首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phenotypes such as motivation to consume alcohol, goal‐directed alcohol seeking and habit formation take part in mechanisms underlying heavy alcohol use. Learning and memory processes greatly contribute to the establishment and maintenance of these behavioral phenotypes. The N‐methyl‐d ‐aspartate receptor (NMDAR) is a driving force of synaptic plasticity, a key cellular hallmark of learning and memory. Here, we describe data in rodents and humans linking signaling molecules that center around the NMDARs, and behaviors associated with the development and/or maintenance of alcohol use disorder (AUD). Specifically, we show that enzymes that participate in the regulation of NMDAR function including Fyn kinase as well as signaling cascades downstream of NMDAR including calcium/calmodulin‐dependent protein kinase II (CamKII), the α‐amino‐3‐hydroxy‐5‐methyl‐4‐isoxazolepropionic acid receptor (AMPAR) and the mammalian target of rapamycin complex 1 (mTORC1) play a major role in mechanisms underlying alcohol drinking behaviors. Finally, we emphasize the brain region specificity of alcohol's actions on the above‐mentioned signaling pathways and attempt to bridge the gap between the molecular signaling that drive learning and memory processes and alcohol‐dependent behavioral phenotypes. Finally, we present data to suggest that genes related to NMDAR signaling may be AUD risk factors.  相似文献   

2.
Learning and memory are a key issue of current neuroscience research. Scientists from several disciplines have suggested that the processes of learning and memory are encoded via activity‐dependent changes in the strength of the synapse. As a result of this focus, a huge amount of effort has been invested in the understanding of cellular and molecular mechanisms behind these changes in synaptic efficacy. One phenomenon is that after repeated paring or high‐frequency stimulation synapses can be potentiated and that this enhancement of synaptic strength can last from hours to days (the so called long term potentiation, LTP). Apart from these functional changes it has recently been shown that structural changes at a synapse or in the number of synapses can be correlated with activity‐dependent processes involved in long‐term memory storage. A promising candidate molecule to link changes in function to changes in structure is the nerve‐growth factor BDNF (brain derived neurotrophic factor)  相似文献   

3.
4.
MicroRNAs play a pivotal role in rapid, dynamic, and spatiotemporal modulation of synaptic functions. Among them, recent emerging evidence highlights that microRNA‐181a (miR‐181a) is particularly abundant in hippocampal neurons and controls the expression of key plasticity‐related proteins at synapses. We have previously demonstrated that miR‐181a was upregulated in the hippocampus of a mouse model of Alzheimer's disease (AD) and correlated with reduced levels of plasticity‐related proteins. Here, we further investigated the underlying mechanisms by which miR‐181a negatively modulated synaptic plasticity and memory. In primary hippocampal cultures, we found that an activity‐dependent upregulation of the microRNA‐regulating protein, translin, correlated with reduction of miR‐181a upon chemical long‐term potentiation (cLTP), which induced upregulation of GluA2, a predicted target for miR‐181a, and other plasticity‐related proteins. Additionally, Aβ treatment inhibited cLTP‐dependent induction of translin and subsequent reduction of miR‐181a, and cotreatment with miR‐181a antagomir effectively reversed the effects elicited by Aβ but did not rescue translin levels, suggesting that the activity‐dependent upregulation of translin was upstream of miR‐181a. In mice, a learning episode markedly decreased miR‐181a in the hippocampus and raised the protein levels of GluA2. Lastly, we observed that inhibition of miR‐181a alleviated memory deficits and increased GluA2 and GluA1 levels, without restoring translin, in the 3xTg‐AD model. Taken together, our results indicate that miR‐181a is a major negative regulator of the cellular events that underlie synaptic plasticity and memory through AMPA receptors, and importantly, Aβ disrupts this process by suppressing translin and leads to synaptic dysfunction and memory impairments in AD.  相似文献   

5.
Chronic stressful events are key risk factors for major depressive disorder (MDD), yet some individuals exposed to stressful events do not develop MDD. This disparity suggests the significance of resilience to deleterious stress effects. However, the underlying molecular mechanisms of stress resilience are poorly understood. In the present study, the chronic mild stress (CMS) rat model of depression was used to reveal the individual differences in stress response. Employing a gas chromatography/mass spectrometry metabolomic approach, the molecular changes associated with stress resilience in rat cerebellum were characterized by comparing anhedonic, CMS resilient and control groups. The results showed that four cerebellar metabolites—proline, lysine, glutamine, and dihydroxyacetone phosphate—were identified as the key differential metabolites associated with stress resilience. These metabolites may play a potential role in rendering individuals less vulnerable to CMS exposure. These findings provide insight into the molecular mechanisms underlying stress resilience and shed light on novel therapeutic opportunities to augment stress resiliency.  相似文献   

6.
记载着挫折、恐惧、绝望等负性情绪的负性记忆,具有难以遗忘、令人烦恼的特点,与一些脑重大疾病,如创伤后应激综合征、抑郁症等存在密切关系。研究表明NMDA受体依赖性长时程增强在记忆的获取、储存等过程中起着关键作用。电休克和NMDA受体拮抗剂氯胺酮已知可导致短暂性遗忘,应用于治疗创伤后应激综合征、抑郁症具有起效快、疗效好的显著特点,提示这类脑疾病可能与负性记忆的遗忘特点有关。最近报道,遗忘具有独立的分子机理,在记忆和遗忘机理的共同作用下,既可能发生"记不住"如老年痴呆症、也可能出现"忘不了"如创伤后应激综合征和抑郁症等。深入研究遗忘的细胞分子机理,无疑有助于我们认识、预防和治疗相关脑重大疾病。  相似文献   

7.
8.
Few longitudinal studies have explored to date whether minority status in disadvantaged neighborhoods conveys risk for negative mental health outcomes, and the mechanisms possibly leading to such risk. We investigated how minority status influences four developmental mental health outcomes in an ethnically homogeneous sample of Puerto Rican youth. We tested models of risk for major depressive disorder (MDD) and generalized anxiety disorder (GAD), depressive and anxiety symptoms (DAS), and psychological distress, as Puerto Rican youth (aged 5‐13 years) transitioned to early adulthood (15‐29 years) in two sites, one where they grew up as a majority (the island of Puerto Rico), and another where they were part of a minority group (South Bronx, New York). At baseline, a stratified sample of 2,491 Puerto Rican youth participated from the two sites. After baseline assessment (Wave 1), each youth participant and one caregiver were assessed annually for two years, for a total of three time points (Waves 1‐3). From April 2013 to August 2017, participants were contacted for a Wave 4 interview, and a total of 2,004 young people aged 15 to 29 years participated in the assessment (response rate adjusted for eligibility = 82.8%). Using a quasi‐experimental design, we assessed impacts of minority status on MDD, GAD, DAS and psychological distress. Via mediation analyses, we explored potential mechanisms underlying the observed relationships. Data from 1,863 Puerto Rican youth (after exclusion of those with MDD or GAD during Waves 1‐3) indicated links between minority status and higher rates of lifetime and past‐year GAD, DAS and past 30‐day psychological distress at Wave 4, and a marginal trend for MDD, even after adjustments. Childhood social support and peer relationships partially explained the differences, as did intercultural conflict, neighborhood discrimination, and unfair treatment in young adulthood. The experience of growing up as a minority, as defined by context, seemingly elevates psychiatric risks, with differences in social relationships and increased social stress as mediators of this relationship. Our findings suggest that interventions at the neighborhood context rather than at the individual level might be important levers to reduce risks for the development of mood disorders in minority youth.  相似文献   

9.
Calcium‐dependent protein kinases (CDPKs) are involved in plant tolerance mechanisms to abiotic stresses. Although CDPKs are recognized as key messengers in signal transduction, the specific role of most members of this family remains unknown. Here, we test the hypothesis that OsCPK17 plays a role in rice cold stress response by analysing OsCPK17 knockout, silencing and overexpressing rice lines under low temperature. Altered OsCPK17 gene expression compromises cold tolerance performance, without affecting the expression of key cold stress‐inducible genes. A comparative phosphoproteomic approach led to the identification of six potential in vivo OsCPK17 targets, which are associated with sugar and nitrogen metabolism, and with osmotic regulation. To test direct interaction, in vitro kinase assays were performed, showing that the sucrose‐phosphate synthase OsSPS4 and the aquaporin OsPIP2;1/OsPIP2;6 are phosphorylated by OsCPK17 in a calcium‐dependent manner. Altogether, our data indicates that OsCPK17 is required for a proper cold stress response in rice, likely affecting the activity of membrane channels and sugar metabolism.  相似文献   

10.
Mating is critical for species survival and is profoundly regulated by neuromodulators and neurohormones to accommodate internal states and external factors. To identify the underlying neuromodulatory mechanisms, we investigated the roles of dopamine receptors in various aspects of courtship behavior in Drosophila. Here, we report that the D1 dopamine receptor dDA1 regulates courtship drive in naïve males. The wild‐type naïve males actively courted females regardless their appearance or mating status. On the contrary, the dDA1 mutant (dumb) males exhibited substantially reduced courtship toward less appealing females including decapitated, leg‐less and mated females. The dumb male's reduced courtship activity was due to delay in courtship initiation and prolonged intervals between courtship bouts. The dampened courtship drive of dumb males was rescued by reinstated dDA1 expression in the mushroom body α/β and γ neurons but not α/β or γ neurons alone, which is distinct from the previously characterized dDA1 functions in experience‐dependent courtship or other learning and memory processes. We also found that the dopamine receptors dDA1, DAMB and dD2R are dispensable for associative memory formation and short‐term memory of conditioned courtship, thus courtship motivation and associative courtship learning and memory are regulated by distinct neuromodulatory mechanisms. Taken together, our study narrows the gap in the knowledge of the mechanism that dopamine regulates male courtship behavior.  相似文献   

11.
12.
13.
Children born to older parents tend to have lower intelligence and are at higher risk for disorders such as schizophrenia and autism. Such observations of ageing damage being passed on from parents to offspring are not often considered within the evolutionary theory of ageing. Here, we show the 25% memory impairment in Drosophila melanogaster offspring solely dependent on the age of the parents and also passed on to the F2 generation. Furthermore, this parental age effect was not attributed to a generalized reduction in condition of the offspring but was specific to short‐term memory. We also provide evidence implicating oxidative stress as a causal factor by showing that lines selected for resistance to oxidative stress did not display a memory impairment in offspring of old parents. The identification of the parental age‐related memory impairment in a model system should stimulate integration between mechanistic studies of age‐related mortality risk and functional studies of parental age effects on the fitness of future generations.  相似文献   

14.
Post‐training lateral hypothalamus (LH) intracranial self stimulation (ICSS) has a reliable enhancing effect on explicit memory formation evaluated in hippocampus‐dependent tasks such as the Morris water maze. In this study, the effects of ICSS on gene expression in the hippocampus are examined 4.5 h post treatment by using oligonucleotide microarray and real‐time PCR, and by measuring Arc protein levels in the different layers of hippocampal subfields through immunofluorescence. The microarray data analysis resulted in 65 significantly regulated genes in rat ICSS hippocampi compared to sham, including cAMP‐mediated signaling as one of the most significantly enriched Database for Annotation, Visualization and Integrated Discovery (DAVID) functional categories. In particular, expression of CREB‐dependent synaptic plasticity related genes (c‐Fos, Arc, Bdnf, Ptgs‐2 and Crem and Icer) was regulated in a time‐dependent manner following treatment administration. Immunofluorescence results showed that ICSS treatment induced a significant increase in Arc protein expression in CA1 and DG hippocampal subfields. This empirical evidence supports our hypothesis that the effect of ICSS on improved or restored memory functions might be mediated by increased hippocampal expression of activity‐dependent synaptic plasticity related genes, including Arc protein expression, as neural mechanisms related to memory consolidation .  相似文献   

15.
16.
Epigenetic regulation in plant abiotic stress responses   总被引:2,自引:0,他引:2  
In eukaryotic cells, gene expression is greatly influenced by the dynamic chromatin environment. Epigenetic mechanisms, including covalent modifications to DNA and histone tails and the accessibility of chromatin, create various chromatin states for stress‐responsive gene expression that is important for adaptation to harsh environmental conditions. Recent studies have revealed that many epigenetic factors participate in abiotic stress responses, and various chromatin modifications are changed when plants are exposed to stressful environments. In this review, we summarize recent progress on the cross‐talk between abiotic stress response pathways and epigenetic regulatory pathways in plants. Our review focuses on epigenetic regulation of plant responses to extreme temperatures, drought, salinity, the stress hormone abscisic acid, nutrient limitations and ultraviolet stress, and on epigenetic mechanisms of stress memory.  相似文献   

17.
Major depressive disorder (MDD) is a leading contributor to the global burden of disease. However, the causal relationship of risk factors, such as genetic predisposition or experience of augmented stress, remain unknown. Numerous studies in humans and rodents have implicated brain‐derived neurotrophic factor (BDNF) in MDD pathology, as a genetic risk factor and a factor regulated by stress. Until now, the majority of preclinical studies have employed genetically modified mice as their model of choice. However, mice display a limited behavioural repertoire and lack expression of circulating BDNF, which is present in rats and humans. Therefore, heterozygous BDNF (BDNF+/?) rats were tested for affective behaviours and accompanying expression of key genes associated with affective disorders in the brain. We found that BDNF+/? rats, which have reduced BDNF levels in brain and plasma, displayed symptoms of anhedonia, a core symptom of MDD, and anxiety‐like behaviour, but no behavioural despair or cognitive impairments. This was accompanied by changes in the expression of genes that are implicated in modulation of the stress response and affective disorders. Hence, glucocorticoid receptor, neuregulin 1 and disrupted‐in‐schizophrenia 1 gene expression were upregulated in the prefrontal cortex of BDFN+/? rats, whereas FK506 binding protein 5 levels were decreased in the hippocampus. We conclude that a reduction in BDNF levels alters expression of genes associated with affective disorders, which may contribute to the development of depressive‐like symptoms.  相似文献   

18.
The SnRK1 protein kinase balances cellular energy levels in accordance with extracellular conditions and is thereby key for plant stress tolerance. In addition, SnRK1 has been implicated in numerous growth and developmental processes from seed filling and maturation to flowering and senescence. Despite its importance, the mechanisms that regulate SnRK1 activity are poorly understood. Here, we demonstrate that the SnRK1 complex is SUMOylated on multiple subunits and identify SIZ1 as the E3 Small Ubiquitin‐like Modifier (SUMO) ligase responsible for this modification. We further show that SnRK1 is ubiquitinated in a SIZ1‐dependent manner, causing its degradation through the proteasome. In consequence, SnRK1 degradation is deficient in siz1‐2 mutants, leading to its accumulation and hyperactivation of SnRK1 signaling. Finally, SnRK1 degradation is strictly dependent on its activity, as inactive SnRK1 variants are aberrantly stable but recover normal degradation when expressed as SUMO mimetics. Altogether, our data suggest that active SnRK1 triggers its own SUMOylation and degradation, establishing a negative feedback loop that attenuates SnRK1 signaling and prevents detrimental hyperactivation of stress responses.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号