首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Abstract Rate of leaf emergence of barley grown in the field in each of 2 years was affected by sowing date and, where direct comparisons were possible, it was found that leaves on late-sown plants emerged more quickly. Rate of leaf emergence fluctuated throughout the season, slowing almost to zero in the winter. Much of this variation in rate was removed when the number of leaves was plotted against accumulated temperature rather than time. When emergence rates for each sowing were calculated using a common base temperature they were found to be well correlated with rate of change of daylength. However, it was (bund that base temperature as well as temperature response was affected by date of sowing. The pattern of change of size of leaves was also affected by date of sowing. It appeared that in low temperatures and short days, there was no increase in leaf size from leaf position to leaf position. The responses of leaf emergence, extension and final size to date of sowing appear to adapt the plant to grow quickly when sown early but to cease growth and possibly frost-harden at low temperatures.  相似文献   

3.
植物叶片最大羧化速率及其对环境因子响应的研究进展   总被引:3,自引:0,他引:3  
张彦敏  周广胜 《生态学报》2012,32(18):5907-5917
植物叶片最大羧化速率对环境因子的响应关系是陆地生态系统生产力与碳收支研究的重要方面。论文从测定方法、影响因子与模拟模型3方面综述了植物叶片最大羧化速率及其对环境因子响应研究的最新进展,指出现有的植物叶片最大羧化速率对单个环境因子的响应研究严重制约着陆地生态系统生产力的准确评估。为弄清植物叶片最大羧化速率对环境因子的综合响应关系,迫切需要加强以下研究:(1)植物叶片最大羧化速率的生物与环境控制机制研究;(2)生物与环境因子协同作用下的植物叶片最大羧化速率定量模拟及其尺度化研究;(3)植物叶片最大羧化速率的环境因子阈值研究。  相似文献   

4.
The role of acclimation of dark respiration to temperature and CO2 concentration and its relationship to growth are critical in determining plant response to predicted global change. We explored temperature acclimation of respiration in seedlings of tree species of the North American boreal forest. Populus tremuloides, Betula papyrifera, Larix laricina, Pinus banksiana, and Picea mariana plants were grown from seed in controlled-environments at current and elevated concentrations of CO2 (370 and 580 μmol mol–1) in combination with three temperature treatments of 18/12, 24/18, and 30/24 °C (light/dark period). Specific respiration rates of roots and shoots acclimated to temperature, damping increases in rates across growth-temperature environments compared to short-term temperature responses. Compared at a standard temperature, root and shoot respiration rates were, on average, 40% lower in plants grown at the highest compared to lowest growth temperature. Broad-leaved species had a lower degree of temperature acclimation of respiration than did the conifers. Among species and treatment combinations, rates of respiration were linearly related to size and relative growth rate, and relationships were comparable among growth environments. Specific respiration rates and whole-plant respiratory CO2 efflux as a proportion of daily net CO2 uptake increased at higher growth temperatures, but were minimally affected by CO2 concentration. Whole-plant specific respiration rates were two to three times higher in broad-leaved than coniferous species. However, compared to faster-growing broad-leaved species, slower-growing conifers lost a larger proportion of net daily CO2 uptake as respiratory CO2 efflux, especially in roots. Interspecific variation in acclimation responses of dark respiration to temperature is more important than acclimation of respiration to CO2 enrichment in modifying tree seedling growth responses to projected increases in CO2 concentration and temperature.  相似文献   

5.
干旱区叶片形态特征与植物响应和适应的关系   总被引:7,自引:0,他引:7       下载免费PDF全文
叶片形态是指示植物适应特定环境的重要指标。由于植物叶片形态不仅对时空环境变化具有极强的敏感性和可塑性, 而且能够通过叶片形态的调整调节自身的生存适应能力, 所以叶片形态学研究一直是植物生理及植物生态学研究中的热点。该文在总结前人叶片形态学研究成果的基础上, 探索建立了简单的叶片形态指标分类体系; 结合物质能量交换的物理学原理, 回顾总结了叶片表观形态变化与叶片物质能量交换之间的相关关系; 应用叶片形态影响物质能量交换的物理学原理, 重点分析了干旱区植物叶片表观形态对低水分环境、高辐射(或高温)的响应与适应特征; 最后, 在回顾分析的基础上, 对叶片形态研究中存在的几个问题进行了讨论。  相似文献   

6.
We investigated the relationship between daily and seasonal temperature variation and dark respiratory CO2 release by leaves of snow gum (Eucalyptus pauciflora Sieb. ex Spreng) that were grown in their natural habitat or under controlled‐environment conditions. The open grassland field site in SE Australia was characterized by large seasonal and diurnal changes in air temperature. On each measurement day, leaf respiration rates in darkness were measured in situ at 2–3 h intervals over a 24 h period, with measurements being conducted at the ambient leaf temperature. The rate of respiration at a set measuring temperature (i.e. apparent ‘respiratory capacity’) was greater in seedlings grown under low average daily temperatures (i.e. acclimation occurred), both in the field and under controlled‐environment conditions. The sensitivity of leaf respiration to diurnal changes in temperature (i.e. the Q10 of leaf respiration) exhibited little seasonal variation over much of the year. However, Q10 values were significantly greater on cold winter days (i.e. when daily average and minimum air temperatures were below 6° and –1 °C, respectively). These differences in Q10 values were not due to bias arizing from the contrasting daily temperature amplitudes in winter and summer, as the Q10 of leaf respiration was constant over a wide temperature range in short‐term experiments. Due to the higher Q10 values in winter, there was less difference between winter and summer leaf respiration rates measured at 5 °C than at 25 °C. The net result of these changes was that there was relatively little difference in total daily leaf respiratory CO2 release per unit leaf dry mass in winter and summer. Under controlled‐environment conditions, acclimation of respiration to growth temperature occurred in as little as 1–3 d. Acclimation was associated with a change in the concentration of soluble sugars under controlled conditions, but not in the field. Our data suggest that acclimation in the field may be associated with the onset of cold‐induced photo‐inhibition. We conclude that cold‐acclimation of dark respiration in snow gum leaves is characterized by changes in both the temperature sensitivity and apparent ‘capacity’ of the respiratory apparatus, and that such changes will have an important impact on the carbon economy of snow gum plants.  相似文献   

7.
The effects of high ambient temperatures on rectal temperature (RT), respiration rate (RR), fetal development and serum thyroxine (T(4)) concentrations were stuaied in two experiments involving 35 ewes and 26 lambs from the following ewe groups: 1) Barbados Blackbelly (B), a tropical breed; 2) Dorset (D), a temperate breed; and 3) Blackbelly x Dorset crosses (BxD). Data were obtained on four B, five D and five BxD ewes exhibiting estrus during the summer (Exp. 1). In Exp. 2, eight B, seven D and six BxD ewes were maintained in two environmental chambers (cool, 22.2C; hot, 33.8C) from day 125 of gestation to seven days before the expected lambing date for each breed group (D and BxD, 140+/-1; B, 144+/-1 day of gestation). The B and BxD ewes were more heat-tolerant than D ewes as measured by significantly lower RT and RR in each experiment. Mean lamb birth weight, crown-rump length, number of functional uterine caruncles and caruncle weight and size did not vary significantly among breed groups or temperature chamber (Exp. 2), and there was no indication that the high temperature imposed caused fetal dwarfing in lambs removed from the uterus at a standard age of seven days before expected parturition. Serum T(4) varied markedly among breed groups (P<0.05) in each experiment with B ewes having the lowest and BxD ewes the highest concentration. In Exp. 1, follicular stage T(4) concentrations in B and BxD ewes were lower (P<0.02) than those during the luteal stage of the estrous cycle. The decrease in D ewes was not significant. High ambient temperature (Exp. 2) depressed T(4) levels in D ewes (P<0.05) and also depressed the pituitary-thyroid response to thyrotropin releasing hormone in D lambs. Such was not the case in B and BxD ewes and their lambs.  相似文献   

8.
降水变化对高寒草甸生态系统产生了显著影响,植物叶片性状特别是叶脉特征对降水变化非常敏感,然而高寒植物叶片性状特征如何响应降水变化还知之较少。采用集雨棚模拟增减50%降水的条件,以高寒草甸8种主要植物叶片为研究对象,研究了降水变化对叶片的叶脉率、叶脉密度、叶片大小、比叶质量、叶片总有机碳含量、叶片全氮含量、叶片碳同位素相对含量和碳氮比等叶片性状的影响。发现增水显著增加了植物的叶片大小、稳定碳同位素千分值、总有机碳含量、全氮含量,但显著降低了叶脉密度;而减水显著降低了叶片大小、稳定碳同位素千分值。植物叶片性状各指标对降水变化的响应存在协同变化和相互制约。不同水分生态类型的植物对降水变化的响应存在差异,中生植物通过增加叶片大小和减少叶脉密度积极应对降水的增加,矮生嵩草的叶片大小分别增加了200.3%,叶脉密度减小了17.5%,而旱中生植物通过减少叶片大小和增加叶脉密度应对降水的减少,垂穗披碱草和异针茅的叶片大小分别减少54.9%和30.7%,其叶脉密度分别增加25%和22.4%。羽状叶脉植物增加叶脉密度和稳定碳同位素千分值以适应增水条件,花苜蓿、异叶米口袋的叶脉密度的增加了7.8%和4.0%,稳定碳同位素千分值增加2.5%和3.3%,但增水条件下平行叶脉植物的叶脉密度不变或降低和稳定碳同位素千分值保持不变;减水增加了平行叶脉植物叶脉密度并减低了稳定碳同位素千分值,异针茅的叶脉密度增加了22.4%,稳定碳同位素千分值减小2.9%,而对羽状叶脉植物的叶脉密度和稳定碳同位素千分值减少或不变。植物叶片性状对增水的敏感性显著大于对减水的敏感性,增水的效应约为减水的2倍;叶片大小的敏感性显著大于其它叶片性状,约为其它叶片性状的10倍。因此,植物在应对短期降水变化时,植物形态可塑性的作用凸显,放大或缩小叶片大小是植物应对降水变化的最有效的途径,但是不同水分生态类型和叶脉类型植物可塑性的方向存在显著差异。  相似文献   

9.
The mean ±s.e. optimum temperature (T(opt)) for aerobic scope in juvenile coho salmon Oncorhynchus kisutch was determined to be 17·0 ± 0·7° C. The repeated measures protocol took 3 weeks to complete the T(opt) determination using 12 fish tested at five temperatures separated by 2° C increments. This experiment also demonstrated that the T(opt) was associated with maximum heart rate (f(H)) failing to maintain a Q(10) -related increase with temperature. When maximum f(H) was produced in anaesthetized fish with pharmacological stimulation and f(H) measured from electrocardiogram recordings during acute warming, the Arrhenius break temperature (ABT) for Q(10) discontinuities in maximum f(H) (mean ±s.e. = 17·1 ± 0·5° C for 15 ppm clove oil and 16·5 ± 0·2° C for 50 ppm MS-222) was statistically indistinguishable from the T(opt) measured using aerobic scope. Such a determination took only 3 days rather than 3 weeks. Therefore, it is proposed that determining ABT for discontinuities in maximum f(H) in anaesthetized fish presents itself as a valuable, high-throughput screening tool to assess T(opt) in fishes, a metric that has become recognized as being extremely valuable in fish biology and fisheries management.  相似文献   

10.
11.
Warming-induced release of CO2 from the large carbon (C) stores in arctic soils could accelerate climate change. However, declines in the response of soil respiration to warming in long-term experiments suggest that microbial activity acclimates to temperature, greatly reducing the potential for enhanced C losses. As reduced respiration rates with time could be equally caused by substrate depletion, evidence for thermal acclimation remains controversial. To overcome this problem, we carried out a cooling experiment with soils from arctic Sweden. If acclimation causes the reduction in soil respiration observed after experimental warming, then it should subsequently lead to an increase in respiration rates after cooling. We demonstrate that thermal acclimation did not occur following cooling. Rather, during the 90 days after cooling, a further reduction in the soil respiration rate was observed, which was only reversed by extended re-exposure to warmer temperatures. We conclude that over the time scale of a few weeks to months, warming-induced changes in the microbial community in arctic soils will amplify the instantaneous increase in the rates of CO2 production and thus enhance C losses potentially accelerating the rate of 21st century climate change.  相似文献   

12.
Climate warming is expected to increase respiration rates of tropical forest trees and lianas, which may negatively affect the carbon balance of tropical forests. Thermal acclimation could mitigate the expected respiration increase, but the thermal acclimation potential of tropical forests remains largely unknown. In a tropical forest in Panama, we experimentally increased nighttime temperatures of upper canopy leaves of three tree and two liana species by on average 3  ° C for 1 week, and quantified temperature responses of leaf dark respiration. Respiration at 25  ° C (R25) decreased with increasing leaf temperature, but acclimation did not result in perfect homeostasis of respiration across temperatures. In contrast, Q10 of treatment and control leaves exhibited similarly high values (range 2.5–3.0) without evidence of acclimation. The decrease in R25 was not caused by respiratory substrate depletion, as warming did not reduce leaf carbohydrate concentration. To evaluate the wider implications of our experimental results, we simulated the carbon cycle of tropical latitudes (24 ° S–24 ° N) from 2000 to 2100 using a dynamic global vegetation model (LM3VN) modified to account for acclimation. Acclimation reduced the degree to which respiration increases with climate warming in the model relative to a no‐acclimation scenario, leading to 21% greater increase in net primary productivity and 18% greater increase in biomass carbon storage over the 21st century. We conclude that leaf respiration of tropical forest plants can acclimate to nighttime warming, thereby reducing the magnitude of the positive feedback between climate change and the carbon cycle.  相似文献   

13.
14.
Trends and temperature response in the phenology of crops in Germany   总被引:10,自引:0,他引:10  
The phenology of 78 agricultural and horticultural events from a national survey in Germany spanning the years 1951–2004 is examined. The majority of events are significantly earlier now than 53 years ago, with a mean advance of 1.1–1.3 days per decade. The mean trends for 'true phases', such as emergence and flowering, of annual and perennial crops are not significantly different, although more trends (78% vs. 46%) are significant for annual crops. We attempt to remove the influence of technological advance or altered farming practices on phenology by detrending the respective time series by linear regression of date (day number) on year. Subsequently, we estimate responses to mean monthly and seasonal temperature by correlation and regression in two ways; with and without removing the year trend first. Nearly all (97%) correlation coefficients are negative, suggesting earlier events in warmer years. Between 82% and 94% of the coefficients with seasonal spring and summer temperatures are significant. The conservative estimate (detrended) of mean temperature response against mean March–May temperature (−3.73 days °C−1) is significantly less than the full estimate (−4.31 days °C−1), the 'true' size of phenological temperature response may lie in between. Perennial crops exhibited a significantly higher temperature response to mean spring temperature than the annual crops.  相似文献   

15.
Gas exchange, fluorescence, western blot and chemical composition analyses were combined to assess if three functional groups (forbs, grasses and evergreen trees/shrubs) differed in acclimation of leaf respiration (R) and photosynthesis (A) to a range of growth temperatures (7, 14, 21 and 28 degrees C). When measured at a common temperature, acclimation was greater for R than for A and differed between leaves experiencing a 10-d change in growth temperature (PE) and leaves newly developed at each temperature (ND). As a result, the R : A ratio was temperature dependent, increasing in cold-acclimated plants. The balance was largely restored in ND leaves. Acclimation responses were similar among functional groups. Across the functional groups, cold acclimation was associated with increases in nonstructural carbohydrates and nitrogen. Cold acclimation of R was associated with an increase in abundance of alternative and/or cytochrome oxidases in a species-dependent manner. Cold acclimation of A was consistent with an initial decrease and subsequent recovery of thylakoid membrane proteins and increased abundance of proteins involved in the Calvin cycle. Overall, the results point to striking similarities in the extent and the biochemical underpinning of acclimation of R and A among contrasting functional groups differing in overall rates of metabolism, chemical composition and leaf structure.  相似文献   

16.
Soil respiration (Rs) is a major pathway by which fixed carbon in the biosphere is returned to the atmosphere, yet there are limits to our ability to predict respiration rates using environmental drivers at the global scale. While temperature, moisture, carbon supply, and other site characteristics are known to regulate soil respiration rates at plot scales within certain biomes, quantitative frameworks for evaluating the relative importance of these factors across different biomes and at the global scale require tests of the relationships between field estimates and global climatic data. This study evaluates the factors driving Rs at the global scale by linking global datasets of soil moisture, soil temperature, primary productivity, and soil carbon estimates with observations of annual Rs from the Global Soil Respiration Database (SRDB). We find that calibrating models with parabolic soil moisture functions can improve predictive power over similar models with asymptotic functions of mean annual precipitation. Soil temperature is comparable with previously reported air temperature observations used in predicting Rs and is the dominant driver of Rs in global models; however, within certain biomes soil moisture and soil carbon emerge as dominant predictors of Rs. We identify regions where typical temperature‐driven responses are further mediated by soil moisture, precipitation, and carbon supply and regions in which environmental controls on high Rs values are difficult to ascertain due to limited field data. Because soil moisture integrates temperature and precipitation dynamics, it can more directly constrain the heterotrophic component of Rs, but global‐scale models tend to smooth its spatial heterogeneity by aggregating factors that increase moisture variability within and across biomes. We compare statistical and mechanistic models that provide independent estimates of global Rs ranging from 83 to 108 Pg yr?1, but also highlight regions of uncertainty where more observations are required or environmental controls are hard to constrain.  相似文献   

17.
Understanding how net ecosystem exchange (NEE) changes with temperature is central to the debate on climate change‐carbon cycle feedbacks, but still remains unclear. Here, we used eddy covariance measurements of NEE from 20 FLUXNET sites (203 site‐years of data) in mid‐ and high‐latitude forests to investigate the temperature response of NEE. Years were divided into two half thermal years (increasing temperature in spring and decreasing temperature in autumn) using the maximum daily mean temperature. We observed a parabolic‐like pattern of NEE in response to temperature change in both the spring and autumn half thermal years. However, at similar temperatures, NEE was considerably depressed during the decreasing temperature season as compared with the increasing temperature season, inducing a counter‐clockwise hysteresis pattern in the NEE–temperature relation at most sites. The magnitude of this hysteresis was attributable mostly (68%) to gross primary production (GPP) differences but little (8%) to ecosystem respiration (ER) differences between the two half thermal years. The main environmental factors contributing to the hysteresis responses of NEE and GPP were daily accumulated radiation. Soil water content (SWC) also contributed to the hysteresis response of GPP but only at some sites. Shorter day length, lower light intensity, lower SWC and reduced photosynthetic capacity may all have contributed to the depressed GPP and net carbon uptake during the decreasing temperature seasons. The resultant hysteresis loop is an important indicator of the existence of limiting factors. As such, the role of radiation, LAI and SWC should be considered when modeling the dynamics of carbon cycling in response to temperature change.  相似文献   

18.
Experimental research shows that isoprene emission by plants can improve photosynthetic performance at high temperatures. But whether species that emit isoprene have higher thermal limits than non‐emitting species remains largely untested. Tropical plants are adapted to narrow temperature ranges and global warming could result in significant ecosystem restructuring due to small variations in species' thermal tolerances. We compared photosynthetic temperature responses of 26 co‐occurring tropical tree and liana species to test whether isoprene‐emitting species are more tolerant to high temperatures. We classified species as isoprene emitters versus non‐emitters based on published datasets. Maximum temperatures for net photosynthesis were ~1.8°C higher for isoprene‐emitting species than for non‐emitters, and thermal response curves were 24% wider; differences in optimum temperatures (Topt) or photosynthetic rates at Topt were not significant. Modelling the carbon cost of isoprene emission, we show that even strong emission rates cause little reduction in the net carbon assimilation advantage over non‐emitters at supraoptimal temperatures. Isoprene emissions may alleviate biochemical limitations, which together with stomatal conductance, co‐limit photosynthesis above Topt. Our findings provide evidence that isoprene emission may be an adaptation to warmer thermal niches, and that emitting species may fare better under global warming than co‐occurring non‐emitting species.  相似文献   

19.
We examined the effect of growth temperature on the underlying components of growth in a range of inherently fast‐ and slow‐growing plant species. Plants were grown hydroponically at constant 18, 23 and 28 °C. Growth analysis was conducted on 16 contrasting plant species, with whole plant gas exchange being performed on six of the 16 species. Inter‐specific variations in specific leaf area (SLA) were important in determining variations in relative growth rate (RGR) amongst the species at 23 and 28 °C but were not related to variations in RGR at 18 °C. When grown at 18 °C, net assimilation rate (NAR) became more important than SLA for explaining variations in RGR. Variations in whole shoot photosynthesis and carbon concentration could not explain the importance of NAR in determining RGR at the lower temperatures. Rather, variations in the degree to which whole plant respiration per unit leaf area acclimated to the different growth temperatures were responsible. Plants grown at 28 °C used a greater proportion of their daily fixed carbon in respiration than did the 18 and 23 °C‐grown plants. It is concluded that the relative importance of the underlying components of growth are influenced by growth temperature, and the degree of acclimation of respiration is of central importance to the greater role played by NAR in determining variations in RGR at declining growth temperatures.  相似文献   

20.
A trenching method was used to determine the contribution of root respiration to soil respiration. Soil respiration rates in a trenched plot (R trench) and in a control plot (R control) were measured from May 2000 to September 2001 by using an open-flow gas exchange system with an infrared gas analyser. The decomposition rate of dead roots (R D) was estimated by using a root-bag method to correct the soil respiration measured from the trenched plots for the additional decaying root biomass. The soil respiration rates in the control plot increased from May (240–320 mg CO2 m–2 h–1) to August (840–1150 mg CO2 m–2 h–1) and then decreased during autumn (200–650 mg CO2 m–2 h–1). The soil respiration rates in the trenched plot showed a similar pattern of seasonal change, but the rates were lower than in the control plot except during the 2 months following the trenching. Root respiration rate (R r) and heterotrophic respiration rate (R h) were estimated from R control, R trench, and R D. We estimated that the contribution of R r to total soil respiration in the growing season ranged from 27 to 71%. There was a significant relationship between R h and soil temperature, whereas R r had no significant correlation with soil temperature. The results suggest that the factors controlling the seasonal change of respiration differ between the two components of soil respiration, R r and R h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号