首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Fertilized temperate croplands export large amounts of reactive nitrogen (N), which degrades water and air quality and contributes to climate change. Fertilizer use is poised to increase in the tropics, where widespread food insecurity persists and increased agricultural productivity will be needed, but much less is known about the potential consequences of increased tropical N fertilizer application. We conducted a meta‐analysis of tropical field studies of nitrate leaching, nitrous oxide emissions, nitric oxide emissions, and ammonia volatilization totaling more than 1,000 observations. We found that the relationship between N inputs and losses differed little between temperate and tropical croplands, although total nitric oxide losses were higher in the tropics. Among the potential drivers we studied, the N input rate controlled all N losses, but soil texture and water inputs also controlled hydrological N losses. Irrigated systems had significantly higher losses of ammonia, and pasture agroecosystems had higher nitric oxide losses. Tripling of fertilizer N inputs to tropical croplands from 50 to 150 kg N ha?1 year?1 would have substantial environmental implications and would lead to increases in nitrate leaching (+30%), nitrous oxide emissions (+30%), nitric oxide (+66%) emissions, and ammonia volatilization (+74%), bringing tropical agricultural nitrate, nitrous oxide, and ammonia losses in line with temperate losses and raising nitric oxide losses above them.  相似文献   

2.
Agricultural activities have greatly altered the global nitrogen (N) cycle and produced nitrogenous gases of environmental significance. More than half of all chemical N fertilizer produced globally is used in crop production in East, Southeast and South Asia, where rice is central to nutrition. Emissions of nitrous oxide (N2O), nitric oxide (NO) and ammonia (NH3) from croplands in this region were estimated by considering background emission and emissions resulting from N added to croplands, including chemical N, animal manure, biologically fixed N and N in crop residues returned to fields. Background emission fluxes of N2O and NO from croplands were estimated to be 1.22 and 0.57 kg N ha?1 yr?1, respectively. Separate fertilizer‐induced emission factors were estimated for upland fields and rice fields. Total N2O emission from croplands in the study region was estimated to be 1.19 Tg N yr?1, with 43% contributed by background emissions. The average fertilizer‐induced N2O emission, however, accounts for only 0.93% of the applied N, which is less than the default IPCC value of 1.25%, because of the low emission factor from paddy fields. Total NO emission was 591 Gg N yr?1 in the study region, with 40% from background emissions. The average fertilizer‐induced NO emission factor was 0.48%. Total NH3 emission was estimated to be 11.8 Tg N yr?1. The use of urea and ammonium bicarbonate and the cultivation of rice led to a high average NH3 loss rate from chemical N fertilizer in the study region. Emissions were displayed at a 0.5° × 0.5° resolution with the use of a global landuse database.  相似文献   

3.
Dr Willem Asman concluded that the major global sources of atmospheric NH3 are excreta from domestic animals and fertilizers. A question raised was: how reliable are the emission estimates and extrapolations? The answer was that emission estimates are surrounded by uncertainty, which is a major handicap to sound modelling of NH3 dry deposition and, consequently, to obtaining good estimates of critical load exceedences.
Major uncertainties in emission estimates seem to be related to the use of simple emission factors, many of which are highly empirical or have been derived from measurements carried out under conditions which deviate considerably from those following modern practices of handling and applying manure and fertilizers. An example is provided by the commonly used emission factors for synthetic fertilizers (see e.g. Bouwman et al . (1997)), which are much higher than recent micrometeorological assessments seem to suggest. Thus, emission from urea, the most widespread fertilizer used in the world (currently around 55% of world N consumption) can be completely avoided if the fertilizer is incorporated into the upper soil layers. Similarly, a growing crop can reduce losses to well below 10% of the applied amount of urea-N, i.e. to less than half of the generally used emission factors of 15% for Europe and 25% for the tropics. The emission factor for NPK-fertilizer is set at 4%, whereas that for pure calcium-ammonium-nitrate, the same N compound as is present in NPK-fertilizers, is assumed to be only 2%.  相似文献   

4.
氮肥种类及运筹技术调控土壤氮素损失的研究进展   总被引:1,自引:1,他引:0  
氮肥的不合理施用导致氮肥利用率低下,大量氮素通过径流、淋溶、氨挥发、硝化-反硝化作用等途径损失到环境中,从而对水体、大气造成污染,带来严重的环境问题,影响人类健康.施氮量、施肥时间和方式,以及肥料种类对氮素流失量的影响显著.土壤氮素浓度过饱和是导致氮素大量流失的最根本原因,充分利用环境供氮量,减少化学氮肥施用量,采用深施等技术,以及配合施用有机肥,可以有效降低氮素的损失,提高氮素利用率.在开发应用新型高效氮肥和强化氮肥高效管理技术研究的同时,加强环境氮素的监测和利用力度,是实现减氮增效的有力手段.  相似文献   

5.
不同施肥方式对土壤氨挥发和氧化亚氮排放的影响   总被引:43,自引:0,他引:43  
采用密闭室间歇通气法和静态箱法对不同施肥方式(撒施后翻耕、条施后覆土、撒施后灌水)下的土壤氨挥发和氧化亚氮排放进行了研究.结果表明:不同施肥方式显著影响了土壤中的氨挥发和氧化亚氮排放.撒施后灌水处理明显促进了氨挥发,其最大氨挥发速率明显高于其它处理,氨挥发累计达2.465 kg N·hm-2.不同施肥方式下氧化亚氮排放通量存在显著差异(P《0.05),且峰值出现时间也不同.施肥后第2天,撒施后灌水处理达到峰值,为193.66 μg·m-2·h-1,而条施后覆土处理在施肥后第5天才出现峰值,为51.13 μg·m-2·h-1,且其排放峰值在3种施肥方式中最低.撒施后灌水处理的氧化亚氮累积净排放量达121.55 g N·hm-2,显著大于撒施后翻耕和条施后覆土处理.撒施后翻耕和条施后覆土处理能有效抑制氨挥发和氧化亚氮排放损失,是较为合理的施肥方式.  相似文献   

6.
以庐山自然保护区3个不同海拔样地采集的138根日本柳杉样芯为研究材料,利用树木年轮学方法分析其径向生长与季节和月气候因子的响应关系。结果表明:低海拔处日本柳杉径向生长对气候因子的响应相比于中、高海拔更敏感;中、低海拔径向生长与春季相对湿度呈显著正相关(P<0.05),低海拔径向生长与春季日照时数、夏季均温呈显著负相关(P<0.05),而中海拔径向生长与夏、秋季均温呈显著负相关(P<0.05);高海拔径向生长与各个季节气候因子表现出一定的相关性,但相关性不显著; 3个海拔径向生长均与当年1月均温呈显著正相关(P<0.05),中、低海拔径向生长与上年7月及当年7月均温呈显著负相关(P<0.05),高温会抑制树木的生长,低海拔径向生长与当年4月空气相对湿度、降水量呈显著正相关(P<0.05),与当年4月日照时数呈显著负相关(P<0.05),随海拔的升高相关性降低;庐山日本柳杉径向生长与主要气候要素之间的相关性呈现出明显的季节性,日本柳杉径向生长主要受上年7及7月均温和4月空气相对湿度的影响,海拔是影响日本柳杉径向生长对气候因子响应的重要因素,最终建立...  相似文献   

7.
Field and laboratory studies were conducted to determine effects of nitrogen fertilizers and soil water content on N2O and CH4 fluxes in a humisol located on the Central Experimental Farm of Agriculture Canada, Ottawa. Addition of 100 kg N ha–1 as either urea or NaNO3 had no significant effect on soil CH4 flux measured using chambers. Fertilization with NaNO3 resulted in a significant but transitory stimulation of N2O production. Inorganic soil N profiles and the potential nitrification rate suggested that much of the NH 4 + from urea hydrolysis was rapidly nitrified. CH4 fluxes measured using capped soil cores agreed well with fluxes measured using field chambers, and with fluxes calculated from soil gas concentration gradients using Fick's diffusion law. This humisol presents an ideal, unstructured, vertically homogeneous system in which to study gas diffusion, and the influence of gas-filled porosity on CH4 uptake. In soil cores gradually saturated with H2O, the relationship of CH4 flux to gas-filled porosity was an exponential rise to a maximum. Steepening CH4 concentration gradients partially compensated for the decreasing diffusion coefficient of CH4 in soil matrix air as water content increased, and diffusion limitation of CH4 oxidation occurred only at water contents > 130% (dry weight), or gas-filled porosities < 0.2.Corresponding author  相似文献   

8.
    
Temperate pasture species constitute a source of protein for dairy cattle. On the other hand, from an environmental perspective, their high N content can increase N excretion and nitrogenous gas emissions by livestock. This work explores the effect of energy supplementation on N use efficiency (NUE) and nitrogenous gas emissions from the excreta of dairy cows grazing a pasture of oat and ryegrass. The study was divided into two experiments: an evaluation of NUE in grazing dairy cows, and an evaluation of N-NH3 and N-N2O volatilizations from dairy cow excreta. In the first experiment, 12 lactating Holstein × Jersey F1 cows were allocated to a double 3 × 3 Latin square (three experimental periods of 17 days each) and subjected to three treatments: cows without supplementation (WS), cows supplemented at 4.2 kg DM of corn silage (CS) per day, and cows supplemented at 3.6 kg DM of ground corn (GC) per day. In the second experiment, samples of excreta were collected from the cows distributed among the treatments. Aliquots of dung and urine of each treatment plus one blank (control – no excreta) were allotted to a randomized block design to evaluate N-NH3 and N-N2O volatilization. Measurements were performed until day 25 for N-NH3 and until day 94 for N-N2O. Dietary N content in the supplemented cows was reduced by 20% (P < 0.001) compared with WS cows, regardless of the supplement. Corn silage cows had lower N intake (P < 0.001) than WS and GC cows (366 v. 426 g/day, respectively). Ground corn supplementation allowed cows to partition more N towards milk protein compared with the average milk protein of WS cows or those supplemented with corn silage (117 v. 108 g/day, respectively; P < 0.01). Thus, even though they were in different forms, both supplements were able to increase (P < 0.01) NUE from 27% in WS cows to 32% in supplemented cows. Supplementation was also effective in reducing N excretion (761 v. 694 g/kg of Nintake; P < 0.001), N-NH3 emission (478 v. 374 g/kg of Nmilk; P < 0.01) and N-N2O emission (11 v. 8 g/kg of Nmilk; P < 0.001). Corn silage and ground corn can be strategically used as feed supplements to improve NUE, and they have the potential to mitigate N-NH3 and N-N2O emissions from the excreta of dairy cows grazing high-protein pastures.  相似文献   

9.
Winniwarter and colleagues present alternative estimates for several of the nitrogen (N) fluxes provided by Schulze and colleagues. They reason that numeric discrepancies between largely dependent estimates and lack of detail in Schulze's estimates urges caution in interpreting these numbers. In this reply we provide methodological details enhancing the transparency of Schulze's estimates and argue that convergence between land‐ and atmosphere‐based estimates should be reached before individual estimates can be rejected. Only for the nitrous oxide and NOx fluxes a balance between atmosphere and land‐based estimates has been reached. Convergence between independent estimates has not been reached yet for NO‐, NH3‐ and N‐deposition estimates. As stated by Schulze and colleagues these N‐fluxes remain potentially biased and therefore come with a large uncertainty, irrespective of the reported precision.  相似文献   

10.
采用密闭室法和离子交换树脂袋法,研究了科尔沁沙质草地不同处理(水添加、氮添加、水氮添加)氧挥发的损失量和硝态氮的淋溶量.结果表明:氮添加处理和水氮添加处理显著促进了氨挥发(P<0.05),最大氨挥发速率显著高于对照;氮添加处理和水氮添加处理的氨挥发累积量为111.80和148.64 mg·m-2,分别占氮添加量的1.1%和1.5%;水氮同时添加条件下,氨挥发累计量显著高于氨添加处理(P<0.05),水添加处理和对照相比没有显著差异(P>0.05);水氮添加处理显著增加了土壤深度20 cm处的硝态氮淋溶量(P<0.05),氮添加处理和水氮添加处理的硝态氮淋溶量分别是对照的1.96和4.22倍,然而在土壤深度40 cm处各处理硝态氮淋溶量差异不显著(P>0.05);可见,氮添加和水氮添加均促进了土壤的氧挥发,对硝态氮的淋溶没有显著影响.  相似文献   

11.
This paper compares data on N fluxes compiled by Schulze and colleagues, with information available in the literature and publicly available open databases, and finds important discrepancies for a number of such fluxes for Europe (emissions, deposition, aerosol formation of compounds containing N) – exceeding a factor of two in several cases. A qualitative assessment of the uncertainties of the respective approaches indicates that these differences are beyond the uncertainty margins that can be reasonably attributed to the respective data. We conclude that the results should be used with caution, that agricultural application of N should still be considered to be the largest source of N released to the environment, and that this agricultural N affects soils more strongly than atmospheric deposition, at the European scale.  相似文献   

12.
Human activities have more than doubled the inputs of nitrogen (N) into terrestrial systems globally. The sources and distribution of anthropogenic N, including N fertilization and N fixed during fossil fuel combustion, are rapidly shifting from the temperate zone to a more global distribution. The consequences of anthropogenic N deposition for ecosystem processes and N losses have been studied primarily in N-limited ecosystems in the temperate zone; there is reason to expect that tropical ecosystems, where plant growth is most often limited by some other resource, will respond differently to increasing deposition. In this paper, we assess the likely direct and indirect effects of increasing anthropogenic N inputs on tropical ecosytem processes. We conclude that anthropogenic inputs of N into tropical forests are unlikely to increase productivity and may even decrease it due to indirect effects on acidity and the availability of phosphorus and cations. We also suggest that the direct effects of anthropogenic N deposition on N cycling processes will lead to increased fluxes at the soilwater and soil-air interfaces, with little or no lag in response time. Finally, we discuss the uncertainties inherent in this analysis, and outline future research that is needed to address those uncertainties.  相似文献   

13.
In studies of nitrate leaching both experimenters and modellers experience problems arising from soil variability. Because of the small-scale heterogeneity that gives rise to mobile and immobile categories of water, both measurements and modelling are easiest in homogeneous sandy soils and most difficult in strongly structured clay soils. There are also parallels at plot and field scale in the problems caused to experimenters by log-normal distributions of nitrate concentrations and those caused to modellers by non-linearity in models. All researchers need to be aware that a reliable estimate of the mean from a set of measurements or a model may necessitate considerations of variances as well as means.  相似文献   

14.
Because nitrogen is the mineral nutrient needed in largest amounts by plants, it is usually also the limiting factor for plant growth in terrestrial ecosystems (Vitousek & Howarth, 1991). Consequently, the deposition of oxidized and reduced N compounds will almost invariably have large effects in these systems, and because N availability not only regulates plant growth but also that of organisms at other trophic levels, disturbances of several ecosystem processes might occur. The alternations introduced by deposition of atmospheric N compounds are both of a quantitative and of a qualitative nature. Moreover, N deposition can have phytotoxic as well as growth-stimulating effects.
This short commentary gives a personal view of some of the possible consequences of N deposition on plants. It refers particularly to the oral presentations given by Professor Heinz Rennenberg and Dr Marta Peréz-Soba, and to the discussions held after their talks where appropriate. Separate attention is given to four different consequence of anthropogenic N-deposition: N-availability; N-form, N-uptake by the shoot, and the period of N-uptake. Finally, I have tried to adopt an ecosystem perspective and discuss briefly the concept of critical loads of N.  相似文献   

15.
The long-term trends of mean monthly nitrate concentrations in stream and drainage runoff were evaluated in the experimental microbasin Rybárik (0.119 km2) at the Institute of Hydrology, Slovak Academy of Sciences, during the period 1987–2005. The results of analyses indicate a decreasing trend of nitrate concentration after the year 1989, but with relatively high losses in some years and relatively low losses in other years. This decreasing trend is mainly caused by a decrease in the use of nitrogen fertilizers. The nitrate concentration in surface runoff strongly correlates with runoff and fertilization. Based on measured data, an empirical relation was found describing the dependence of annual nitrate transport in the stream on annual runoff depth and on the annual amount of applied nitrogen fertilizers. Presented at the International Conference on Bioclimatology and Natural Hazards, Poľana nad Detvou, Slovakia, 17–20 September 2007.  相似文献   

16.
17.
The model simulates the cycling of N in grassland systems grazed by beef cattle and predicts the annual amount of N in liveweight gain, and the amounts lost through ammonia volatilization, denitrification and leaching, on the basis of fertilizer application and soil and site characteristics. It aims to provide a better understanding of the way in which these various factors interact in their influence on N transformations. The model has been programmed to run on IBM-compatible personal computers and responds rapidly to changes in input parameters. The model has been constructed from the average annual amounts of N passing through various components of the N cycle in ten field systems grazed by beef cattle. The amounts were either measured directly or were calculated from empirical sub-models, assuming a balance between inputs to, and outputs from the soil inorganic N pool. The model is given wide applicability through the inclusion of a mineralization sub-model which is sensitive to soil texture, sward age, previous cropping history, and climatic zone. Another important sub-model determines the partitioning of soil inorganic N to either plant uptake or the processes of loss: the proportion partitioned to plant uptake decreases as the total amount of soil inorganic N increases. Outputs from the model indicate that fertilizer N has a strong influence on ammonia volatilization, denitrification and leaching at a given site but that, over a range of sites with a given rate of fertilizer N, total loss and the proportions lost by the three processes are greatly influenced by the amount of N mineralized by the soil. The model indicates how fertilizer N should be matched with mineralization to limit gaseous and leaching losses and to achieve optimum efficiency of N use in grazing systems.  相似文献   

18.
Jenkinson  D. S. 《Plant and Soil》2001,228(1):3-15
The 6 billion people alive today consume about 25 million tonnes of protein nitrogen each year, a requirement that could well increase to 40–45 million tonnes by 2050. Most of them ultimately depend on the Haber-Bosch process to fix the atmospheric N2 needed to grow at least part of their protein and, over the earth as a whole, this dependency is likely to increase. Humans now fix some 160 million tonnes of nitrogen per year, of which 98 are fixed industrially by the Haber-Bosch process (83 for use as agricultural fertilizer, 15 for industry), 22 during combustion and the rest is fixed during the cultivation of leguminous crops and fodders. These 160 million tonnes have markedly increased the burden of combined nitrogen entering rivers, lakes and shallow seas, as well as increasing the input of NH3, N2O, NO and NO2 to the atmosphere. Nitrogen fertilizers give large economic gains in modern farming systems and under favourable conditions can be used very efficiently. Losses of nitrogen occur from all systems of agriculture, with organic manures being particularly difficult to use efficiently. Although nitrate leaching has received much attention as an economic loss, a cause of eutrophication and a health hazard, gaseous emissions may eventually prove to be the most serious environmentally. Scientists working on the use and fate of nitrogen fertilizers must be careful, clear headed and vigilant in looking for unexpected side effects.  相似文献   

19.
A field incubation technique with acetylene to inhibit nitrification was used to estimate net N mineralization rates in some grassland soils through an annual cycle. Measurements were made on previously long-term grazed pastures on a silty clay loam soil in S.W. England which had background managements of +/– drainage and +/– fertilizer (200 kg N ha–1 yr–1). The effect of fertilizer addition on mineralization during the year of measurement was also determined. Small plots with animals excluded, and with herbage clipped and removed were used as treatment areas and measurements were made using an incubation period of 7 days at intervals of 7 or 14 days through the year. Soil temperature, moisture and mineral N contents were also determined. Mineralization rates fluctuated considerably in each treatment. Maximum daily rates ranged from 1.01 to 3.19 kg N ha–1, and there was substantial net release of N through the winter period (representing, on average, 27% of the annual release). Changes in temperature accounted for 35% of the variability but there was little significant effect of soil moisture. Annual net release of N ranged from 135 kg ha–1 (undrained soil, no previous or current fertilizer) to 376 (drained soil, +200 kg N ha–1 yr–1 previous and current fertilizer addition). Addition of fertilizer N to a previously unfertilized sward significantly increased the net release of N but there was no immediate effect of withholding fertilizer on mineralization during the year in which measurements were made.  相似文献   

20.
氧化亚氮(nitrous oxide, N2O)排放量的持续增加对全球生态平衡造成了严重的威胁。微生物N2O排放占主要来源。其中,好氧氨氧化过程是氨在有氧的条件下氧化为亚硝酸盐,其直接或间接地影响着全球产生N2O与释放量。氨氧化古菌(ammonia-oxidizing archaea, AOA)、氨氧化细菌(ammonia-oxidizing bacteria, AOB)、全程氨氧化菌(complete ammonia oxidization, Comammox)和异养氨氧化菌(heterotrophic ammonium oxidizing bacteria, HAOB)是氨氧化过程中主要的参与者,明确这四类微生物N2O产生的机制对缓解全球N2O排放是必要的。本文综述了AOA、AOB、Comammox和HAOB在好氧氨氧化过程中驱动的N2O产生途径,并结合酶学分析了一些关键酶在N2O产生途径中的作用。本文旨在为调控生物N2O排放提供理论基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号