predators and herbivores and evaluated the consequence of those manipulations on plant species diversity (richness and evenness) and plant productivity. Sustained predator and predator and herbivore exclusion resulted in lower plant species evenness and higher plant biomass production than control field plots representing the intact natural ecosystem. Predators had this diversity‐enhancing effect on plants by causing herbivores to suppress the abundance of a competitively dominant plant species that offered herbivores a refuge from predation risk. 相似文献
8.
Eugene J. DeRango Jonas F. L. Schwarz Paolo Piedrahita Diego PezRosas Daniel E. Crocker Oliver Krüger 《Ecology and evolution》2021,11(12):7579
- Hormones are extensively known to be physiological mediators of energy mobilization and allow animals to adjust behavioral performance in response to their environment, especially within a foraging context.
- Few studies, however, have narrowed focus toward the consistency of hormonal patterns and their impact on individual foraging behavior. Describing these relationships can further our understanding of how individuals cope with heterogeneous environments and exploit different ecological niches.
- To address this, we measured between‐ and within‐individual variation of basal cortisol (CORT), thyroid hormone T3, and testosterone (TEST) levels in wild adult female Galápagos sea lions (Zalophus wollebaeki) and analyzed how these hormones may be associated with foraging strategies. In this marine predator, females exhibit one of three spatially and temporally distinct foraging patterns (i.e., “benthic,” “pelagic,” and “night” divers) within diverse habitat types.
- Night divers differentiated from other strategies by having lower T3 levels. Considering metabolic costs, night divers may represent an energetically conservative strategy with shorter dive durations, depths, and descent rates to exploit prey which migrate up the water column based on vertical diel patterns.
- Intriguingly, CORT and TEST levels were highest in benthic divers, a strategy characterized by congregating around limited, shallow seafloors to specialize on confined yet reliable prey. This pattern may reflect hormone‐mediated behavioral responses to specific risks in these habitats, such as high competition with conspecifics, prey predictability, or greater risks of predation.
- Overall, our study highlights the collective effects of hormonal and ecological variation on marine foraging. In doing so, we provide insights into how mechanistic constraints and environmental pressures may facilitate individual specialization in adaptive behavior in wild populations.
9.
Diet of Pacific sleeper shark, a potential Steller sea lion predator, in the north-east Pacific Ocean 总被引:1,自引:0,他引:1
M. F. Sigler † L. B. Hulbert ‡ C. R. Lunsford N. H. Thompson § K. Burek G. O'Corry-Crowe ¶ A. C. Hirons # 《Journal of fish biology》2006,69(2):392-405
Pacific sleeper sharks Somniosus pacificus were captured near Steller sea lion Eumetopias jubatus rookeries during the period when Steller sea lion pups are most vulnerable to Pacific sleeper shark predation (first water entrance and weaning). Analysis of stomach contents revealed that teleosts were the dominant prey in August and cephalopods were the dominant prey in May ( n = 198). Marine mammals were found in 15% of stomachs regardless of season, but no Steller sea lion tissues were detected. Molecular genetic analysis identified grey whale Eschrichtius robustus and harbour seal Phoca vitulina remains in some Pacific sleeper shark stomachs. Most mammals were cetacean and at least 70% of the cetaceans were probably scavenged. Although Pacific sleeper shark and Steller sea lion ranges overlapped, so predation could potentially occur, the diet study suggested that predation on Steller sea lions is unlikely, at least when pups first enter the water or during weaning. Harbour seals were infrequent prey and may have been consumed alive. Pacific sleeper sharks consume fast-swimming prey like Pacific salmon Oncorhynchus sp., most likely live animals rather than scavenged animals. Pacific sleeper sharks appeared to be opportunistic consumers of the available prey and carrion, feeding both on the bottom and in the water column, and their diet shifted to teleosts and cetacean carrion as the fish grew larger. 相似文献
10.
The distribution pattern of the Parmales, a recently described order of siliceous marine nanophytoplankton, is described and quantified in surface sediments of the Atlantic sector of the Southern Ocean. Additional samples were investigated from the Bransfield Strait and the eastern Bellingshausen Sea. Highest abundances occurred in nearshore areas of the southern and southeastern Weddell Sea. Due to the distribution of Parmales species, which is strictly linked to these neritic areas, influenced most of the year by sea ice, it is suggested that the presence of Parmales species may be an indicator of sea ice influence probably useful in later down core studies. 相似文献
11.
Stomach temperature telemetry reveals temporal patterns of foraging success in a free-ranging marine mammal 总被引:3,自引:1,他引:3
1. We studied feeding frequency in free-ranging grey seals using stomach temperature telemetry to test if previously reported sex differences in the diving, movement and diet were reflected in the temporal pattern of foraging success. 2. Data were retrieved from 21 of 32 grey seals from 1999 to 2001, totalling 343 days and 555 feeding events, with individual record length varying from 2 to 40 days (mean: 16.33 +/- 2.67 days/seal). 3. Seals fed on 57.8 +/- 6.46% of days sampled and had an average of 1.7 +/- 0.26 meals per day, but individual variability was apparent in the temporal distribution of feeding as evidenced by high coefficients of variation (coefficient of variation = 69.0%). 4. Bout analysis of non-feeding intervals of six grey seals suggests that feeding intervals of individuals were varied and probably reflect differences in prey availability. Grey seals tended to have many single feeding events with long periods separating each event, as would be expected for a large carnivore with a batch-reactor digestive system. 5. We found significant sex differences in the temporal distribution of feeding. The number of feeding events per day was greater in males (2.2 +/- 0.4 vs. 1.0 +/- 0.2), as was time associated with feeding per day (56.6 +/- 5.8 min vs. 43.9 +/- 9.4 min). 6. The number of feeding events varied with time of day with the least number occurring during dawn. Feeding event size differed significantly by time of day, with greater meal sizes during the dawn and the smallest meals during the night. 7. The length of time between meals increased with the size of the previous meal, and was significantly less in males (541.4 +/- 63.5 min) than in females (1092.6 +/- 169.9 min). 8. These results provide new insight into the basis of sex differences in diving and diet in this large size-dimorphic marine predator. 相似文献
12.
This study examined how variability in the abundance and biomass structure of benthic invertebrates affected the feeding choice of the whitefish Coregonus lavaretus on a hard bottom habitat of the brackish Baltic Sea. In general, crustaceans such as Idotea balthica and Gammarus spp. were preferred over molluscs. Although being the most numerous taxon in the invertebrate samples, Mytilus trossulus was the lowest ranking in C. lavaretus food preference. The availability of benthic invertebrate prey set the dietary range of fish but the selectivity largely described fish feeding within this range. There was no clear link between fish predation and the dominance structure of benthic invertebrate communities, suggesting that species composition, abundance and biomass of invertebrate species had no impact on the feeding selectivity of the fish. Thus, while fish predation may not affect the dominant species within a benthic community, due to strong selectivity fish may impose strong pressure on some rarer but highly preferred invertebrate prey species. 相似文献
13.
Oliver N. Shipley Jill A. Olin Michael Power Robert M. Cerrato Michael G. Frisk 《Ecography》2019,42(5):1037-1049
We evaluated whether existing assumptions regarding the trophic ecology of a poorly‐studied predator guild, northwest (NW) Atlantic skates (family: Rajidae), were supported across broad geographic scales. Four hypotheses were tested using carbon (δ13C) and nitrogen (δ15N) stable isotope values as a proxy for foraging behavior: 1) species exhibit ontogenetic shifts in habitat and thus display a shift in 13C with differential use of the continental shelf; 2) species exhibit ontogenetic prey shifts (i.e. from smaller to larger prey items) and become enriched in 15N; 3) individuals acquire energy from spatially confined local resource pools and exhibit limited displacement; and 4) species exhibit similarly sized and highly overlapping trophic niches. We found some evidence for ontogenetic shifts in habitat‐use (δ13C) for thorny and little skate and diet (δ15N) of thorny and winter skate and hypothesize that individuals exhibit gradual trophic niche transition, especially in δ15N space, rather than a clear and distinct shift in diet throughout ontogeny. Spatial isoscapes generated for little, thorny, and winter skate highlighted distinct spatial patterns in isotopic composition across the coastal shelf. For little and thorny skate, patterns mimicked expected spatial variability in the isotopic composition of phytoplankton/POM, suggesting limited displacement and utilization of spatially confined resource pools. Winter skate, however, exhibited a much narrower range of δ13C and δ15N values, suggesting individuals may use resources from a more confined latitudinal range. Although high total trophic niche overlap was observed between some species (e.g. little and thorny skate), sympatric species (e.g. little and winter skate) exhibited a degree of trophic niche separation. These findings offer new insight into the trophic dynamics of a poorly‐studied, vulnerable group of predators, and highlight a need to re‐examine assumptions pertaining to aspects of their ecology. 相似文献
14.
Echelle S. Burns Alyssa J. Clevenstine Ryan K. Logan Christopher G. Lowe 《Journal of fish biology》2020,97(6):1857-1860
The giant sea bass Stereolepis gigas Ayres 1859 (GSB) is a critically endangered top marine predator in California. Since protection in 1982 and 1994, the population has appeared to increase, and individuals within a growing population may expand their ranges to new habitats to reduce intraspecific competition and increase foraging opportunities. In 2016–2018, two GSB tagged with acoustic transmitters were detected at artificial reefs for periods of up to 3 months during October–March, and one individual travelled 53 km from an offshore island to mainland California in 56 h. Artificial reefs may provide important foraging opportunities for these protected marine predators as they recover from exploitation. 相似文献
15.
16.
17.
Laurne Mrillet Dorothe Kopp Marianne Robert Maud Mouchet Sandrine Pavoine 《Global Change Biology》2020,26(4):2106-2119
Global climate change has already caused bottom temperatures of coastal marine ecosystems to increase worldwide. These ecosystems face many pressures, of which fishing is one of the most important. While consequences of global warming on commercial species are studied extensively, the importance of the increase in bottom temperature and of variation in fishing effort is more rarely considered together in these exploited ecosystems. Using a 17 year time series from an international bottom trawl survey, we investigated covariations of an entire demersal ecosystem (101 taxa) with the environment in the Celtic Sea. Our results showed that over the past two decades, biotic communities in the Celtic Sea were likely controlled more by environmental variables than fisheries, probably due to its long history of exploitation. At the scale of the entire zone, relations between taxa and the environment remained stable over the years, but at a local scale, in the center of the Celtic Sea, dynamics were probably driven by interannual variation in temperature. Fishing was an important factor structuring species assemblages at the beginning of the time series (2000) but decreased in importance after 2009. This was most likely caused by a change in spatial distribution of fishing effort, following a change in targeted taxa from nephrops to deeper water anglerfish that did not covary with fishing effort. Increasing bottom temperatures could induce additional changes in the coming years, notably in the cold‐water commercial species cod, hake, nephrops, and American plaice. We showed that analyzing covariation is an effective way to screen a large number of taxa and highlight those that may be most susceptible to future simultaneous increases in temperature and changes in exploitation pattern by fisheries. This information can be particularly relevant for ecosystem assessments. 相似文献
18.
State-dependent risk-taking by green sea turtles mediates top-down effects of tiger shark intimidation in a marine ecosystem 总被引:3,自引:0,他引:3
Heithaus MR Frid A Wirsing AJ Dill LM Fourqurean JW Burkholder D Thomson J Bejder L 《The Journal of animal ecology》2007,76(5):837-844
1. A predictive framework of community and ecosystem dynamics that applies across systems has remained elusive, in part because non-consumptive predator effects are often ignored. Further, it is unclear how much individual-level detail community models must include. 2. Previous studies of short-lived species suggest that state-dependent decisions add little to our understanding of community dynamics. Body condition-dependent decisions made by long-lived herbivores under risk of predation, however, might have greater community-level effects. This possibility remains largely unexplored, especially in marine environments. 3. In the relatively pristine seagrass community of Shark Bay, Australia, we found that herbivorous green sea turtles (Chelonia mydas Linnaeus, 1758) threatened by tiger sharks (Galeocerdo cuvier Peron and LeSueur, 1822) select microhabitats in a condition-dependent manner. Turtles in poor body condition selected profitable, high-risk microhabitats, while turtles in good body condition, which are more abundant, selected safer, less profitable microhabitats. When predation risk was low, however, turtles in good condition moved into more profitable microhabitats. 4. Condition-dependent use of space by turtles shows that tiger sharks modify the spatio-temporal pattern of turtle grazing and their impacts on ecosystem dynamics (a trait-mediated indirect interaction). Therefore, state-dependent decisions by individuals can have important implications for community dynamics in some situations. 5. Our study suggests that declines in large-bodied sharks may affect ecosystems more substantially than assumed when non-lethal effects of these top predators on mesoconsumers are not considered explicitly. 相似文献
19.
Madelyn R. Voelker Dietmar Schwarz Austen Thomas Benjamin W. Nelson Alejandro Acevedo‐Gutirrez 《Ecology and evolution》2020,10(18):9867-9885
Predator–prey interactions are critical in understanding how communities function. However, we need to describe intraspecific variation in diet to accurately depict those interactions. Harbor seals (Phoca vitulina) are an abundant marine predator that prey on species of conservation concern. We estimated intrapopulation feeding diversity (variation in feeding habits between individuals of the same species) of harbor seals in the Salish Sea. Estimates of feeding diversity were examined relative to sex, month, and location using a novel approach that combined molecular techniques, repeated cross‐sectional sampling of scat, and a specialization metric (within‐individual consistency in diet measured by the Proportional Similarity Index ()). Based on 1,083 scat samples collected from five haul‐out sites during four nonsequential years, we quantified diet using metabarcoding techniques and determined the sex of the scat depositor using a molecular assay. Results suggest that intrapopulation feeding diversity was present. Specialization was high over short periods (24–48 hr, = 0.392, 95% CI = 0.013, R = 100,000) and variable in time and space. Females showed more specialization than males, particularly during summer and fall. Additionally, demersal and benthic prey species were correlated with more specialized diets. The latter finding suggests that this type of prey likely requires specific foraging strategies and that there are trade‐offs between pelagic and benthic foraging styles for harbor seals. This differential feeding on prey species, as well as between sexes of harbor seals, indicates that predator–prey interactions in harbor seals are complex and that each sex may have a different impact on species of conservation concern. As such, describing intrapopulation feeding diversity may unravel hitherto unknown complex predator–prey interactions in the community. 相似文献
20.
The expense of traditional capture‐recapture methods, interest in less invasive survey methods, and the circumpolar decline of polar bear (Ursus maritimus) habitat require evaluation of alternative methods for monitoring polar bear populations. Aerial line transect distance sampling (DS) surveys are thought to be a promising monitoring tool. However, low densities and few observations during a survey can result in low precision, and logistical constraints such as heavy ice and fuel and safety limitations may restrict survey coverage. We used simulations to investigate the accuracy and precision of, DS for estimating polar bear abundance in sea ice habitats, using the Chukchi Sea subpopulation as an example. Simulation parameters were informed from a recent pilot survey. Predictions from a resource selection model were used for stratification, and we compared two ratio estimators to account for areas that cannot be sampled. The ratio estimator using predictions of resource selection by polar bears allowed for extrapolation beyond sampled areas and provided results with low bias and CVs ranging from 21% to 36% when abundance was >1,000. These techniques could be applied to other DS surveys to allocate effort and potentially extrapolate estimates to include portions of the landscape that are logistically impossible to survey. 相似文献