首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In modern microbial mats, hydrogen sulfide shows pronounced sulfur isotope (δ34S) variability over small spatial scales (~50‰ over <4 mm), providing information about microbial sulfur cycling within different ecological niches in the mat. In the geological record, the location of pyrite formation, overprinting from mat accretion, and post‐depositional alteration also affect both fine‐scale δ34S patterns and bulk δ34Spyrite values. We report μm‐scale δ34S patterns in Proterozoic samples with well‐preserved microbial mat textures. We show a well‐defined relationship between δ34S values and sulfide mineral grain size and type. Small pyrite grains (<25 μm) span a large range, tending toward high δ34S values (?54.5‰ to 11.7‰, mean: ?14.4‰). Larger pyrite grains (>25 μm) have low but equally variable δ34S values (?61.0‰ to ?10.5‰, mean: ?44.4‰). In one sample, larger sphalerite grains (>35 μm) have intermediate and essentially invariant δ34S values (?22.6‰ to ?15.6‰, mean: ?19.4‰). We suggest that different sulfide mineral populations reflect separate stages of formation. In the first stage, small pyrite grains form near the mat surface along a redox boundary where high rates of sulfate reduction, partial closed‐system sulfate consumption in microenvironments, and/or sulfide oxidation lead to high δ34S values. In another stage, large sphalerite grains with low δ34S values grow along the edges of pore spaces formed from desiccation of the mat. Large pyrite grains form deeper in the mat at slower sulfate reduction rates, leading to low δ34Ssulfide values. We do not see evidence for significant 34S‐enrichment in bulk pore water sulfide at depth in the mat due to closed‐system Rayleigh fractionation effects. On a local scale, Rayleigh fractionation influences the range of δ34S values measured for individual pyrite grains. Fine‐scale analyses of δ34Spyrite patterns can thus be used to extract environmental information from ancient microbial mats and aid in the interpretation of bulk δ34Spyrite records.  相似文献   

2.
Multiple sulphur (S) isotope ratios are powerful proxies to understand the complexity of S biogeochemical cycling through Deep Time. The disappearance of a sulphur mass‐independent fractionation (S‐MIF) signal in rocks <~2.4 Ga has been used to date a dramatic rise in atmospheric oxygen levels. However, intricacies of the S‐cycle before the Great Oxidation Event remain poorly understood. For example, the isotope composition of coeval atmospherically derived sulphur species is still debated. Furthermore, variation in Archaean pyrite δ34S values has been widely attributed to microbial sulphate reduction (MSR). While petrographic evidence for Archaean early‐diagenetic pyrite formation is common, textural evidence for the presence and distribution of MSR remains enigmatic. We combined detailed petrographic and in situ, high‐resolution multiple S‐isotope studies (δ34S and Δ33S) using secondary ion mass spectrometry (SIMS) to document the S‐isotope signatures of exceptionally well‐preserved, pyritised microbialites in shales from the ~2.65‐Ga Lokammona Formation, Ghaap Group, South Africa. The presence of MSR in this Neoarchaean microbial mat is supported by typical biogenic textures including wavy crinkled laminae, and early‐diagenetic pyrite containing <26‰ μm‐scale variations in δ34S and Δ33S = ?0.21 ± 0.65‰ (±1σ). These large variations in δ34S values suggest Rayleigh distillation of a limited sulphate pool during high rates of MSR. Furthermore, we identified a second, morphologically distinct pyrite phase that precipitated after lithification, with δ34S = 8.36 ± 1.16‰ and Δ33S = 5.54 ± 1.53‰ (±1σ). We propose that the S‐MIF signature of this secondary pyrite does not reflect contemporaneous atmospheric processes at the time of deposition; instead, it formed by the influx of later‐stage sulphur‐bearing fluids containing an inherited atmospheric S‐MIF signal and/or from magnetic isotope effects during thermochemical sulphate reduction. These insights highlight the complementary nature of petrography and SIMS studies to resolve multigenerational pyrite formation pathways in the geological record.  相似文献   

3.
Microbial sulfate reduction (MSR) is thought to have operated very early on Earth and is often invoked to explain the occurrence of sedimentary sulfides in the rock record. Sedimentary sulfides can also form from sulfides produced abiotically during late diagenesis or metamorphism. As both biotic and abiotic processes contribute to the bulk of sedimentary sulfides, tracing back the original microbial signature from the earliest Earth record is challenging. We present in situ sulfur isotope data from nanopyrites occurring in carbonaceous remains lining the domical shape of stromatolite knobs of the 2.7‐Gyr‐old Tumbiana Formation (Western Australia). The analyzed nanopyrites show a large range of δ34S values of about 84‰ (from ?33.7‰ to +50.4‰). The recognition that a large δ34S range of 80‰ is found in individual carbonaceous‐rich layers support the interpretation that the nanopyrites were formed in microbial mats through MSR by a Rayleigh distillation process during early diagenesis. An active microbial cycling of sulfur during formation of the stromatolite may have facilitated the mixing of different sulfur pools (atmospheric and hydrothermal) and explain the weak mass independent signature (MIF‐S) recorded in the Tumbiana Formation. These results confirm that MSR participated actively to the biogeochemical cycling of sulfur during the Neoarchean and support previous models suggesting anaerobic oxidation of methane using sulfate in the Tumbiana environment.  相似文献   

4.
We investigated bacterial and archaeal communities along an ice‐fed surficial hot spring at Kverkfjöll volcano—a partially ice‐covered basaltic volcano at Vatnajökull glacier, Iceland, using biomolecular (16S rRNA, apsA, mcrA, amoA, nifH genes) and stable isotope techniques. The hot spring environment is characterized by high temperatures and low dissolved oxygen concentrations at the source (68°C and <1 mg/L (±0.1%)) changing to lower temperatures and higher dissolved oxygen downstream (34.7°C and 5.9 mg/L), with sulfate the dominant anion (225 mg/L at the source). Sediments are comprised of detrital basalt, low‐temperature alteration phases and pyrite, with <0.4 wt. % total organic carbon (TOC). 16S rRNA gene profiles reveal that organisms affiliated with Hydrogenobaculum (54%–87% bacterial population) and Thermoproteales (35%–63% archaeal population) dominate the micro‐oxic hot spring source, while sulfur‐oxidizing archaea (Sulfolobales, 57%–82%), and putative sulfur‐oxidizing and heterotrophic bacterial groups dominate oxic downstream environments. The δ13Corg (‰ V‐PDB) values for sediment TOC and microbial biomass range from ?9.4‰ at the spring's source decreasing to ?12.6‰ downstream. A reverse effect isotope fractionation of ~3‰ between sediment sulfide (δ34S ~0‰) and dissolved water sulfate (δ34S +3.2‰), and δ18O values of ~ ?5.3‰ suggest pyrite forms abiogenically from volcanic sulfide, followed by abiogenic and microbial oxidation. These environments represent an unexplored surficial geothermal environment analogous to transient volcanogenic habitats during putative “snowball Earth” scenarios and volcano–ice geothermal environments on Mars.  相似文献   

5.
Bacterial formation of phosphatic laminites off Peru   总被引:1,自引:0,他引:1  
Authigenic phosphatic laminites enclosed in phosphorite crusts from the shelf off Peru (10°01′ S and 10°24′ S) consist of carbonate fluorapatite layers, which contain abundant sulfide minerals including pyrite (FeS2) and sphalerite (ZnS). Low δ34Spyrite values (average ?28.8‰) agree with bacterial sulfate reduction and subsequent pyrite formation. Stable sulfur isotopic compositions of sulfate bound in carbonate fluorapatite are lower than that of sulfate from ambient sea water, suggesting bacterial reoxidation of sulfide by sulfide‐oxidizing bacteria. The release of phosphorus and subsequent formation of the autochthonous phosphatic laminites are apparently caused by the activity of sulfate‐reducing bacteria and associated sulfide‐oxidizing bacteria. Following an extraction–phosphorite dissolution–extraction procedure, molecular fossils of sulfate‐reducing bacteria (mono‐O‐alkyl glycerol ethers, di‐O‐alkyl glycerol ethers, as well as the short‐chain branched fatty acids i/ai‐C15:0, i/ai‐C17:0 and 10MeC16:0) are found to be among the most abundant compounds. The fact that these molecular fossils of sulfate‐reducing bacteria are distinctly more abundant after dissolution of the phosphatic laminite reveals that the lipids are tightly bound to the mineral lattice of carbonate fluorapatite. Moreover, compared with the autochthonous laminite, molecular fossils of sulfate‐reducing bacteria are: (1) significantly less abundant and (2) not as tightly bound to the mineral lattice in the other, allochthonous facies of the Peruvian crusts consisting of phosphatic coated grains. These observations confirm the importance of sulfate‐reducing bacteria in the formation of the phosphatic laminite. Model calculations highlight that organic matter degradation by sulfate‐reducing bacteria has the potential to liberate sufficient phosphorus for phosphogenesis.  相似文献   

6.
The sedimentary pyrite sulfur isotope (δ34S) record is an archive of ancient microbial sulfur cycling and environmental conditions. Interpretations of pyrite δ34S signatures in sediments deposited in microbial mat ecosystems are based on studies of modern microbial mat porewater sulfide δ34S geochemistry. Pyrite δ34S values often capture δ34S signatures of porewater sulfide at the location of pyrite formation. However, microbial mats are dynamic environments in which biogeochemical cycling shifts vertically on diurnal cycles. Therefore, there is a need to study how the location of pyrite formation impacts pyrite δ34S patterns in these dynamic systems. Here, we present diurnal porewater sulfide δ34S trends and δ34S values of pyrite and iron monosulfides from Middle Island Sinkhole, Lake Huron. The sediment–water interface of this sinkhole hosts a low-oxygen cyanobacterial mat ecosystem, which serves as a useful location to explore preservation of sedimentary pyrite δ34S signatures in early Earth environments. Porewater sulfide δ34S values vary by up to ~25‰ throughout the day due to light-driven changes in surface microbial community activity that propagate downwards, affecting porewater geochemistry as deep as 7.5 cm in the sediment. Progressive consumption of the sulfate reservoir drives δ34S variability, instead of variations in average cell-specific sulfate reduction rates and/or sulfide oxidation at different depths in the sediment. The δ34S values of pyrite are similar to porewater sulfide δ34S values near the mat surface. We suggest that oxidative sulfur cycling and other microbial activity promote pyrite formation in and immediately adjacent to the microbial mat and that iron geochemistry limits further pyrite formation with depth in the sediment. These results imply that primary δ34S signatures of pyrite deposited in organic-rich, iron-poor microbial mat environments capture information about microbial sulfur cycling and environmental conditions at the mat surface and are only minimally affected by deeper sedimentary processes during early diagenesis.  相似文献   

7.
Ambient inclusion trails (AITs) are tubular microstructures thought to form when a microscopic mineral crystal is propelled through a fine‐grained rock matrix. Here, we report a new occurrence of AITs from a fossilized microbial mat within the 1878‐Ma Gunflint Formation, at Current River, Ontario. The AITs are 1–15 μm in diameter, have pyrite as the propelled crystal, are infilled with chlorite and have been propelled through a microquartz (chert) or chlorite matrix. AITs most commonly originate at the boundary between pyrite‐ and chlorite‐rich laminae and chert‐filled fenestrae, with pyrite crystals propelled into the fenestrae. A subset of AITs originate within the fenestrae, rooted either within the chert or within patches of chlorite. Sulphur isotope data (34S/32S) obtained in situ from AIT pyrite have a δ34S of ?8.5 to +8.0 ‰, indicating a maximum of ~30 ‰ fractionation from Palaeoproterozoic seawater sulphate (δ34S ≈ +20 ‰). Organic carbon is common both at the outer margins of the fenestrae and in patches of chlorite where most AITs originate, and can be found in smaller quantities further along some AITs towards the terminal pyrite grain. We infer that pyrite crystals now found within the AITs formed via the action of heterotrophic sulphate‐reducing bacteria during early diagenesis within the microbial mat, as pore waters were becoming depleted in seawater sulphate. Gases derived from this process such as CO2 and H2S were partially trapped within the microbial mat, helping produce birds‐eye fenestrae, while rapid microquartz precipitation closed porosity. We propose that propulsion of the pyrite crystals to form AITs was driven by two complementary mechanisms during burial and low‐grade metamorphism: firstly, thermal decomposition of residual organic material providing CO2, and potentially CH4, as propulsive gases, plus organic acids to locally dissolve the microquartz matrix; and secondly, reactions involving clay minerals that potentially led to enhanced quartz solubility, plus increases in fluid and/or gas pressure during chlorite formation, with chlorite then infilling the AITs. This latter mechanism is novel and represents a possible way to generate AITs in environments lacking organic material.  相似文献   

8.
The extent of fractionation of sulfur isotopes by sulfate‐reducing microbes is dictated by genomic and environmental factors. A greater understanding of species‐specific fractionations may better inform interpretation of sulfur isotopes preserved in the rock record. To examine whether gene diversity influences net isotopic fractionation in situ, we assessed environmental chemistry, sulfate reduction rates, diversity of putative sulfur‐metabolizing organisms by 16S rRNA and dissimilatory sulfite reductase (dsrB) gene amplicon sequencing, and net fractionation of sulfur isotopes along a sediment transect of a hypersaline Arctic spring. In situ sulfate reduction rates yielded minimum cell‐specific sulfate reduction rates < 0.3 × 10?15 moles cell?1 day?1. Neither 16S rRNA nor dsrB diversity indices correlated with relatively constant (38‰–45‰) net isotope fractionation (ε34Ssulfide‐sulfate). Measured ε34S values could be reproduced in a mechanistic fractionation model if 1%–2% of the microbial community (10%–60% of Deltaproteobacteria) were engaged in sulfate respiration, indicating heterogeneous respiratory activity within sulfate‐reducing populations. This model indicated enzymatic kinetic diversity of Apr was more likely to correlate with sulfur fractionation than DsrB. We propose that, above a threshold Shannon diversity value of 0.8 for dsrB, the influence of the specific composition of the microbial community responsible for generating an isotope signal is overprinted by the control exerted by environmental variables on microbial physiology.  相似文献   

9.
We revisit the S‐isotope systematics of sedimentary pyrite in a shaly limestone from the ca. 2.52 Ga Gamohaan Formation, Upper Campbellrand Subgroup, Transvaal, South Africa. The analysed rock is interpreted to have been deposited in a water depth of ca. 50–100 m, in a restricted sub‐basin on a drowning platform. A previous study discovered that the pyrites define a nonzero intercept δ34SVCDT–Δ33S data array. The present study carried out further quadruple S‐isotope analyses of pyrite, confirming and expanding the linear δ34SVCDT–Δ33S array with an δ34S zero intercept at ?33S ca. +5. This was previously interpreted to indicate mixing of unrelated S‐sources in the sediment environment, involving a combination of recycled sulphur from sulphides that had originally formed by sulphate‐reducing bacteria, along with elemental sulphur. Here, we advance an alternative explanation based on the recognition that the Archaean seawater sulphate concentration was likely very low, implying that the Archaean ocean could have been poorly mixed with respect to sulphur. Thus, modern oceanic sulphur systematics provide limited insight into the Archaean sulphur cycle. Instead, we propose that the 20th‐century atmospheric lead event may be a useful analogue. Similar to industrial lead, the main oceanic input of Archaean sulphur was through atmospheric raindown, with individual giant point sources capable of temporally dominating atmospheric input. Local atmospheric S‐isotope signals, of no global significance, could thus have been transmitted into the localised sediment record. Thus, the nonzero intercept δ34SVCDT–Δ33S data array may alternatively represent a very localised S‐isotope signature in the Neoarchaean surface environment. Fallout from local volcanic eruptions could imprint recycled MIF‐S signals into pyrite of restricted depositional environments, thereby avoiding attenuation of the signal in the subdued, averaged global open ocean sulphur pool. Thus, the superposition of extreme local S‐isotope signals offers an alternative explanation for the large Neoarchaean MIF‐S excursions and asymmetry of the Δ33S rock record.  相似文献   

10.
Stratiform baryte deposits are widespread in Cambrian and Devonian strata in China and around the world. In this article, the authors studied the sulfur isotopic features and forming mechanism of the stratiform baryte deposits occurring within the Upper Devonian cherts of the Zhenning-Ziyun county, Guizhou province, located in the Southwestern margin of the Yangtze Platform. The sulfur isotopic data from 18 baryte ore samples of the Leji section of Zhenning county are presented herein with values that range from +41.9‰ to +68.4‰ (AVG = +59.9‰). The δ34S values of the baryte ore from the Mohao section of Ziyun county are stable and show a narrow range from +41.3‰ to +47.0‰ (AVG = +44.0‰). In the Luocheng section of Ziyun county, the δ34S values of the baryte ore vary from +27.6‰ to +36.4‰ (AVG = +32.7‰). The δ34S values of all samples are higher than those of the coeval seawater sulfates (+25‰). The scanning electron microscope analysis indicates that spherical, dumbbell-shaped, clavate bacterial and bacteria-like fossils were observed, as well as the irregular schistose and framboid forms of Fe oxides that occur around the surfaces of baryte grains and inter-grains. Fe oxides take irregular schistose and framboid forms. These findings imply the significant concentration of heavy sulfur related to the seawater sulfates with the action of bacterial sulfate reduction in a closed basin. In addition, the trend of the δ34S value of baryte ores is gradually decreasing from the Leji to Mohao and Luocheng sections, which suggests that Leji area is located in the deepwater area of the restricted rift basin, and in a more closed depositional environment.  相似文献   

11.
We present new data of oxygen isotopes in marine sulfate (δ18OSO4) in pore fluid profiles through organic‐rich deep‐sea sediments from 11 ODP sites around the world. In almost all sites studied sulfate is depleted with depth, through both organic matter oxidation and anaerobic methane oxidation. The δ18OSO4 increases rapidly near the top of the sediments, from seawater values of 9 to maxima between 22 and 25, and remains isotopically heavy and constant at these values with depth. The δ18OSO4 in these pore fluid profiles is decoupled from variations in sulfur isotopes measured on the same sulfate samples (δ34SSO4); the δ34SSO4 increases continuously with depth and exhibits a shallower isotopic increase. This isotopic decoupling between the δ34SSO4 and the δ18OSO4 is hard to reconcile with the traditional understanding of bacterial sulfate reduction in sediments. Our data support the idea that sulfate or sulfite and water isotopically exchange during sulfate reduction and that some of the isotopically altered sulfur pool returns to the environment. We calculate that the rapid increase in the δ18OSO4 in the upper part of these sediments requires rates of this oxygen isotope exchange that are several orders of magnitude higher than the rates of net sulfate reduction calculated from the sulfate concentration profiles and supported by the δ34SSO4. We suggest several mechanisms by which this may occur, including ‘net‐zero’ sulfur cycling, as well as further experiments through which we can test and resolve these processes.  相似文献   

12.
Ikaite (CaCO3·6H2O) forms at near-freezing temperatures and its precipitation is favored by high alkalinity and high concentrations of dissolved phosphate. With increasing temperatures during early burial, ikaite transforms into its calcite pseudomorph referred to as glendonite. To further constrain the biogeochemical processes that impact the transformation of ikaite to glendonite, glendonites from Cenozoic strata of western Washington State, USA, were analyzed for their petrographic characteristics, stable isotope (C, O, S) patterns, and lipid biomarker inventories. Glendonites from the Humptulips, Pysht, Lincoln Creek, and Astoria Formations occur in strata that enclose abundant methane-seep deposits. Despite robust evidence for the anaerobic oxidation of methane (AOM) at these ancient seep sites, molecular signatures of this biogeochemical process were not found within glendonite. Glendonite was found to contain abundant, moderately 13C-depleted iso- and anteiso-fatty acids, compounds interpreted as biomarkers of sulfate-reducing bacteria in marine settings. The 34S-enrichment in carbonate-associated sulfate (δ34SCAS = 54.1 ‰) and the 34S-depletion of pyrite (δ34SCRS = 6.8–12.5 ‰) in glendonite samples confirm that bacterial sulfate reduction was a prominent process in the sedimentary environment during the transformation of ikaite to glendonite. Low δ13Cglendonite values, such as those of the Washington State glendonites (as low as ?21‰), have previously been interpreted as signatures of methane-derived carbon; however, the admittedly small data set obtained from the Washington State glendonites is best explained with organoclastic sulfate reduction as the alkalinity engine driving carbonate precipitation. This surprising finding reveals that more comprehensive work is needed to decipher the biogeochemical processes that governed the transformation of ikaite to glendonite in ancient marine settings, including the relative contribution of organoclastic sulfate reduction and AOM.  相似文献   

13.
In terminal Ediacaran strata of South China, the onset of calcareous biomineralization is preserved in the paleontological transition from Conotubus to Cloudina in repetitious limestone facies of the Dengying Formation. Both fossils have similar size, funnel‐in‐funnel construction, and epibenthic lifestyle, but Cloudina is biomineralized, whereas Conotubus is not. To provide environmental context for this evolutionary milestone, we conducted a high‐resolution elemental and stable isotope study of the richly fossiliferous Gaojiashan Member. Coincident with the first appearance of Cloudina is a significant positive carbonate carbon isotope excursion (up to +6‰) and an increase in the abundance and 34S composition of pyrite. In contrast, δ34S values of carbonate‐associated sulfate remain steady throughout the succession, resulting in anomalously large (>70‰) sulfur isotope fractionations in the lower half of the member. The fractionation trend likely relates to changes in microbial communities, with sulfur disproportionation involved in the lower interval, whereas microbial sulfate reduction was the principal metabolic pathway in the upper. We speculate that the coupled paleontological and biogeochemical anomalies may have coincided with an increase in terrestrial weathering fluxes of sulfate, alkalinity, and nutrients to the depositional basin, which stimulated primary productivity, the spread of an oxygen minimum zone, and the development of euxinic conditions in subtidal and basinal environments. Enhanced production and burial of organic matter is thus directly connected to the carbon isotope anomaly, and likely promoted pyritization as the main taphonomic pathway for Conotubus and other soft‐bodied Ediacara biotas. Our studies suggest that the Ediacaran confluence of ecological pressures from predation and environmental pressures from an increase in seawater alkalinity set the stage for an unprecedented geobiological response: the evolutionary novelty of animal biomineralization.  相似文献   

14.
Studies of microbial sulfate reduction have suggested that the magnitude of sulfur isotope fractionation varies with sulfate concentration. Small apparent sulfur isotope fractionations preserved in Archean rocks have been interpreted as suggesting Archean sulfate concentrations of <200 μm , while larger fractionations thereafter have been interpreted to require higher concentrations. In this work, we demonstrate that fractionation imposed by sulfate reduction can be a function of concentration over a millimolar range, but that nature of this relationship depends on the organism studied. Two sulfate‐reducing bacteria grown in continuous culture with sulfate concentrations ranging from 0.1 to 6 mm showed markedly different relationships between sulfate concentration and isotope fractionation. Desulfovibrio vulgaris str. Hildenborough showed a large and relatively constant isotope fractionation (34εSO4‐H2S ? 25‰), while fractionation by Desulfovibrio alaskensis G20 strongly correlated with sulfate concentration over the same range. Both data sets can be modeled as Michaelis–Menten (MM)‐type relationships but with very different MM constants, suggesting that the fractionations imposed by these organisms are highly dependent on strain‐specific factors. These data reveal complexity in the sulfate concentration–fractionation relationship. Fractionation during MSR relates to sulfate concentration but also to strain‐specific physiological parameters such as the affinity for sulfate and electron donors. Previous studies have suggested that the sulfate concentration–fractionation relationship is best described with a MM fit. We present a simple model in which the MM fit with sulfate concentration and hyperbolic fit with growth rate emerge from simple physiological assumptions. As both environmental and biological factors influence the fractionation recorded in geological samples, understanding their relationship is critical to interpreting the sulfur isotope record. As the uptake machinery for both sulfate and electrons has been subject to selective pressure over Earth history, its evolution may complicate efforts to uniquely reconstruct ambient sulfate concentrations from a single sulfur isotopic composition.  相似文献   

15.
An approach to coordinated, spatially resolved, in situ carbon isotope analysis of organic matter and carbonate minerals, and sulfur three‐ and four‐isotope analysis of pyrite with an unprecedented combination of spatial resolution, precision, and accuracy is described. Organic matter and pyrite from eleven rock samples of Neoarchean drill core express nearly the entire range of δ13C, δ34S, Δ33S, and Δ36S known from the geologic record, commonly in correlation with morphology, mineralogy, and elemental composition. A new analytical approach (including a set of organic calibration standards) to account for a strong correlation between H/C and instrumental bias in SIMS δ13C measurement of organic matter is identified. Small (2–3 μm) organic domains in carbonate matrices are analyzed with sub‐permil accuracy and precision. Separate 20‐ to 50‐μm domains of kerogen in a single ~0.5 cm3 sample of the ~2.7 Ga Tumbiana Formation have δ13C = ?52.3 ± 0.1‰ and ?34.4 ± 0.1‰, likely preserving distinct signatures of methanotrophy and photoautotrophy. Pyrobitumen in the ~2.6 Ga Jeerinah Formation and the ~2.5 Ga Mount McRae Shale is systematically 13C‐enriched relative to co‐occurring kerogen, and associations with uraniferous mineral grains suggest radiolytic alteration. A large range in sulfur isotopic compositions (including higher Δ33S and more extreme spatial gradients in Δ33S and Δ36S than any previously reported) are observed in correlation with morphology and associated mineralogy. Changing systematics of δ34S, Δ33S, and Δ36S, previously investigated at the millimeter to centimeter scale using bulk analysis, are shown to occur at the micrometer scale of individual pyrite grains. These results support the emerging view that the dampened signature of mass‐independent sulfur isotope fractionation (S‐MIF) associated with the Mesoarchean continued into the early Neoarchean, and that the connections between methane and sulfur metabolism affected the production and preservation of S‐MIF during the first half of the planet's history.  相似文献   

16.
We present sulfur isotope ratio measurements of bone collagen from animals (n = 75) and humans (n = 120) from five sites dating to four chronological periods (Chalcolithic, Punic, Late Antiquity‐Early Byzantine, and Islamic) from the Balearic Islands of Ibiza and Formentera, Spain. This study is a follow up to previously published δ13C and δ15N values by [Fuller et al.: Am J Phys Anthropol 143 (2010) 512–522] and focuses on using δ34S values to better understand the dietary patterns of these populations through time and to possibly identify immigrants to these islands. The range of δ34S values (10.5–17.8‰) observed for the animals was relatively broad, which suggests that a significant sea spray effect has added marine sulfates to the soils of Formentera and Ibiza. The mean δ34S values of the different human populations were found to be: Chalcolithic (16.5 ± 1.4‰), Punic rural (13.6 ± 1.7‰), Punic urban (12.9 ± 1.8‰), Late Antiquity‐Early Byzantine (12.3 ± 2.1‰), and Islamic (9.1 ± 2.7‰). These human δ34S results are similar to the animal data, a finding that supports the notion that there was little marine protein consumption by these societies and that the diet was mainly based on terrestrial resources. During the Punic and Late Antiquity‐Early Byzantine periods the δ34S values were used to identify individuals in the population who likely were not born or raised on the islands. In addition, 18 of the 20 individuals analyzed from the Islamic period have δ34S values that indicate that they were immigrants to Ibiza who died before acquiring the new local sulfur isotopic signature. Am J Phys Anthropol 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

17.
On the basis of phylogenetic studies and laboratory cultures, it has been proposed that the ability of microbes to metabolize iron has emerged prior to the Archaea/Bacteria split. However, no unambiguous geochemical data supporting this claim have been put forward in rocks older than 2.7–2.5 giga years (Gyr). In the present work, we report in situ Fe and S isotope composition of pyrite from 3.28‐ to 3.26‐Gyr‐old cherts from the upper Mendon Formation, South Africa. We identified three populations of microscopic pyrites showing a wide range of Fe isotope compositions, which cluster around two δ56Fe values of ?1.8‰ and +1‰. These three pyrite groups can also be distinguished based on the pyrite crystallinity and the S isotope mass‐independent signatures. One pyrite group displays poorly crystallized pyrite minerals with positive Δ33S values > +3‰, while the other groups display more variable and closer to 0‰ Δ33S values with recrystallized pyrite rims. It is worth to note that all the pyrite groups display positive Δ33S values in the pyrite core and similar trace element compositions. We therefore suggest that two of the pyrite groups have experienced late fluid circulations that have led to partial recrystallization and dilution of S isotope mass‐independent signature but not modification of the Fe isotope record. Considering the mineralogy and geochemistry of the pyrites and associated organic material, we conclude that this iron isotope systematic derives from microbial respiration of iron oxides during early diagenesis. Our data extend the geological record of dissimilatory iron reduction (DIR) back more than 560 million years (Myr) and confirm that micro‐organisms closely related to the last common ancestor had the ability to reduce Fe(III).  相似文献   

18.

Present‐day groundwater in an alluvial aquifer in Holocene floodplain deposits in east‐central Alabama contains 0.1–4 mg/L Fe, 0.1–0.7 mg/L Mn, ~1–10 μg/L each of Co, Ni, As, Zn, La, and Ce, and 40–175 μ/L Ba. There is a distinct correspondence between trace elements present in groundwater and those concentrated on ferromanganese coatings on present‐day stream alluvium in the study area. This indicates that the reduction and dissolution of such coatings in the alluvial aquifer, probably mediated by Fe‐ and Mn‐reducing bacteria, has been a major control on groundwater chemistry. Authigenic euhedral pyrite crystals up to 1.5 cm in diameter replace lig‐nitic macro wood fragments near the base of the alluvial aquifer, and sulfur isotope data (δ34S values from +3 to ‐40‰CDT) indicate that pyrite precipitated as a consequence of bacterial sulfate reduction in and adjacent to the irregularly distributed wood fragments. The authigenic pyrite contains several hundred parts per million of As, Co, and Ni, indicating that these trace elements were coprecipitated in pyrite during bacterial sulfate reduction. Results suggest a strong geomicrobiological control on trace element cycling in the study area.  相似文献   

19.
Photosynthetic activity in carbonate‐rich benthic microbial mats located in saline, alkaline lakes on the Cariboo Plateau, B.C. resulted in pCO2 below equilibrium and δ13CDIC values up to +6.0‰ above predicted carbon dioxide (CO2) equilibrium values, representing a biosignature of photosynthesis. Mat‐associated δ13Ccarb values ranged from ~4 to 8‰ within any individual lake, with observations of both enrichments (up to 3.8‰) and depletions (up to 11.6‰) relative to the concurrent dissolved inorganic carbon (DIC). Seasonal and annual variations in δ13C values reflected the balance between photosynthetic 13C‐enrichment and heterotrophic inputs of 13C‐depleted DIC. Mat microelectrode profiles identified oxic zones where δ13Ccarb was within 0.2‰ of surface DIC overlying anoxic zones associated with sulphate reduction where δ13Ccarb was depleted by up to 5‰ relative to surface DIC reflecting inputs of 13C‐depleted DIC. δ13C values of sulphate reducing bacteria biomarker phospholipid fatty acids (PLFA) were depleted relative to the bulk organic matter by ~4‰, consistent with heterotrophic synthesis, while the majority of PLFA had larger offsets consistent with autotrophy. Mean δ13Corg values ranged from ?18.7 ± 0.1 to ?25.3 ± 1.0‰ with mean Δ13Cinorg‐org values ranging from 21.1 to 24.2‰, consistent with non‐CO2‐limited photosynthesis, suggesting that Precambrian δ13Corg values of ~?26‰ do not necessitate higher atmospheric CO2 concentrations. Rather, it is likely that the high DIC and carbonate content of these systems provide a non‐limiting carbon source allowing for expression of large photosynthetic offsets, in contrast to the smaller offsets observed in saline, organic‐rich and hot spring microbial mats.  相似文献   

20.
Sulfur and oxygen isotope fractionation of elemental sulfur disproportionation at anaerobic haloalkaline conditions was evaluated for the first time. Isotope enrichment factors of the strains Desulfurivibrio alkaliphilus and Dethiobacter alkaliphilus growing at pH 9 or 10 were ?0.9‰ to ?1‰ for sulfide (34?), +3.6‰ to +4.7‰ for sulfate (34?), and +3.5‰ to +7.7‰ for oxygen in sulfate (18?). These values are significantly smaller compared to previously published values of sulfur disproportionators at neutral pH. We propose that this discrepancy is caused by masking effects due to preferential formation of polysulfides at high pH leading to accelerated internal sulfur turnover rates, but cannot rule out distinct isotope effects due to specific enzymatic disproportionation reactions under haloalkaline conditions. The results imply that the microbial sulfur cycle in haloalkaline environments is characterized by specific stable sulfur and oxygen isotope patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号