首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Increasing pCO2 (partial pressure of CO2) in an “acidified” ocean will affect phytoplankton community structure, but manipulation experiments with assemblages briefly acclimated to simulated future conditions may not accurately predict the long‐term evolutionary shifts that could affect inter‐specific competitive success. We assessed community structure changes in a natural mixed dinoflagellate bloom incubated at three pCO2 levels (230, 433, and 765 ppm) in a short‐term experiment (2 weeks). The four dominant species were then isolated from each treatment into clonal cultures, and maintained at all three pCO2 levels for approximately 1 year. Periodically (4, 8, and 12 months), these pCO2‐conditioned clones were recombined into artificial communities, and allowed to compete at their conditioning pCO2 level or at higher and lower levels. The dominant species in these artificial communities of CO2‐conditioned clones differed from those in the original short‐term experiment, but individual species relative abundance trends across pCO2 treatments were often similar. Specific growth rates showed no strong evidence for fitness increases attributable to conditioning pCO2 level. Although pCO2 significantly structured our experimental communities, conditioning time and biotic interactions like mixotrophy also had major roles in determining competitive outcomes. New methods of carrying out extended mixed species experiments are needed to accurately predict future long‐term phytoplankton community responses to changing pCO2.  相似文献   

2.
Southern Ocean waters are among the most vulnerable to ocean acidification. The projected increase in the CO2 level will cause changes in carbonate chemistry that are likely to be damaging to organisms inhabiting these waters. A meta‐analysis was undertaken to examine the vulnerability of Antarctic marine biota occupying waters south of 60°S to ocean acidification. This meta‐analysis showed that ocean acidification negatively affects autotrophic organisms, mainly phytoplankton, at CO2 levels above 1,000 μatm and invertebrates above 1,500 μatm, but positively affects bacterial abundance. The sensitivity of phytoplankton to ocean acidification was influenced by the experimental procedure used. Natural, mixed communities were more sensitive than single species in culture and showed a decline in chlorophyll a concentration, productivity, and photosynthetic health, as well as a shift in community composition at CO2 levels above 1,000 μatm. Invertebrates showed reduced fertilization rates and increased occurrence of larval abnormalities, as well as decreased calcification rates and increased shell dissolution with any increase in CO2 level above 1,500 μatm. Assessment of the vulnerability of fish and macroalgae to ocean acidification was limited by the number of studies available. Overall, this analysis indicates that many marine organisms in the Southern Ocean are likely to be susceptible to ocean acidification and thereby likely to change their contribution to ecosystem services in the future. Further studies are required to address the poor spatial coverage, lack of community or ecosystem‐level studies, and the largely unknown potential for organisms to acclimate and/or adapt to the changing conditions.  相似文献   

3.
4.
The composition of local ecological communities is determined by the members of the regional community that are able to survive the abiotic and biotic conditions of a local ecosystem. Anthropogenic activities since the industrial revolution have increased atmospheric CO2 concentrations, which have in turn decreased ocean pH and altered carbonate ion concentrations: so called ocean acidification (OA). Single‐species experiments have shown how OA can dramatically affect zooplankton development, physiology and skeletal mineralization status, potentially reducing their defensive function and altering their predatory and antipredatory behaviors. This means that increased OA may indirectly alter the biotic conditions by modifying trophic interactions. We investigated how OA affects the impact of a cubozoan predator on their zooplankton prey, predominantly Copepoda, Pleocyemata, Dendrobranchiata, and Amphipoda. Experimental conditions were set at either current (pCO2 370 μatm) or end‐of‐the‐century OA (pCO2 1,100 μatm) scenarios, crossed in an orthogonal experimental design with the presence/absence of the cubozoan predator Carybdea rastoni. The combined effects of exposure to OA and predation by C. rastoni caused greater shifts in community structure, and greater reductions in the abundance of key taxa than would be predicted from combining the effect of each stressor in isolation. Specifically, we show that in the combined presence of OA and a cubozoan predator, populations of the most abundant member of the zooplankton community (calanoid copepods) were reduced 27% more than it would be predicted based on the effects of these stressors in isolation, suggesting that OA increases the susceptibility of plankton to predation. Our results indicate that the ecological consequences of OA may be greater than predicted from single‐species experiments, and highlight the need to understand future marine global change from a community perspective.  相似文献   

5.
Deoxygenation in coastal and open‐ocean ecosystems rarely exists in isolation but occurs concomitantly with acidification. Here, we first combine meta‐data of experimental assessments from across the globe to investigate the potential interactive impacts of deoxygenation and acidification on a broad range of marine taxa. We then characterize the differing degrees of deoxygenation and acidification tested in our dataset using a ratio between the partial pressure of oxygen and carbon dioxide (pO2/pCO2) to assess how biological processes change under an extensive, yet diverse range of pO2 and pCO2 conditions. The dataset comprised 375 experimental comparisons and revealed predominantly additive but variable effects (91.7%, additive; 6.0%, synergistic; and 2.3%, antagonistic) of the dual stressors, yielding negative impacts across almost all responses examined. Our data indicate that the pO2/pCO2‐ratio offers a simplified metric to characterize the extremity of the concurrent stressors and shows that more severe impacts occurred when ratios represented more extreme deoxygenation and acidification conditions. Importantly, our analysis highlights the need to assess the concurrent impacts of deoxygenation and acidification on marine taxa and that assessments considering the impact of O2 depletion alone will likely underestimate the impacts of deoxygenation events and their ecosystem‐wide consequences.  相似文献   

6.
Ocean acidification, via an anthropogenic increase in seawater carbon dioxide (CO2), is potentially a major threat to coral reefs and other marine ecosystems. However, our understanding of how natural short‐term diurnal CO2 variability in coral reefs influences longer term anthropogenic ocean acidification remains unclear. Here, we combine observed natural carbonate chemistry variability with future carbonate chemistry predictions for a coral reef flat in the Great Barrier Reef based on the RCP8.5 CO2 emissions scenario. Rather than observing a linear increase in reef flat partial pressure of CO2 (pCO2) in concert with rising atmospheric concentrations, the inclusion of in situ diurnal variability results in a highly nonlinear threefold amplification of the pCO2 signal by the end of the century. This significant nonlinear amplification of diurnal pCO2 variability occurs as a result of combining natural diurnal biological CO2 metabolism with long‐term decreases in seawater buffer capacity, which occurs via increasing anthropogenic CO2 absorption by the ocean. Under the same benthic community composition, the amplification in the variability in pCO2 is likely to lead to exposure to mean maximum daily pCO2 levels of ca. 2100 μatm, with corrosive conditions with respect to aragonite by end‐century at our study site. Minimum pCO2 levels will become lower relative to the mean offshore value (ca. threefold increase in the difference between offshore and minimum reef flat pCO2) by end‐century, leading to a further increase in the pCO2 range that organisms are exposed to. The biological consequences of short‐term exposure to these extreme CO2 conditions, coupled with elevated long‐term mean CO2 conditions are currently unknown and future laboratory experiments will need to incorporate natural variability to test this. The amplification of pCO2 that we describe here is not unique to our study location, but will occur in all shallow coastal environments where high biological productivity drives large natural variability in carbonate chemistry.  相似文献   

7.
Although increasing the pCO2 for diatoms will presumably down‐regulate the CO2‐concentrating mechanism (CCM) to save energy for growth, different species have been reported to respond differently to ocean acidification (OA). To better understand their growth responses to OA, we acclimated the diatoms Thalassiosira pseudonana, Phaeodactylum tricornutum, and Chaetoceros muelleri to ambient (pCO2 400 μatm, pH 8.1), carbonated (pCO2 800 μatm, pH 8.1), acidified (pCO2 400 μatm, pH 7.8), and OA (pCO2 800 μatm, pH 7.8) conditions and investigated how seawater pCO2 and pH affect their CCMs, photosynthesis, and respiration both individually and jointly. In all three diatoms, carbonation down‐regulated the CCMs, while acidification increased both the photosynthetic carbon fixation rate and the fraction of CO2 as the inorganic carbon source. The positive OA effect on photosynthetic carbon fixation was more pronounced in C. muelleri, which had a relatively lower photosynthetic affinity for CO2, than in either T. pseudonana or P. tricornutum. In response to OA, T. pseudonana increased respiration for active disposal of H+ to maintain its intracellular pH, whereas P. tricornutum and C. muelleri retained their respiration rate but lowered the intracellular pH to maintain the cross‐membrane electrochemical gradient for H+ efflux. As the net result of changes in photosynthesis and respiration, growth enhancement to OA of the three diatoms followed the order of C. muelleri > P. tricornutum > T. pseudonana. This study demonstrates that elucidating the separate and joint impacts of increased pCO2 and decreased pH aids the mechanistic understanding of OA effects on diatoms in the future, acidified oceans.  相似文献   

8.
Changes in the carbonate chemistry of coral reef waters are driven by carbon fluxes from two sources: concentrations of CO2 in the atmospheric and source water, and the primary production/respiration and calcification/dissolution of the benthic community. Recent model analyses have shown that, depending on the composition of the reef community, the air‐sea flux of CO2 driven by benthic community processes can exceed that due to increases in atmospheric CO2 (ocean acidification). We field test this model and examine the role of three key members of benthic reef communities in modifying the chemistry of the ocean source water: corals, macroalgae, and sand. Building on data from previous carbon flux studies along a reef‐flat transect in Moorea (French Polynesia), we illustrate that the drawdown of total dissolved inorganic carbon (CT) due to photosynthesis and calcification of reef communities can exceed the draw down of total alkalinity (AT) due to calcification of corals and calcifying algae, leading to a net increase in aragonite saturation state (Ωa). We use the model to test how changes in atmospheric CO2 forcing and benthic community structure affect the overall calcification rates on the reef flat. Results show that between the preindustrial period and 1992, ocean acidification caused reef flat calcification rates to decline by an estimated 15%, but loss of coral cover caused calcification rates to decline by at least three times that amount. The results also show that the upstream–downstream patterns of carbonate chemistry were affected by the spatial patterns of benthic community structure. Changes in the ratio of photosynthesis to calcification can thus partially compensate for ocean acidification, at least on shallow reef flats. With no change in benthic community structure, however, ocean acidification depressed net calcification of the reef flat consistent with findings of previous studies.  相似文献   

9.
Ocean acidity has increased by 30% since preindustrial times due to the uptake of anthropogenic CO2 and is projected to rise by another 120% before 2100 if CO2 emissions continue at current rates. Ocean acidification is expected to have wide‐ranging impacts on marine life, including reduced growth and net erosion of coral reefs. Our present understanding of the impacts of ocean acidification on marine life, however, relies heavily on results from short‐term CO2 perturbation studies. Here, we present results from the first long‐term CO2 perturbation study on the dominant reef‐building cold‐water coral Lophelia pertusa and relate them to results from a short‐term study to compare the effect of exposure time on the coral's responses. Short‐term (1 week) high CO2 exposure resulted in a decline of calcification by 26–29% for a pH decrease of 0.1 units and net dissolution of calcium carbonate. In contrast, L. pertusa was capable to acclimate to acidified conditions in long‐term (6 months) incubations, leading to even slightly enhanced rates of calcification. Net growth is sustained even in waters sub‐saturated with respect to aragonite. Acclimation to seawater acidification did not cause a measurable increase in metabolic rates. This is the first evidence of successful acclimation in a coral species to ocean acidification, emphasizing the general need for long‐term incubations in ocean acidification research. To conclude on the sensitivity of cold‐water coral reefs to future ocean acidification further ecophysiological studies are necessary which should also encompass the role of food availability and rising temperatures.  相似文献   

10.

Symbiodiniaceae diversity in hosts is known to change with the environment and particularly with temperature and light intensity. However, higher levels of pCO2, as could be expected under future ocean acidification scenarios, have been documented to show little to no effect in influencing the diversity of Symbiodiniaceae in hosts in previous studies. In this study, we examined hypervariable psbAncr sequences to identify the Cladocopium (former Symbiodinium ‘Clade C’) diversity within the zooxanthellate zoantharian Palythoa tuberculosa at an acidified reef in southern Japan. Palythoa tuberculosa were collected from a reef at the volcanic island of Iwotorishima in southern Japan; specimens from a high pCO2 site and from a nearby control (normal pCO2) site (Inoue et al. in Nat Clim Change 3:683–687, 2013). We observed a statistically significant reduction in Cladocopium diversity at the high pCO2 site with only one Cladocopium lineage present, compared to at the control site with two lineages present. Our results demonstrate that higher pCO2 can potentially negatively influence the diversity of host Symbiodiniaceae within anthozoan hosts, an important implication in the face of ongoing ocean acidification and climate change.

  相似文献   

11.
Previous studies have shown that increasing atmospheric CO2 concentrations affect calcification in some planktonic and macroalgal calcifiers due to the changed carbonate chemistry of seawater. However, little is known regarding how calcifying algae respond to solar UV radiation (UVR, UVA+UVB, 280–400 nm). UVR may act synergistically, antagonistically or independently with ocean acidification (high CO2/low pH of seawater) to affect their calcification processes. We cultured the articulated coralline alga Corallina sessilis Yendo at 380 ppmv (low) and 1000 ppmv (high) CO2 levels while exposing the alga to solar radiation treatments with or without UVR. The presence of UVR inhibited the growth, photosynthetic O2 evolution and calcification rates by13%, 6% and 3% in the low and by 47%, 20% and 8% in the high CO2 concentrations, respectively, reflecting a synergistic effect of CO2 enrichment with UVR. UVR induced significant decline of pH in the CO2‐enriched cultures. The contents of key photosynthetic pigments, chlorophyll a and phycobiliproteins decreased, while UV‐absorptivity increased under the high pCO2/low pH condition. Nevertheless, UV‐induced inhibition of photosynthesis increased when the ratio of particulate inorganic carbon/particulate organic carbon decreased under the influence of CO2‐acidified seawater, suggesting that the calcified layer played a UV‐protective role. Both UVA and UVB negatively impacted photosynthesis and calcification, but the inhibition caused by UVB was about 2.5–2.6 times that caused by UVA. The results imply that coralline algae suffer from more damage caused by UVB as they calcify less and less with progressing ocean acidification.  相似文献   

12.
Anthropogenic climate change compromises reef growth as a result of increasing temperatures and ocean acidification. Scleractinian corals vary in their sensitivity to these variables, suggesting species composition will influence how reef communities respond to future climate change. Because data are lacking for many species, most studies that model future reef growth rely on uniform scleractinian calcification sensitivities to temperature and ocean acidification. To address this knowledge gap, calcification of twelve common and understudied Caribbean coral species was measured for two months under crossed temperatures (27, 30.3 °C) and CO2 partial pressures (pCO2) (400, 900, 1300 μatm). Mixed‐effects models of calcification for each species were then used to project community‐level scleractinian calcification using Florida Keys reef composition data and IPCC AR5 ensemble climate model data. Three of the four most abundant species, Orbicella faveolata, Montastraea cavernosa, and Porites astreoides, had negative calcification responses to both elevated temperature and pCO2. In the business‐as‐usual CO2 emissions scenario, reefs with high abundances of these species had projected end‐of‐century declines in scleractinian calcification of >50% relative to present‐day rates. Siderastrea siderea, the other most common species, was insensitive to both temperature and pCO2 within the levels tested here. Reefs dominated by this species had the most stable end‐of‐century growth. Under more optimistic scenarios of reduced CO2 emissions, calcification rates throughout the Florida Keys declined <20% by 2100. Under the most extreme emissions scenario, projected declines were highly variable among reefs, ranging 10–100%. Without considering bleaching, reef growth will likely decline on most reefs, especially where resistant species like S. siderea are not already dominant. This study demonstrates how species composition influences reef community responses to climate change and how reduced CO2 emissions can limit future declines in reef calcification.  相似文献   

13.
Soil acidification is a very important process in the functioning of earth's ecosystems. A major source of soil acidity is CO2, derived from the respiration of plant roots and microbes, which forms carbonic acid in soil waters. Because elevated atmospheric CO2 often stimulates respiration of soil biota in experiments that test ecosystem effects of elevated atmospheric CO2, we hypothesize that rising atmospheric CO2 (which has increased from ~200 ppm since the interglacial and may exceed 550 ppm by the end of the 21st century) is significantly increasing acid inputs to soils. Here, using column‐leaching experiments with contrasting soils, we demonstrate that soil CO2 is a much more potent agent of soil acidification than is generally appreciated, capable of displacing almost all exchangeable base cations in soils, and even elevating Al(III) concentrations in H2CO3‐acidified soil waters. The potent soil acidifying potential of soil H2CO3 is attributed to the low pKa,1 of molecular H2CO3 (3.76 at 25°C), which contrasts greatly with that of (a convention that combines CO2 (aq) and molecular H2CO3, the pKa,1 of which is 6.36 at 25°C). This distinction is significant for soil systems because of soil's greatly elevated CO2, their variety of sinks for H+, and the wide range of contact times between soil solids, water, and gas. Modelling suggests that a doubling of atmospheric CO2 may increase acid inputs from carbonic acid leaching by up to 50%. Combined with the results of CO2 studies in whole ecosystems, this implies that increases in atmospheric CO2 since the interglacial have gradually acidified soils, especially poorly buffered soils, throughout the world.  相似文献   

14.
Mäerl/rhodolith beds are protected habitats that may be affected by ocean acidification (OA), but it is still unclear how the availability of CO2 will affect the metabolism of these organisms. Some of the inconsistencies found among OA experimental studies may be related to experimental exposure time and synergetic effects with other stressors. Here, we investigated the long‐term (up to 20 months) effects of OA on the production and calcification of the most common mäerl species of southern Portugal, Phymatolithon lusitanicum. Both the photosynthetic and calcification rates increased with CO2 after the first 11 months of the experiment, whereas respiration slightly decreased with CO2. After 20 months, the pattern was reversed. Acidified algae showed lower photosynthetic and calcification rates, as well as lower accumulated growth than control algae, suggesting that a metabolic threshold was exceeded. Our results indicate that long‐term exposure to high CO2 will decrease the resilience of Phymatolithon lusitanicum. Our results also show that shallow communities of these rhodoliths may be particularly at risk, while deeper rhodolith beds may become ocean acidification refuges for this biological community.  相似文献   

15.
Ocean acidification (OA) refers to the increase in acidity (decrease in pH) of the ocean's surface waters resulting from oceanic uptake of atmospheric carbon dioxide (CO2). Mounting experimental evidence suggests that OA threatens numerous marine organisms, including reef‐building corals. Coral recruitment is critical to the persistence and resilience of coral reefs and is regulated by several early life processes, including: larval availability (gamete production, fertilization, etc.), larval settlement, postsettlement growth, and survival. Environmental factors that disrupt these early life processes can result in compromised or failed recruitment and profoundly affect future population dynamics. To evaluate the effects of OA on the sexual recruitment of corals, we tested larval metabolism, larval settlement, and postsettlement growth of the common Caribbean coral Porites astreoides at three pCO2 levels: ambient seawater (380 μatm) and two pCO2 scenarios that are projected to occur by the middle (560 μatm) and end (800 μatm) of the century. Our results show that larval metabolism is depressed by 27% and 63% at 560 and 800 μatm, respectively, compared with controls. Settlement was reduced by 42–45% at 560 μatm and 55–60% at 800 μatm, relative to controls. Results indicate that OA primarily affects settlement via indirect pathways, whereby acidified seawater alters the substrate community composition, limiting the availability of settlement cues. Postsettlement growth decreased by 16% and 35% at 560 and 800 μatm, respectively, relative to controls. This study demonstrates that OA has the potential to negatively impact multiple early life history processes of P. astreoides and may contribute to substantial declines in sexual recruitment that are felt at the community and/or ecosystem scale.  相似文献   

16.
Ecosystem functioning is simultaneously affected by changes in community composition and environmental change such as increasing atmospheric carbon dioxide (CO2) and subsequent ocean acidification. However, it largely remains uncertain how the effects of these factors compare to each other. Addressing this question, we experimentally tested the hypothesis that initial community composition and elevated CO2 are equally important to the regulation of phytoplankton biomass. We full‐factorially exposed three compositionally different marine phytoplankton communities to two different CO2 levels and examined the effects and relative importance (ω2) of the two factors and their interaction on phytoplankton biomass at bloom peak. The results showed that initial community composition had a significantly greater impact than elevated CO2 on phytoplankton biomass, which varied largely among communities. We suggest that the different initial ratios between cyanobacteria, diatoms, and dinoflagellates might be the key for the varying competitive and thus functional outcome among communities. Furthermore, the results showed that depending on initial community composition elevated CO2 selected for larger sized diatoms, which led to increased total phytoplankton biomass. This study highlights the relevance of initial community composition, which strongly drives the functional outcome, when assessing impacts of climate change on ecosystem functioning. In particular, the increase in phytoplankton biomass driven by the gain of larger sized diatoms in response to elevated CO2 potentially has strong implications for nutrient cycling and carbon export in future oceans.  相似文献   

17.
This study investigated the synergistic effects of ocean acidification (caused by elevations in the partial pressure of carbon dioxide pCO2) and temperature on the fertilization and embryonic development of the economically and ecologically important Sydney rock oyster, Saccostrea glomerata (Gould 1850). As pCO2 increased, fertilization significantly decreased. The temperature of 26 °C was the optimum temperature for fertilization, as temperature increased and decreased from this optimum, fertilization decreased. There was also an effect of pCO2 and temperature on embryonic development. Generally as pCO2 increased, the percentage and size of D‐veligers decreased and the percentage of D‐veligers that were abnormal increased. The optimum temperature was 26 °C and embryonic development decreased at temperatures that were above and below this temperature. Abnormality of D‐veligers was greatest at 1000 ppm and 18 and 30 °C (≥90%) and least at 375 ppm and 26 °C (≤4%). Finally prolonged exposure of elevated pCO2 and temperature across early developmental stages led to fewer D‐veligers, more abnormality and smaller sizes in elevated CO2 environments and may lead to lethal effects at suboptimal temperatures. Embryos that were exposed to the pCO2 and temperature treatments for fertilization and embryonic development had fewer D‐veligers, greater percentage of abnormality and reduced size than embryos that were exposed to the treatments for embryonic development only. Further at the elevated temperature of 30 °C and 750–1000 ppm, there was no embryonic development. The results of this study suggest that predicted changes in ocean acidification and temperature over the next century may have severe implications for the distribution and abundance of S. glomerata as well as possible implications for the reproduction and development of other marine invertebrates.  相似文献   

18.
Human activities have caused an increase in atmospheric CO2 over the last 250 years, leading to unprecedented rates of change in seawater pH and temperature. These global scale processes are now commonly referred to as ocean acidification and warming, and have the potential to substantially alter the physiological performance of many marine organisms. It is vital that the effects of ocean acidification and warming on marine organisms are explored so that we can predict how marine communities may change in future. In particular, the effect of ocean acidification and warming on host-parasite dynamics is poorly understood, despite the ecological importance of these relationships. Here, we explore the response of one himasthlid trematode, Himasthla sp., an abundant and broadly distributed species of marine parasite, to combinations of elevated temperature and pCO2 that represent physiological extremes, pre-industrial conditions, and end of century predictions. Specifically, we quantified the life span of the free-living cercarial stage under elevated temperature and pCO2, focussing our research on functional life span (the time cercariae spend actively swimming) and absolute life span (the period before death). We found that the effects of temperature and pCO2 were complex and interactive. Overall, increased temperature negatively affected functional and absolute life span, e.g. across all pCO2 treatments the average time to 50% cessation of active swimming was approximately 8 h at 5 °C, 6 h at 15 °C, 4 h at 25 °C, and 2 h at 40 °C. The effect of pCO2, which significantly affected absolute life span, was highly variable across temperature treatments. These results strongly suggest that ocean acidification and warming may alter the transmission success of trematode cercariae, and potentially reduce the input of cercariae to marine zooplankton. Either outcome could substantially alter the community structure of coastal marine systems.  相似文献   

19.
Ocean acidification is thought to be a major threat to coral reefs: laboratory evidence and CO2 seep research has shown adverse effects on many coral species, although a few are resilient. There are concerns that cold‐water corals are even more vulnerable as they live in areas where aragonite saturation (Ωara) is lower than in the tropics and is falling rapidly due to CO2 emissions. Here, we provide laboratory evidence that net (gross calcification minus dissolution) and gross calcification rates of three common cold‐water corals, Caryophyllia smithii, Dendrophyllia cornigera, and Desmophyllum dianthus, are not affected by pCO2 levels expected for 2100 (pCO1058 μatm, Ωara 1.29), and nor are the rates of skeletal dissolution in D. dianthus. We transplanted D. dianthus to 350 m depth (pHT 8.02; pCO448 μatm, Ωara 2.58) and to a 3 m depth CO2 seep in oligotrophic waters (pHT 7.35; pCO2879 μatm, Ωara 0.76) and found that the transplants calcified at the same rates regardless of the pCO2 confirming their resilience to acidification, but at significantly lower rates than corals that were fed in aquaria. Our combination of field and laboratory evidence suggests that ocean acidification will not disrupt cold‐water coral calcification although falling aragonite levels may affect other organismal physiological and/or reef community processes.  相似文献   

20.
Ocean acidification is expected to decrease calcification rates of bivalves. Nevertheless, in many coastal areas high pCO2 variability is encountered already today. Kiel Fjord (Western Baltic Sea) is a brackish (12–20 g kg?1) and CO2 enriched habitat, but the blue mussel Mytilus edulis dominates the benthic community. In a coupled field and laboratory study we examined the annual pCO2 variability in this habitat and the combined effects of elevated pCO2 and food availability on juvenile M. edulis growth and calcification. In the laboratory experiment, mussel growth and calcification were found to chiefly depend on food supply, with only minor impacts of pCO2 up to 3350 μatm. Kiel Fjord was characterized by strong seasonal pCO2 variability. During summer, maximal pCO2 values of 2500 μatm were observed at the surface and >3000 μatm at the bottom. However, the field growth experiment revealed seven times higher growth and calcification rates of M. edulis at a high pCO2 inner fjord field station (mean pCO2 ca. 1000 μatm) in comparison to a low pCO2 outer fjord station (ca. 600 μatm). In addition, mussels were able to out‐compete the barnacle Amphibalanus improvisus at the high pCO2 site. High mussel productivity at the inner fjord site was enabled by higher particulate organic carbon concentrations. Kiel Fjord is highly impacted by eutrophication, which causes bottom water hypoxia and consequently high seawater pCO2. At the same time, elevated nutrient concentrations increase the energy availability for filter feeding organisms such as mussels. Thus, M. edulis can dominate over a seemingly more acidification resistant species such as A. improvisus. We conclude that benthic stages of M. edulis tolerate high ambient pCO2 when food supply is abundant and that important habitat characteristics such as species interactions and energy availability need to be considered to predict species vulnerability to ocean acidification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号