首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Non-human primates are most suitable for generating cervical experimental models, and it is necessary to study the anatomy of the cervical spine in non-human primates when generating the models. The purpose of this study was to provide the anatomical parameters of the cervical spine and spinal cord in long-tailed macaques (Macaca fascicularis) as a basis for cervical spine-related experimental studies. Cervical spine specimens from 8 male adult subjects were scanned by micro-computed tomography, and an additional 10 live male subjects were scanned by magnetic resonance imaging. The measurements and parameters from them were compared to those of 12 male adult human subjects. Additionally, 10 live male subjects were scanned by magnetic resonance imaging, and the width and depth of the spinal cord and spinal canal and the thickness of the anterior and posterior cerebrospinal fluid were measured and compared to the relevant parameters of 10 male adult human subjects. The tendency of cervical parameters to change with segmental changes was similar between species. The vertebral body, spinal canal, and spinal cord were significantly flatter in the human subjects than in the long-tailed macaques. The cerebrospinal fluid space in the long-tailed macaques was smaller than that in the human subjects. The anatomical features of the cervical vertebrae of long-tailed macaques provide a reference for establishing a preclinical model of cervical spinal cord injury.  相似文献   

2.
3.
1.  Studies were performed to determine the changes in immunoreactive (IR) type II glucocorticoid receptors of the ventral horn of the spinal cord produced by adrenalectomy (ADX), dexamethasone (DEX) treatment, and spinal cord transection in rats.
2.  These treatments did not significantly affect the number of IR neurons of the ventral horn; however, staining intensity was enhanced after ADX and decreased following 4 days of DEX. A similar response pattern was observed for glial-type cells.
3.  In control rats, about half of the ventral horn motoneurons were surrounded by immunoreactive glial perineuroral cells. These perineuronal cells increased after ADX (77% of counted neurons) and decreased following DEX treatment (32%;P < 0.05).=">
4.  Two days after transection, staining was intensified in ventral horn motoneurons and glial cells located in the spinal cord below the lesion. Immunoreactive perineuronal cells increased to 85% of counted neurons, from a value of 66% in sham-operated rats (P < 0.05).=">
5.  These findings suggest considerable plasticity of the spinal cord GCR in response to changes in hormonal levels and experimental lesions. It is possible that factors involved in cell to cell communication with transfer of hypothetical regulatory molecules may play roles in GCR regulation and the increased immunoreaction of glia associated with neurons following transection and ADX.
  相似文献   

4.
5.
It has long been established that oxidative stress plays a critical role in the pathophysiology of spinal cord injury, and represents an important target of therapeutic intervention following the initial trauma. However, free radical scavengers have been largely ineffective in clinical trials, and as such a novel target to attenuate oxidative stress is highly warranted. In addition to free radicals, peroxidation of lipid membranes following spinal cord injury (SCI) produces reactive aldehydes such as acrolein. Acrolein is capable of depleting endogenous antioxidants such as glutathione, generating free radicals, promoting oxidative stress, and damaging proteins and DNA. Acrolein has a significantly longer half‐life than the transient free radicals, and thus may represent a potentially better target of therapeutic intervention to attenuate oxidative stress. There is growing evidence, from our lab and others, to suggest that reactive aldehydes such as acrolein play a critical role in oxidative stress and SCI. The focus of this review is to summarize the cellular and biochemical mechanisms of acrolein‐induced membrane damage, mitochondrial injury, oxidative stress, cell death, and functional loss. Evidence will also be presented to suggest that acrolein scavenging may be a novel means of therapeutic intervention to attenuate oxidative stress and improve recovery following traumatic SCI.  相似文献   

6.
A spinal cord injury (SCI) is one of the most common neurological disorders. In this paper, we examined the consequences of upper SCI in a male participant on the cerebral blood flow velocity. In particular, transcranial Doppler was used to study these effects through middle cerebral arteries (MCA) during resting-state periods and during cognitive challenges (non-verbal word-generation tasks and geometric-rotation tasks). Signal characteristics were analyzed from raw signals and envelope signals (maximum velocity) in the time domain, the frequency domain and the time–frequency domain. The frequency features highlighted an increase of the peak frequency in L-MCA and R-MCA raw signals, which revealed stronger cerebral blood flow during geometric/verbal processes respectively. This underlined a slight dominance of the right hemisphere during word-generation periods and a slight dominance of the left hemisphere during geometric processes. This finding was confirmed by cross-correlation in the time domain and by the entropy rate in information-theoretic domain. A comparison of our results to other neurological disorders (Alzheimer’s disease, Parkinson’s disease, autism, epilepsy, traumatic brain injury) showed that the SCI had similar effects such as general decreased cerebral blood flow and similar regular hemispheric dominance in a few cases.  相似文献   

7.
Acute spinal cord injury (SCI) has become epidemic in modern society. Despite advances made in the understanding of the pathogenesis and improvements in early recognition and treatment, it remains a devastating event, often producing severe and permanent disability. SCI has two phases: acute and secondary. Although the acute phase is marked by severe local and systemic events such as tissue contusion, ischaemia, haemorrhage and vascular damage, the outcome of SCI are mainly influenced by the secondary phase. SCI causes inflammatory responses through the activation of innate immune responses that contribute to secondary injury, in which polarization‐based macrophage activation is a hallmarker. Macrophages accumulated within the epicentre and the haematoma of the injured spinal cord play a significant role in this inflammation. Depending on their phenotype and activation status, macrophages may initiate secondary injury mechanisms and/or promote CNS regeneration and repair. When it comes to therapies for SCI, very few can be performed in the acute phase. However, as macrophage activation and polarization switch are exquisitely sensitive to changes in microenvironment, some trials have been conducted to modulate macrophage polarization towards benefiting the recovery of SCI. Given this, it is important to understand how macrophages and SCI interrelate and interact on a molecular pathophysiological level. This review provides a comprehensive overview of the immuno‐pathophysiological features of acute SCI mainly from the following perspectives: (i) the overview of the pathophysiology of acute SCI, (ii) the roles of macrophage, especially its polarization switch in acute SCI, and (iii) newly developed neuroprotective therapies modulating macrophage polarization in acute SCI.  相似文献   

8.
9.
ABSTRACT: INTRODUCTION: Hemangioblastomas are highly vascular tumors that can arise within the central nervoussystem as well as other organ systems within the body. They can arise sporadically or as partof Von Hippel Lindau syndrome. Those arising in critical locations within the central nervoussystem can be difficult to resect surgically and therefore pose a significant challenge andresult in morbidity and even mortality. Hemangioblastomas express high levels of vascularendothelial growth factor that drives angiogenesis and tumor progression. We hypothesizedthat bevacizumab through its inhibitory effect on vascular endothelial growth factor willresult in hemangioblastoma tumor regression as well as a meaningful clinical response. CASE PRESENTATION: We present the case of a 51-year-old Caucasian man with surgically unresectable cervicalcord hemangioblastoma presenting with progressive weakness leading to quadriparesis. Hewas treated with bevacizumab and his follow up magnetic resonance imaging scans showedmarked tumor regression. After only six cycles of intravenous bevacizumab (10mg/kg everytwo weeks), he started ambulating after being wheelchair bound. He is currently stillreceiving treatment almost two years after initiation of bevacizumab. CONCLUSIONS: We have shown for the first time that bevacizumab can result in significant tumor regressionand a sustained clinical improvement in a patient with an otherwise unresectable spinal cordhemangioblastoma. This novel approach can be immensely useful for patients with difficultto resect hemangioblastomas or those with multiple lesions such as in Von Hippel Lindausyndrome.  相似文献   

10.
Dpysls (CRMPs) that were initially identified as mediator proteins of Semaphorin3a (Sema3a) signaling are involved in neuronal polarity and axon elongation in cultured neurons. Previous studies have shown that knockdown of neuropilin1a, one of the sema3a receptors, exhibited ectopic primary motor neurons (PMNs) outside of the spinal cord in zebrafish. However, downstream molecules of sema3a signaling involved in the positioning of motor neurons are largely unknown. Here, we addressed the role of Dpysl2 (CRMP2) and Dpysl3 (CRMP4) in the positioning of PMNs in the zebrafish spinal cord. We found that the knockdown of dpysls by antisense morpholino oligonucleotides (AMO) causes abnormal positioning of caudal primary (CaP) motor neurons outside the spinal cord. The knockdown of cdk5 and dyrk2 by AMO also caused similar phenotype in the positioning of CaP motor neurons, and this phenotype was rescued by co‐injection of phosphorylation‐mimic type dpysl2 mRNA. These results suggest that the phosphorylation of Dpysl2 and Dpysl3 by Cdk5 and Dyrk2 is required for correct positioning of CaP motor neurons in the zebrafish spinal cord. © 2013 Wiley Periodicals, Inc. Develop Neurobiol 73: 911–920, 2013  相似文献   

11.
《Neuron》2023,111(3):328-344.e7
  1. Download : Download high-res image (241KB)
  2. Download : Download full-size image
  相似文献   

12.
Changes in the distribution of interstitial cells (IC) are reportedly associated with dysfunctional bladder. This study investigated whether spinal cord injury (SCI) resulted in changes to IC subpopulations (vimentin-positive with the ultrastructural profile of IC), smooth muscle and nerves within the bladder wall and correlated cellular remodelling with functional properties. Bladders from SCI (T8/9 transection) and sham-operated rats 5 weeks post-injury were used for ex vivo pressure-volume experiments or processed for morphological analysis with transmission electron microscopy (TEM) and light/confocal microscopy. Pressure-volume relationships revealed low-pressure, hypercompliance in SCI bladders indicative of decompensation. Extensive networks of vimentin-positive IC were typical in sham lamina propria and detrusor but were markedly reduced post-SCI; semi-quantitative analysis showed significant reduction. Nerves labelled with anti-neurofilament and anti-vAChT were notably decreased post-SCI. TEM revealed lamina propria IC and detrusor IC which formed close synaptic-like contacts with vesicle-containing nerve varicosities in shams. Lamina propria and detrusor IC were ultrastructurally damaged post-SCI with retracted/lost cell processes and were adjacent to areas of cellular debris and neuronal degradation. Smooth muscle hypertrophy was common to SCI tissues. In conclusion, IC populations in bladder wall were decreased 5 weeks post-SCI, accompanied with reduced innervation, smooth muscle hypertrophy and increased compliance. These novel findings indicate that bladder wall remodelling post-SCI affects the integrity of interactions between smooth muscle, nerves and IC, with compromised IC populations. Correlation between IC reduction and a hypercompliant phenotype suggests that disruption to bladder IC contribute to pathophysiological processes underpinning the dysfunctional SCI bladder.  相似文献   

13.
脊髓损伤(spinal cord injury,SCI)是一种极为复杂的破坏性疾病,一旦脊髓损伤发生,治疗棘手,对患者家庭、国家带来巨大的经济、社会负担。近年来,通过建立大鼠脊髓损伤细胞相关模型,对于脊髓损伤的病因病机治疗等方面有了进一步的认识,而星形胶质细胞模型的建立对脊髓损伤治疗有深远意义。研究发现,星形胶质细胞作为靶细胞通过血-脑脊液屏障直接或间接对脊髓损伤有双向调控作用。本文通过对近年来星形胶质细胞模型培养制备方案等研究进行总结,以期为建立一个客观化、定量化、可模拟化的星形胶质细胞模型提供指导对脊髓损伤的治疗提供新的思路。  相似文献   

14.
Intrathecal delivery is a procedure involving the release of therapeutic agents into the cerebrospinal fluid (CSF) hrough a catheter. It holds promise for treating high-impact central nervous system pathologies, for which systemic administration routes are ineffective. In this study we introduce a numerical model able to simultaneously account for solute transport in the fluid and in the spinal cord. Using a Discontinuous Galerkin method and a three-dimensional patient-specific geometry, we studied the effect of catheter position and angle on local spinal cord drug concentration. We considered twenty cardiac cycles to limit the computational cost of our approach, which resolves the physics both in space and time. We used clinically representative data for the drug injection speed and dose rate, and scaled drug diffusion/penetration properties to obtain observable effects during the considered simulation time. Based on our limited set of working parameters, lateral injection perpendicular to the cord turned out to be more effective than other configurations. Even if the adopted scaling does not allow for a direct clinical translation (a wider parametric assessment of the importance of CSF flow, geometry and diffusion properties is needed), it did not weaken our numerical approach, which can be used to systematically investigate multiple catheter, geometry and fluid/tissue properties configurations, thus paving the way for therapy control.  相似文献   

15.
16.
The distribution of blood-borne immunoglobulins G (IgG) was studied in the cerebral cortex, pineal gland, spinal cord and dorsal root ganglia of normal Lewis rats using the detection of autologous anti-horseradish peroxidase (HRP) antibodies. This detection was performed by means of light and electron microscopy. This study demonstrated that, in the cerebral cortex and the spinal cord microcirculations, endothelial cells are a restrictive barrier against IgG while IgG are able to diffuse into the perivascular parenchyma of the pineal gland and spinal ganglia.  相似文献   

17.
18.
The present study was undertaken to further investigate the role of glial cells in the development of the neuropathic pain-like state induced by sciatic nerve ligation in mice. At 7 days after sciatic nerve ligation, the immunoreactivities (IRs) of the specific astrocyte marker glial fibrillary acidic protein (GFAP) and the specific microglial marker OX-42, but not the specific oligodendrocyte marker O4, were increased on the ipsilateral side of the spinal cord dorsal horn in nerve-ligated mice compared with that on the contralateral side. Furthermore, a single intrathecal injection of activated spinal cord microglia, but not astrocytes, caused thermal hyperalgesia in naive mice. Furthermore, 5-bromo-2'-deoxyuridine (BrdU)-positive cells on the ipsilateral dorsal horn of the spinal cord were significantly increased at 7 days after nerve ligation and were highly co-localized with another microglia marker, ionized calcium-binding adaptor molecule 1 (Iba1), but neither with GFAP nor a specific neural nuclei marker, NeuN, in the spinal dorsal horn of nerve-ligated mice. The present data strongly support the idea that spinal cord astrocytes and microglia are activated under the neuropathic pain-like state, and that the proliferated and activated microglia directly contribute to the development of a neuropathic pain-like state in mice.  相似文献   

19.
In order to examine the role of target cells in the development of spinal motoneurons, the neural tube from thoracic segments was transplanted to the lumbar region on embryonic day (E) 2, and allowed to innervate hindlimb muscles in the chick embryo. When examined at later stages of development, the proportion of white and gray matter in the thoracic transplant was altered to resemble normal lumbar cord. Many thoracic motoneurons were able to survive up to posthatching stages following transplantation. The branching and arborization of dendrites of thoracic motoneurons innervating hindlimb muscles, as well as motoneuron (soma) size, were also increased to an extent approximating that seen in normal lumbar motoneurons. In support of previous studies using a similar transplant model, we have also found that the peripheral (intramuscular) branching pattern of thoracic motoneuron axons innervating hindlimb muscles was similar to that of normal lumbar motoneurons. Axon size and the degree of myelination of transplanted thoracic motoneuron axons were also increased so that these parameters more closely resembled axons of normal lumbar than normal thoracic spinal motoneurons. Virtually all of the changes in motoneuron properties noted above were observed irrespective of whether or not the transplanted spinal cord had developed in anatomical continuity with the host rostral cord. Accordingly, it is unlikely that the changes in the development of transplanted thoracic motoneurons reported here are induced either entirely, or in part, by signals derived from the host central nervous system. Rather, these changes appear to be mediated by interactions between the transplanted motoneurons and the hindlimb. We favor the notion that retrograde trophic signals derived from the hindlimb act to modulate the development of innervating motoneurons. Whether this signal involves a diffusible trophic agent released from target cells, or acts by some other mechanism is presently unknown. © 1992 John Wiley & Sons, Inc.  相似文献   

20.
Clinical evaluations of long-term outcomes in the early-stage spinal cord injury (SCI) focus on macroscopic motor performance and are limited in their prognostic precision. This study was designed to investigate the sensitivity of the magnetic resonance imaging (MRI) indexes to the data-driven gait process after SCI. Ten adult female rhesus monkeys were subjected to thoracic SCI. Kinematics-based gait examinations were performed at 1 (early stage) and 12 (chronic stage) months post-SCI. The proportion of stepping (PS) and gait stability (GS) were calculated as the outcome measures. MRI metrics, which were derived from structural imaging (spinal cord cross-sectional area, SCA) and diffusion tensor imaging (fractional anisotropy, FA; axial diffusivity, λ//), were acquired in the early stage and compared with functional outcomes by using correlation analysis and stepwise multivariable linear regression. Residual tissue SCA at the injury epicenter and residual tissue FA/remote normal-like tissue FA were correlated with the early-stage PS and GS. The extent of lesion site λ///residual tissue λ// in the early stage after SCI was correlated with the chronic-stage GS. The ratios of lesion site λ// to residual tissue λ// and early-stage GS were predictive of the improvement in the PS at follow-up. Similarly, the ratios of lesion site λ// to residual tissue λ// and early-stage PS best predicted chronic GS recovery. Our findings demonstrate the predictive power of MRI combined with the early data-driven gait indexes for long-term outcomes. Such an approach may help clinicians to predict functional recovery accurately.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号