共查询到6条相似文献,搜索用时 4 毫秒
1.
Winners and losers of national and global efforts to reconcile agricultural intensification and biodiversity conservation 总被引:1,自引:0,他引:1 下载免费PDF全文
Lukas Egli Carsten Meyer Christoph Scherber Holger Kreft Teja Tscharntke 《Global Change Biology》2018,24(5):2212-2228
Closing yield gaps within existing croplands, and thereby avoiding further habitat conversions, is a prominently and controversially discussed strategy to meet the rising demand for agricultural products, while minimizing biodiversity impacts. The agricultural intensification associated with such a strategy poses additional threats to biodiversity within agricultural landscapes. The uneven spatial distribution of both yield gaps and biodiversity provides opportunities for reconciling agricultural intensification and biodiversity conservation through spatially optimized intensification. Here, we integrate distribution and habitat information for almost 20,000 vertebrate species with land‐cover and land‐use datasets. We estimate that projected agricultural intensification between 2000 and 2040 would reduce the global biodiversity value of agricultural lands by 11%, relative to 2000. Contrasting these projections with spatial land‐use optimization scenarios reveals that 88% of projected biodiversity loss could be avoided through globally coordinated land‐use planning, implying huge efficiency gains through international cooperation. However, global‐scale optimization also implies a highly uneven distribution of costs and benefits, resulting in distinct “winners and losers” in terms of national economic development, food security, food sovereignty or conservation. Given conflicting national interests and lacking effective governance mechanisms to guarantee equitable compensation of losers, multinational land‐use optimization seems politically unlikely. In turn, 61% of projected biodiversity loss could be avoided through nationally focused optimization, and 33% through optimization within just 10 countries. Targeted efforts to improve the capacity for integrated land‐use planning for sustainable intensification especially in these countries, including the strengthening of institutions that can arbitrate subnational land‐use conflicts, may offer an effective, yet politically feasible, avenue to better reconcile future trade‐offs between agriculture and conservation. The efficiency gains of optimization remained robust when assuming that yields could only be increased to 80% of their potential. Our results highlight the need to better integrate real‐world governance, political and economic challenges into sustainable development and global change mitigation research. 相似文献
2.
3.
4.
Influences of population pressure change on vegetation greenness in China's mountainous areas 总被引:1,自引:0,他引:1 下载免费PDF全文
Mountainous areas in China account for two‐thirds of the total land area. Due to rapid urbanization, rural population emigration in China's mountainous areas is very significant. This raises the question to which degree such population emigration influences the vegetation greenness in these areas. In this study, 9,753 sample areas (each sample measured about 64 square kilometers) were randomly selected, and the influences of population emigration (population pressure change) on vegetation greenness during 2000–2010 were quantitatively expressed by the multivariate linear regression (MLR) model, using census data under the condition of controlling the natural elements such as climatic and landform factors. The results indicate that the vegetation index in the past 10 years has presented an increasing overall trend, albeit with local decrease in some regions. The combined area of the regions with improved vegetation accounted for 81.7% of the total mountainous areas in China. From 2000 to 2010, the rural population significantly decreased, with most significant decreases in the northern and central areas (17.2% and 16.8%, respectively). In China's mountainous areas and in most of the subregions, population emigration has significant impacts on vegetation change. In different subregions, population decrease differently influenced vegetation greenness, and the marginal effect of population decrease on vegetation change presented obvious differences from north to south. In the southwest, on the premise of controlling other factors, a population decrease by one unit could increase the slope of vegetation change by 16.4%; in contrast, in the southeastern, northern, northeastern, and central area, the proportion was about 15.5%, 10.6%, 9.7%, and 7.5%, respectively, for improving the trend of NDVI variation. 相似文献
5.
Jan Plue Hans Van Calster Inger Auestad Sofía Basto Rene M. Bekker Hans Henrik Bruun Richard Chevalier Guillaume Decocq Ulf Grandin Martin Hermy Hans Jacquemyn Anna Jakobsson Magorzata Jankowska‐Baszczuk Rein Kalamees Marcus A. Koch Rob H. Marrs Bryndís Marteinsdttir Per Milberg Inger E. Mren Robin J. Pakeman Gareth K. Phoenix Ken Thompson Vigdis Vandvik Markus Wagner Alistair G. Auffret 《Global Ecology and Biogeography》2021,30(1):128-139
6.
Christina M. Kennedy James R. Oakleaf David M. Theobald Sharon Baruch‐Mordo Joseph Kiesecker 《Global Change Biology》2019,25(3):811-826
An increasing number of international initiatives aim to reconcile development with conservation. Crucial to successful implementation of these initiatives is a comprehensive understanding of the current ecological condition of landscapes and their spatial distributions. Here, we provide a cumulative measure of human modification of terrestrial lands based on modeling the physical extents of 13 anthropogenic stressors and their estimated impacts using spatially explicit global datasets with a median year of 2016. We quantified the degree of land modification and the amount and spatial configuration of low modified lands (i.e., natural areas relatively free from human alteration) across all ecoregions and biomes. We identified that fewer unmodified lands remain than previously reported and that most of the world is in a state of intermediate modification, with 52% of ecoregions classified as moderately modified. Given that these moderately modified ecoregions fall within critical land use thresholds, we propose that they warrant elevated attention and require proactive spatial planning to maintain biodiversity and ecosystem function before important environmental values are lost. 相似文献