首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim The aim of this work was to estimate C sequestration rates in the organic matter layer in Swedish forests. Location The region encompassed the forested area (23 × 106 ha) of Sweden ranging from about 55° N to 69° N. Methods We used the concept of limit values to estimate recalcitrant litter remains, and combined it with amount of litter fall. Four groups of tree species were identified (pine, spruce, birch and ‘other deciduous species’). Annual actual evapotranspiration (AET) was estimated for 5 × 5 km grids covering Sweden. For each grid, data of forested area and main species composition were available. The annual input of foliar litter into each grid was calculated using empirical relationships between AET and foliar litter fall in the four groups. Litter input was combined with average limit values for decomposition for the four groups of litter, based on empirical data. Finally, C sequestration rate was calculated using a constant factor of the C concentration in the litter decomposed to the limit value, thus forming soil organic matter (SOM). Results We obtained a value of 4.8 × 106 metric tons of C annually sequestered in SOM in soils of mature forests in Sweden, with an average of 180 kg ha?1 and a range from 40 to 410 kg ha?1. Norway spruce forests accumulated annually an average of 200 kg C ha?1. The pine and birch groups had an average of 150 kg ha?1 and for the group of other deciduous trees, which is limited to south Sweden, the C sequestration was around 400 kg ha?1. Conclusions There is a clear C sequestration gradient over Sweden with the highest C sequestration in the south‐west, mainly corresponding to the gradient in litter fall. The limit‐value method appears useful for scaling up to a regional level to describe the C sequestration in SOM. A development of the limit value approach in combination with process‐orientated dynamic models may have a predictive value.  相似文献   

2.
Soil organic matter (SOM) mineralization processes are central to the functioning of soils in relation to feedbacks with atmospheric CO2 concentration, to sustainable nutrient supply, to structural stability and in supporting biodiversity. Recognition that labile C‐inputs to soil (e.g. plant‐derived) can significantly affect mineralization of SOM (‘priming effects’) complicates prediction of environmental and land‐use change effects on SOM dynamics and soil C‐balance. The aim of this study is to construct response functions for SOM priming to labile C (glucose) addition rates, for four contrasting soils. Six rates of glucose (3 atm% 13C) addition (in the range 0–1 mg glucose g?1 soil day?1) were applied for 8 days. Soil CO2 efflux was partitioned into SOM‐ and glucose‐derived components by isotopic mass balance, allowing quantification of SOM priming over time for each soil type. Priming effects resulting from pool substitution effects in the microbial biomass (‘apparent priming’) were accounted for by determining treatment effects on microbial biomass size and isotopic composition. In general, SOM priming increased with glucose addition rate, approaching maximum rates specific for each soil (up to 200%). Where glucose additions saturated microbial utilization capacity (>0.5 mg glucose g?1 soil), priming was a soil‐specific function of glucose mineralization rate. At low to intermediate glucose addition rates, the magnitude (and direction) of priming effects was more variable. These results are consistent with the view that SOM priming is supported by the availability of labile C, that priming is not a ubiquitous function of all components of microbial communities and that soils differ in the extent to which labile C stimulates priming. That priming effects can be represented as response functions to labile C addition rates may be a means of their explicit representation in soil C‐models. However, these response functions are soil‐specific and may be affected by several interacting factors at lower addition rates.  相似文献   

3.
Changes in the carbon stocks of stem biomass, organic layers and the upper 50 cm of the mineral soil during succession and afforestation of spruce (Picea abies) on former grassland were examined along six chronosequences in Thuringia and the Alps. Three chronosequences were established on calcareous and three on acidic bedrocks. Stand elevation and mean annual precipitation of the chronosequences were different. Maximum stand age was 93 years on acid and 112 years on calcareous bedrocks. Stem biomass increased with stand age and reached values of 250–400 t C ha?1 in the oldest successional stands. On acidic bedrocks, the organic layers accumulated linearly during forest succession at a rate of 0.34 t C ha?1 yr?1. On calcareous bedrocks, a maximum carbon stock in the humus layers was reached at an age of 60 years. Total carbon stocks in stem biomass, organic layers and the mineral soil increased during forest development from 75 t C ha?1 in the meadows to 350 t C ha?1 in the oldest successional forest stands (2.75 t C ha?1 yr?1). Carbon sequestration occurred in stem biomass and in the organic layers (0.34 t C ha?1 yr?1on acid bedrock), while mineral soil carbon stocks declined. Mineral soil carbon stocks were larger in areas with higher precipitation. During forest succession, mineral soil carbon stocks of the upper 50 cm decreased until they reached approximately 80% of the meadow level and increased slightly thereafter. Carbon dynamics in soil layers were examined by a process model. Results showed that sustained input of meadow fine roots is the factor, which most likely reduces carbon losses in the upper 10 cm. Carbon losses in 10–20 cm depth were lower on acidic than on calcareous bedrocks. In this depth, continuous dissolved organic carbon inputs and low soil respiration rates could promote carbon sequestration following initial carbon loss. At least 80 years are necessary to regain former stock levels in the mineral soil. Despite the comparatively larger amount of carbon stored in the regrowing vegetation, afforestation projects under the Kyoto protocol should also aim at the preservation or increase of carbon in the mineral soil regarding its greater stability of compared with stocks in biomass and humus layers. If grassland afforestation is planned, suitable management options and a sufficient rotation length should be chosen to achieve these objectives. Maintenance of grass cover reduces the initial loss.  相似文献   

4.
Carbon (C) can be sequestered in the mineral soil after the conversion of intensively cropped agricultural fields to more extensive land uses such as afforested and natural succession ecosystems. Three land‐use treatments from the long‐term ecological research site at Kellogg biological station in Michigan were compared with a nearby deciduous forest. Treatments included a conventionally tilled cropland, a former cropland afforested with poplar for 10 years and an old field (10 years) succession. We used soil aggregate and soil organic matter fractionation techniques to isolate C pools that (1) have a high potential for C storage and (2) accumulate C at a fast rate during afforestation or succession. These fractions could serve as sensitive indicators for the total change in C content due to land‐use changes. At the mineral soil surface (0–7 cm), afforesting significantly increased soil aggregation to levels similar to native forest. However, surface soil (0–7 cm) C did not follow this trend: soil C of the native forest site (22.9 t C ha?1) was still significantly greater than the afforested (12.6 t C ha?1) and succession (15.4 t C ha?1) treatments. However, when the 0–50 cm soil layer was considered, no differences in total soil C were observed between the cropland and the poplar afforested system, while the successional system increased total soil C (0–50 cm) at a rate of 0.786 t C ha?1 yr?1. Afforested soils sequestered C mainly in the fine intra‐aggregate particulate organic matter (POM) (53–250 μm), whereas the successional soils sequestered C preferentially in the mineral‐associated organic matter and fine intra‐aggregate POM C pools.  相似文献   

5.
Recent reviews indicate that N deposition increases soil organic matter (SOM) storage in forests but the undelying processes are poorly understood. Our aim was to quantify the impacts of increased N inputs on soil C fluxes such as C mineralization and leaching of dissolved organic carbon (DOC) from different litter materials and native SOM. We added 5.5 g N m?2 yr?1 as NH4NO3 over 1 year to two beech forest stands on calcareous soils in the Swiss Jura. We replaced the native litter layer with 13C‐depleted twigs and leaves (δ13C: ?38.4 and ?40.8‰) in late fall and measured N effects on litter‐ and SOM‐derived C fluxes. Nitrogen addition did not significantly affect annual C losses through mineralization, but altered the temporal dynamics in litter mineralization: increased N inputs stimulated initial mineralization during winter (leaves: +25%; twigs: +22%), but suppressed rates in the subsequent summer. The switch from a positive to a negative response occurred earlier and more strongly for leaves than for twigs (?21% vs. 0%). Nitrogen addition did not influence microbial respiration from the nonlabeled calcareous mineral soil below the litter which contrasts with recent meta‐analysis primarily based on acidic soils. Leaching of DOC from the litter layer was not affected by NH4NO3 additions, but DOC fluxes from the mineral soils at 5 and 10 cm depth were significantly reduced by 17%. The 13C tracking indicated that litter‐derived C contributed less than 15% of the DOC flux from the mineral soil, with N additions not affecting this fraction. Hence, the suppressed DOC fluxes from the mineral soil at higher N inputs can be attributed to reduced mobilization of nonlitter derived ‘older’ DOC. We relate this decline to an altered solute chemistry by NH4NO3 additions, an increased ionic strength and acidification resulting from nitrification, rather than to a change in microbial decomposition.  相似文献   

6.
The collapse of collective farming in Russia after 1990 and the subsequent economic crisis led to the abandonment of more than 45 million ha of arable lands (23% of the agricultural area). This was the most widespread and abrupt land use change in the 20th century in the northern hemisphere. The withdrawal of land area from cultivation led to several benefits including carbon (C) sequestration. Here, we provide a geographically complete and spatially detailed analysis of C sequestered in these abandoned lands. The average C accumulation rate in the upper 20 cm of mineral soil was 0.96 ± 0.08 Mg C ha?1 yr?1 for the first 20 years after abandonment and 0.19 ± 0.10 Mg C ha?1 yr?1 during the next 30 years of postagrogenic evolution and natural vegetation establishment. The amount of C sequestered over the period 1990–2009 accounts to 42.6 ± 3.8 Tg C per year. This C sequestration rate is equivalent to ca. 10% of the annual C sink in all Russian forests. Furthermore, it compensates all fire and postfire CO2 emissions in Russia and covers about 4% of the global CO2 release due to deforestation and other land use changes. Our assessment shows a significant mitigation of increasing atmospheric CO2 by prolonged C accumulation in Russian soils caused by collective farming collapse.  相似文献   

7.
Chronosequences are commonly used to assess soil organic carbon (SOC) sequestration after land‐use change, but SOC dynamics predicted by this space‐for‐time substitution approach have rarely been validated by resampling. We conducted a combined chronosequence/resampling study in a former cropland area (Vestskoven) afforested with oak (Quercus robur) and Norway spruce (Picea abies) over the past 40 years. The aims of this study were (i) to compare present and previous chronosequence trends in forest floor and top mineral soil (0–25 cm) C stocks; (ii) to compare chronosequence estimates with current rates of C stock change based on resampling at the stand level; (iii) to estimate SOC changes in the subsoil (25–50 cm); and (iv) to assess the influence of two tree species on SOC dynamics. The two chronosequence trajectories for forest floor C stocks revealed consistently higher rates of C sequestration in spruce than oak. The chronosequence trajectory was validated by resampling and current rates of forest floor C sequestration decreased with stand age. Chronosequence trends in topsoil SOC in 2011 did not differ significantly from those reported in 1998, however, there was a shift from a negative rate (1998: ?0.3 Mg C ha?1 yr?1) to no change in 2011. In contrast SOC stocks in the subsoil increased with stand age, however, not significantly (P = 0.1), suggesting different C dynamics in and below the former plough layer. Current rates of C change estimated by repeated sampling decreased with stand age in forest floors but increased in the topsoil. The contrasting temporal change in forest floor and mineral soil C sequestration rates indicate a shift in C source‐sink strength after approximately 40 years. We conclude that afforestation of former cropland within the temperate region may induce soil C loss during the first decades followed by a recovery phase of yet unknown duration.  相似文献   

8.
The break‐up of the Soviet Union in 1991 triggered cropland abandonment on a continental scale, which in turn led to carbon accumulation on abandoned land across Eurasia. Previous studies have estimated carbon accumulation rates across Russia based on large‐scale modelling. Studies that assess carbon sequestration on abandoned land based on robust field sampling are rare. We investigated soil organic carbon (SOC) stocks using a randomized sampling design along a climatic gradient from forest steppe to Sub‐Taiga in Western Siberia (Tyumen Province). In total, SOC contents were sampled on 470 plots across different soil and land‐use types. The effect of land use on changes in SOC stock was evaluated, and carbon sequestration rates were calculated for different age stages of abandoned cropland. While land‐use type had an effect on carbon accumulation in the topsoil (0–5 cm), no independent land‐use effects were found for deeper SOC stocks. Topsoil carbon stocks of grasslands and forests were significantly higher than those of soils managed for crops and under abandoned cropland. SOC increased significantly with time since abandonment. The average carbon sequestration rate for soils of abandoned cropland was 0.66 Mg C ha?1 yr?1 (1–20 years old, 0–5 cm soil depth), which is at the lower end of published estimates for Russia and Siberia. There was a tendency towards SOC saturation on abandoned land as sequestration rates were much higher for recently abandoned (1–10 years old, 1.04 Mg C ha?1 yr?1) compared to earlier abandoned crop fields (11–20 years old, 0.26 Mg C ha?1 yr?1). Our study confirms the global significance of abandoned cropland in Russia for carbon sequestration. Our findings also suggest that robust regional surveys based on a large number of samples advance model‐based continent‐wide SOC prediction.  相似文献   

9.
Minesoils are drastically influenced by anthropogenic activities. They are characterized by low soil organic matter (SOM) content, low fertility, and poor physicochemical and biological properties, limiting their quality, capability, and functions. Reclamation of these soils has potential for resequestering some of the C lost and mitigating CO2 emissions. Soil organic carbon (SOC) sequestration rates in minesoils are high in the first 20 to 30 years after reclamation in the top 15 cm soil depth. In general, higher rates of SOC sequestration are observed for minesoils under pasture and grassland management than under forest land use. Observed rates of SOC sequestration are 0.3 to 1.85 Mg C ha? 1 yr? 1 for pastures and rangelands, and 0.2 to 1.64 Mg C ha? 1 yr? 1 for forest land use. Proper reclamation and postreclamation management may enhance SOC sequestration and add to the economic value of the mined sites. Management practices that may enhance SOC sequestration include increasing vegetative cover by deep-rooted perennial vegetation and afforestation, improving soil fertility, and alleviation of physical, chemical and biological limitations by fertilizers and soil amendments such as biosolids, manure, coal combustion by-products, and mulches. Soil and water conservation are important to SOC sequestration. The potential of SOC sequestration in minesoils of the US is estimated to be 1.28 Tg C yr?1, compared to the emissions from coal combustion of 506 Tg C yr? 1.  相似文献   

10.
Soil organic matter not only affects soil properties and productivity but also has an essential role in global carbon (C) cycle. We studied changes in the topsoil C content of Finnish croplands using a dataset produced in nationwide soil monitoring. The monitoring network consisting of fields on both mineral and organic soils was established in 1974 and resampled in 1987, 1998, and 2009. Over the monitoring period from 1974 to 2009, cultivated soils showed a continuous decline in C concentration (g kg?1). In organic soils, C concentration decreased at a mean rate of 0.2–0.3% yr?1 relative to the existing C concentration. In mineral soils, the relative decrease was 0.4% yr?1 corresponding to a C stock (kg m?2) loss of 220 kg ha?1 yr?1. The change in management practices in last decades toward increasing cultivation of annual crops has contributed to soil C losses noted in this study. The results, however, suggest that the C losses result partly from other processes affecting cultivated soils such as climatic change or the continuing long‐term effect of forest clearance. We estimated that Finnish cropland soils store 161 Tg carbon nationwide in the topmost 15 cm of which 117 Tg is in mineral soils. C losses from mineral soils can therefore total up to 0.5 Tg yearly.  相似文献   

11.
Grassland ecosystems store an estimated 30% of the world's total soil C and are frequently disturbed by wildfires or fire management. Aboveground litter decomposition is one of the main processes that form soil organic matter (SOM). However, during a fire biomass is removed or partially combusted and litter inputs to the soil are substituted with inputs of pyrogenic organic matter (py‐OM). Py‐OM accounts for a more recalcitrant plant input to SOM than fresh litter, and the historical frequency of burning may alter C and N retention of both fresh litter and py‐OM inputs to the soil. We compared the fate of these two forms of plant material by incubating 13C‐ and 15N‐labeled Andropogon gerardii litter and py‐OM at both an annually burned and an infrequently burned tallgrass prairie site for 11 months. We traced litter and py‐OM C and N into uncomplexed and organo‐mineral SOM fractions and CO2 fluxes and determined how fire history affects the fate of these two forms of aboveground biomass. Evidence from CO2 fluxes and SOM C:N ratios indicates that the litter was microbially transformed during decomposition while, besides an initial labile fraction, py‐OM added to SOM largely untransformed by soil microbes. Additionally, at the N‐limited annually burned site, litter N was tightly conserved. Together, these results demonstrate how, although py‐OM may contribute to C and N sequestration in the soil due to its resistance to microbial degradation, a long history of annual removal of fresh litter and input of py‐OM infers N limitation due to the inhibition of microbial decomposition of aboveground plant inputs to the soil. These results provide new insight into how fire may impact plant inputs to the soil, and the effects of py‐OM on SOM formation and ecosystem C and N cycling.  相似文献   

12.
The stability and turnover of soil organic matter (SOM) are a very important but poorly understood part of carbon (C) cycling. Conversion of C3 grassland to the C4 energy crop Miscanthus provides an ideal opportunity to quantify medium‐term SOM dynamics without disturbance (e.g., plowing), due to the natural shift in the δ13C signature of soil C. For the first time, we used a repeated 13C natural abundance approach to measure C turnover in a loamy Gleyic Cambisol after 9 and 21 years of Miscanthus cultivation. This is the longest C3–C4 vegetation change study on C turnover in soil under energy crops. SOM stocks under Miscanthus and reference grassland were similar down to 1 m depth. However, both increased between 9 and 21 years from 105 to 140 mg C ha?1 (< 0.05), indicating nonsteady state of SOM. This calls for caution when estimating SOM turnover based on a single sampling. The mean residence time (MRT) of old C (>9 years) increased with depth from 19 years (0–10 cm) to 30–152 years (10–50 cm), and remained stable below 50 cm. From 41 literature observations, the average SOM increase after conversion from cropland or grassland to Miscanthus was 6.4 and 0.4 mg C ha?1, respectively. The MRT of total C in topsoil under Miscanthus remained stable at ~60 years, independent of plantation age, corroborating the idea that C dynamics are dominated by recycling processes rather than by C stabilization. In conclusion, growing Miscanthus on C‐poor arable soils caused immediate C sequestration because of higher C input and decreased SOM decomposition. However, after replacing grasslands with Miscanthus, SOM stocks remained stable and the MRT of old C3‐C increased strongly with depth.  相似文献   

13.
The movement of soil organic carbon (SOC) during erosion and deposition events represents a major perturbation to the terrestrial carbon cycle. Despite the recognized impact soil redistribution can have on the carbon cycle, few major carbon accounting models currently allow for soil mass flux. Here, we modified a commonly used SOC model to include a soil redistribution term and then applied it to scenarios which explore the implications of unrecognized erosion and deposition for SOC accounting. We show that models that assume a static landscape may be calibrated incorrectly as erosion of SOC is hidden within the decay constants. This implicit inclusion of erosion then limits the predictive capacity of these models when applied to sites with different soil redistribution histories. Decay constants were found to be 15–50% slower when an erosion rate of 15 t soil ha?1 yr?1 was explicitly included in the SOC model calibration. Static models cannot account for SOC change resulting from agricultural management practices focused on reducing erosion rates. Without accounting for soil redistribution, a soil sampling scheme which uses a fixed depth to support model development can create large errors in actual and relative changes in SOC stocks. When modest levels of erosion were ignored, the combined uncertainty in carbon sequestration rates was 0.3–1.0 t CO2 ha?1 yr?1. This range is similar to expected sequestration rates for many management options aimed at increasing SOC levels. It is evident from these analyses that explicit recognition of soil redistribution is critical to the success of a carbon monitoring or trading scheme which seeks to credit agricultural activities.  相似文献   

14.
Despite the fact that phosphorus (P) is critical for plant biomass production in many ecosystems, the implications of soil organic carbon (OC) sequestration for the P cycle have hardly been discussed yet. Thus, the aims of this study are, first, to synthesize results about the relationship between C and P in soil organic matter (SOM) and organic matter inputs to soils, second, to review processes that affect the C:P ratio of SOM, and third, to discuss implications of OC storage in terrestrial ecosystems for P sequestration. The study shows that the storage of OC in mineral soils leads to the sequestration of large amounts of organic phosphorus (OP) since SOM in mineral soils is very rich in P. The reasons for the strong enrichment of OP with respect to OC in soils are the mineralization of OC and the formation of microbial necromass that is P‐rich as well as the strong sorption of OP to mineral surfaces that prevents OP mineralization. In particular, the formation of mineral‐associated SOM that is favorable for storing OC in soil over decadal to centennial timescales sequesters large amounts of OP. Storage of 1,000 kg C in the clay size fraction in the topsoils of croplands sequesters 13.1 kg P. In contrast, the OC:OP ratios of wood and of peatlands are much larger than the ones in cropland soils. Thus, storage of C in wood in peatlands sequesters much less P than the storage of OC in mineral soils. In order to increase the C stocks in terrestrial ecosystems and to lock up as little P as possible, it would be more reasonable to protect and restore peatlands and to produce and preserve wood than to store OC in mineral soils.  相似文献   

15.
The effect of precipitation regime on the C cycle of tropical forests is poorly understood, despite the existence of models that suggest a drier climate may substantially alter the source‐sink function of these ecosystems. Along a precipitation regime gradient containing 12 mature seasonally dry tropical forests growing under otherwise similar conditions (similar annual temperature, rainfall seasonality, and geological substrate), we analyzed the influence of variation in annual precipitation (1240 to 642 mm) and duration of seasonal drought on soil C. We investigated litterfall, decomposition in the forest floor, and C storage in the mineral soil, and analyzed the dependence of these processes and pools on precipitation. Litterfall decreased slightly – about 10% – from stands with 1240 mm yr?1 to those with 642 mm yr?1, while the decomposition decreased by 56%. Reduced precipitation strongly affected C storage and basal respiration in the mineral soil. Higher soil C storage at the drier sites was also related to the higher chemical recalcitrance of litter (fine roots and forest floor) and the presence of charcoal across sites, suggesting an important indirect influence of climate on C sequestration. Basal respiration was controlled by the amount of recalcitrant organic matter in the mineral soil. We conclude that in these forest ecosystems, the long‐term consequences of decreased precipitation would be an increase in organic layer and mineral soil C storage, mainly due to lower decomposition and higher chemical recalcitrance of organic matter, resulting from changes in litter composition and, likely also, wildfire patterns. This could turn these seasonally dry tropical forests into significant soil C sinks under the predicted longer drought periods if primary productivity is maintained.  相似文献   

16.
The formation and stabilization of soil organic matter (SOM) are major concerns in the context of global change for carbon sequestration and soil health. It is presently believed that lignin is not selectively preserved in soil and that chemically labile compounds bonding to minerals comprise a large fraction of the SOM. Labile plant inputs have been suggested to be the main precursor of the mineral‐bonded SOM. Litter decomposition and SOM formation are expected to have temperature sensitivity varying with the lability of plant inputs. We tested this framework using dual 13C and 15N differentially labeled plant material to distinguish the metabolic and structural components within a single plant material. Big Bluestem (Andropogon gerardii) seedlings were grown in an enriched 13C and 15N environment and then prior to harvest, removed from the enriched environment and allowed to incorporate natural abundance 13C–CO2 and 15N fertilizer into the metabolic plant components. This enabled us to achieve a greater than one atom % difference in 13C between the metabolic and structural components within the plant litter. This differentially labeled litter was incubated in soil at 15 and 35 °C, for 386 days with CO2 measured throughout the incubation. After 14, 28, 147, and 386 days of incubation, the soil was subsequently fractionated. There was no difference in temperature sensitivity of the metabolic and structural components with regard to how much was respired or in the amount of litter biomass stabilized. Only the metabolic litter component was found in the sand, silt, or clay fraction while the structural component was exclusively found in the light fraction. These results support the stabilization framework that labile plant components are the main precursor of mineral‐associated organic matter.  相似文献   

17.
Temperature sensitivity of soil organic matter (SOM) decomposition may have a significant impact on global warming. Enzyme‐kinetic hypothesis suggests that decomposition of low‐quality substrate (recalcitrant molecular structure) requires higher activation energy and thus has greater temperature sensitivity than that of high‐quality, labile substrate. Supporting evidence, however, relies largely on indirect indices of substrate quality. Furthermore, the enzyme‐substrate reactions that drive decomposition may be regulated by microbial physiology and/or constrained by protective effects of soil mineral matrix. We thus tested the kinetic hypothesis by directly assessing the carbon molecular structure of low‐density fraction (LF) which represents readily accessible, mineral‐free SOM pool. Using five mineral soil samples of contrasting SOM concentrations, we conducted 30‐days incubations (15, 25, and 35 °C) to measure microbial respiration and quantified easily soluble C as well as microbial biomass C pools before and after the incubations. Carbon structure of LFs (<1.6 and 1.6–1.8 g cm?3) and bulk soil was measured by solid‐state 13C‐NMR. Decomposition Q10 was significantly correlated with the abundance of aromatic plus alkyl‐C relative to O‐alkyl‐C groups in LFs but not in bulk soil fraction or with the indirect C quality indices based on microbial respiration or biomass. The warming did not significantly change the concentration of biomass C or the three types of soluble C despite two‐ to three‐fold increase in respiration. Thus, enhanced microbial maintenance respiration (reduced C‐use efficiency) especially in the soils rich in recalcitrant LF might lead to the apparent equilibrium between SOM solubilization and microbial C uptake. Our results showed physical fractionation coupled with direct assessment of molecular structure as an effective approach and supported the enzyme‐kinetic interpretation of widely observed C quality‐temperature relationship for short‐term decomposition. Factors controlling long‐term decomposition Q10 are more complex due to protective effect of mineral matrix and thus remain as a central question.  相似文献   

18.
Managing soil organic matter (SOM) stocks to address global change challenges requires well‐substantiated knowledge of SOM behavior that can be clearly communicated between scientists, management practitioners, and policy makers. However, SOM is incredibly complex and requires separation into multiple components with contrasting behavior in order to study and predict its dynamics. Numerous diverse SOM separation schemes are currently used, making cross‐study comparisons difficult and hindering broad‐scale generalizations. Here, we recommend separating SOM into particulate (POM) and mineral‐associated (MAOM) forms, two SOM components that are fundamentally different in terms of their formation, persistence, and functioning. We provide evidence of their highly contrasting physical and chemical properties, mean residence times in soil, and responses to land use change, plant litter inputs, warming, CO2 enrichment, and N fertilization. Conceptualizing SOM into POM versus MAOM is a feasible, well‐supported, and useful framework that will allow scientists to move beyond studies of bulk SOM, but also use a consistent separation scheme across studies. Ultimately, we propose the POM versus MAOM framework as the best way forward to understand and predict broad‐scale SOM dynamics in the context of global change challenges and provide necessary recommendations to managers and policy makers.  相似文献   

19.
There is considerable interest in the potential use of soils to sequester carbon for climate change mitigation. As such, there is a need to evaluate the potential for carbon accumulation in tropical regions. We compared the effects of three annual additions of nitrogen and/or phosphorus on soil carbon and nitrogen contents and pools (bulk soil, macro‐, meso‐, and microaggregates) of two regenerating secondary tropical dry forest differing in nutrient status and succession stage (10‐year‐old early‐succession stage and approximately 60‐year‐old late‐succession stage). The selected forest sites were located on a shallow calcareous soil in the Yucatán Peninsula (Mexico). The primary production is limited by nitrogen and phosphorus in early‐succession stage and by phosphorus in late‐succession stage. In each forest site, four independent plots (12 × 12 m2) were established, the treatments being: controls and plots fertilized during three consecutive years with nitrogen, phosphorus, or nitrogen plus phosphorus. In both forests, soil carbon and nitrogen contents were consistently high, with soil carbon:nitrogen ratios generally greater than 10. Results indicate that usually there are no significant increases of soil carbon stock associated to late succession but can be increased to 3.7 Mg·ha?1·yr?1 with adoption of fertilizer practices. The potential soil carbon sequestration in early‐succession forest was estimated to be 2.7 Mg·ha?1·yr?1, and there is no indication that fertilization improves carbon sequestration. In short, results suggest that the soil potential for carbon sequestration in these ecosystems is high and depends on the specific nutrient status of the site.  相似文献   

20.
Anthropogenically induced change in soil redistribution plays an important role in the soil organic carbon (SOC) budget. Uncertainty of its impact is large because of the dearth of recent soil redistribution estimates concomitant with changing land use and management practices. An Australian national survey used the artificial radionuclide caesium‐137 (137Cs) to estimate net (1950s–1990) soil redistribution. South‐eastern Australia showed a median net soil loss of 9.7 t ha?1 yr?1. We resurveyed the region using the same 137Cs technique and found a median net (1990–2010) soil gain of 3.9 t ha?1 yr?1 with an interquartile range from ?1.6 t ha?1 yr?1 to +10.7 t ha?1 yr?1. Despite this variation, soil erosion across the region has declined as a likely consequence of the widespread adoption of soil conservation measures over the last ca 30 years. The implication of omitted soil redistribution dynamics in SOC accounting is to increase uncertainty and diminish its accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号