首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Archean and Proterozoic stromatolites are sparry or fine‐grained and finely laminated; coarse‐grained stromatolites, such as many found in modern marine systems, do not appear until quite late in the fossil record. The cause of this textural change and its relevance to understanding the evolutionary history of stromatolites is unclear. Cyanobacteria are typically considered the dominant stromatolite builders through time, but studies demonstrating the trapping and binding abilities of cyanobacterial mats are limited. With this in mind, we conducted experiments to test the grain trapping and binding capabilities of filamentous cyanobacterial mats and trapping in larger filamentous algal mats in order to better understand grain size trends in stromatolites. Mats were cut into squares, inclined in saltwater tanks at angles from 0 to 75° (approximating the angle of lamina in typical stromatolites), and grains of various sizes (fine sand, coarse sand, and fine pebbles) were delivered to their surface. Trapping of grains by the cyanobacterial mats depended strongly on (i) how far filaments protruded from the sediment surface, (ii) grain size, and (iii) the mat's incline angle. The cyanobacterial mats were much more effective at trapping fine grains beyond the abiotic slide angle than larger grains. In addition, the cyanobacterial mats actively bound grains of all sizes over time. In contrast, the much larger algal mats trapped medium and coarse grains at all angles. Our experiments suggest that (i) the presence of detrital grains beyond the abiotic slide angle can be considered a biosignature in ancient stromatolites where biogenicity is in question, and, (ii) where coarse grains are present within stromatolite laminae at angles beyond the abiotic angle of slide (e.g., most modern marine stromatolites), typical cyanobacterial‐type mats are probably not solely responsible for the construction, giving insight into the evolution of stromatolite microfabrics through time.  相似文献   

2.
Living stromatolites growing in a hot spring in Yellowstone National Park are composed of silica-encrusted cyanobacterial mats. Two cyanobacterial mat types grow on the stromatolite surfaces and are preserved as two distinct lithofacies. One mat is present when the stromatolites are submerged or at the water-atmosphere interface and the other when stromatolites protrude from the hot spring. The lithofacies created by the encrustation of submerged mats constitutes the bulk of the stromatolites, is comprised of silica-encrusted filaments, and is distinctly laminated. To better understand the cyanobacterial membership and community structure differences between the mats, we collected mat samples from each type. Molecular methods revealed that submerged mat cyanobacteria were predominantly one novel phylotype while the exposed mats were predominantly heterocystous phylotypes (Chlorogloeopsis HTF and Fischerella). The cyanobacterium dominating the submerged mat type does not belong in any of the subphylum groups of cyanobacteria recognized by the Ribosomal Database Project and has also been found in association with travertine stromatolites in a Southwest Japan hot spring. Cyanobacterial membership profiles indicate that the heterocystous phylotypes are 'rare biosphere' members of the submerged mats. The heterocystous phylotypes likely emerge when the water level of the hot spring drops. Environmental pressures tied to water level such as sulfide exposure and possibly oxygen tension may inhibit the heterocystous types in submerged mats. These living stromatolites are finely laminated and therefore, in texture, may better represent similarly laminated ancient forms compared with more coarsely laminated living marine examples.  相似文献   

3.
Modern conical microbialites are similar to some ancient conical stromatolites, but growth, behavior and diversity of cyanobacteria in modern conical microbialites remain poorly characterized. Here, we analyze the diversity of cyanobacterial 16S rRNA gene sequences in conical microbialites from 14 ponds fed by four thermal sources in Yellowstone National Park and compare cyanobacterial activity in the tips of cones and in the surrounding topographic lows (mats), respectively, by high‐resolution mapping of labeled carbon. Cones and adjacent mats contain similar 16S rRNA gene sequences from genetically distinct clusters of filamentous, non‐heterocystous cyanobacteria from Subsection III and unicellular cyanobacteria from Subsection I. These sequences vary among different ponds and between two sampling years, suggesting that coniform mats through time and space contain a number of cyanobacteria capable of vertical aggregation, filamentous cyanobacteria incapable of initiating cone formation and unicellular cyanobacteria. Unicellular cyanobacteria are more diverse in topographic lows, where some of these organisms respond to nutrient pulses more rapidly than thin filamentous cyanobacteria. The densest active cyanobacteria are found below the upper 50 μm of the cone tip, whereas cyanobacterial cells in mats are less dense, and are more commonly degraded or encrusted by silica. These spatial differences in cellular activity and density within macroscopic coniform mats imply a strong role for diffusion limitation in the development and the persistence of the conical shape. Similar mechanisms may have controlled the growth, morphology and persistence of small coniform stromatolites in shallow, quiet environments throughout geologic history.  相似文献   

4.
Thrombolites are unlaminated carbonate build‐ups that are formed via the metabolic activities of complex microbial mat communities. The thrombolitic mats of Highborne Cay, Bahamas develop in close proximity (1–2 m) to accreting laminated stromatolites, providing an ideal opportunity for biogeochemical and molecular comparisons of these two distinctive microbialite ecosystems. In this study, we provide the first comprehensive characterization of the biogeochemical activities and microbial diversity of the Highborne Cay thrombolitic mats. Morphological and molecular analyses reveal two dominant mat types associated with the thrombolite deposits, both of which are dominated by bacteria from the taxa Cyanobacteria and Alphaproteobacteria. Diel cycling of dissolved oxygen (DO) and dissolved inorganic carbon (DIC) were measured in all thrombolitic mat types. DO production varied between thrombolitic types and one morphotype, referred to in this study as ‘button mats’, produced the highest levels among all mat types, including the adjacent stromatolites. Characterization of thrombolite bacterial communities revealed a high bacterial diversity, roughly equivalent to that of the nearby stromatolites, and a low eukaryotic diversity. Extensive phylogenetic overlap between thrombolitic and stromatolitic microbial communities was observed, although thrombolite‐specific cyanobacterial populations were detected. In particular, the button mats were dominated by a calcified, filamentous cyanobacterium identified via morphology and 16S rRNA gene sequencing as Dichothrix sp. The distinctive microbial communities and chemical cycling patterns within the thrombolitic mats provide novel insight into the biogeochemical processes related to the lithifying mats in this system, and provide data relevant to understanding microbially induced carbonate biomineralization.  相似文献   

5.
For a large part of earth's history, cyanobacterial mats thrived in low‐oxygen conditions, yet our understanding of their ecological functioning is limited. Extant cyanobacterial mats provide windows into the putative functioning of ancient ecosystems, and they continue to mediate biogeochemical transformations and nutrient transport across the sediment–water interface in modern ecosystems. The structure and function of benthic mats are shaped by biogeochemical processes in underlying sediments. A modern cyanobacterial mat system in a submerged sinkhole of Lake Huron (LH) provides a unique opportunity to explore such sediment–mat interactions. In the Middle Island Sinkhole (MIS), seeping groundwater establishes a low‐oxygen, sulfidic environment in which a microbial mat dominated by Phormidium and Planktothrix that is capable of both anoxygenic and oxygenic photosynthesis, as well as chemosynthesis, thrives. We explored the coupled microbial community composition and biogeochemical functioning of organic‐rich, sulfidic sediments underlying the surface mat. Microbial communities were diverse and vertically stratified to 12 cm sediment depth. In contrast to previous studies, which used low‐throughput or shotgun metagenomic approaches, our high‐throughput 16S rRNA gene sequencing approach revealed extensive diversity. This diversity was present within microbial groups, including putative sulfate‐reducing taxa of Deltaproteobacteria, some of which exhibited differential abundance patterns in the mats and with depth in the underlying sediments. The biological and geochemical conditions in the MIS were distinctly different from those in typical LH sediments of comparable depth. We found evidence for active cycling of sulfur, methane, and nutrients leading to high concentrations of sulfide, ammonium, and phosphorus in sediments underlying cyanobacterial mats. Indicators of nutrient availability were significantly related to MIS microbial community composition, while LH communities were also shaped by indicators of subsurface groundwater influence. These results show that interactions between the mats and sediments are crucial for sustaining this hot spot of biological diversity and biogeochemical cycling.  相似文献   

6.
We investigated the genotypic diversity of oxygenic and anoxygenic phototrophic microorganisms in microbial mat samples collected from three hot spring localities on the east coast of Greenland. These hot springs harbour unique Arctic microbial ecosystems that have never been studied in detail before. Specific oligonucleotide primers for cyanobacteria, purple sulfur bacteria, green sulfur bacteria and Choroflexus/Roseiflexus-like green non-sulfur bacteria were used for the selective amplification of 16S rRNA gene fragments. Amplification products were separated by denaturing gradient gel electrophoresis (DGGE) and sequenced. In addition, several cyanobacteria were isolated from the mat samples, and classified morphologically and by 16S rRNA-based methods. The cyanobacterial 16S rRNA sequences obtained from DGGE represented a diverse, polyphyletic collection of cyanobacteria. The microbial mat communities were dominated by heterocystous and non-heterocystous filamentous cyanobacteria. Our results indicate that the cyanobacterial community composition in the samples were different for each sampling site. Different layers of the same heterogeneous mat often contained distinct and different communities of cyanobacteria. We observed a relationship between the cyanobacterial community composition and the in situ temperatures of different mat parts. The Greenland mats exhibited a low diversity of anoxygenic phototrophs as compared with other hot spring mats which is possibly related to the photochemical conditions within the mats resulting from the Arctic light regime.  相似文献   

7.
Populations of the multi-trichomous microbial fossil Eoschizothrix composita n.gen. et sp. are preserved in growth position in silicified stratiform stromatolites of the Gaoyuzhuang Formation, Hebei Province, northern China. The microbial fossils consist predominantly of preserved sheaths, although several specimens retain shriveled remains of trichomes within sheaths. Comparisons with modern morphological counterparts, including shape, growth habit and orientation, degradational sequences, and habitat, support the interpretation of the multi-trichomous microfossils as cyanobacteria, which acted as frame-builders of ancient stromatolites. The distribution and orientation of multi-trichomous microfossils within a synsedimentary context reveal their behavioral responses to sedimentation regime. Horizontally spread, interwoven mats formed during periods of sedimentary stasis. During periods of rapid sediment influx, the filaments assumed an upright orientation, possibly to avoid accumulating particles. This is the first record of fossil stromatolite-building multi-trichomous cyanobacterial which underscores early morphological and functional diversification in cyanobacterial evolution.  相似文献   

8.
We have examined the biosynthesis and accumulation of cyanobacterial sunscreening pigment scytonemin within intertidal microbial mat communities using a combination of chemical, molecular, and phylogenetic approaches. Both laminated (layered) and nonlaminated mats contained scytonemin, with morphologically distinct mats having different cyanobacterial community compositions. Within laminated microbial mats, regions with and without scytonemin had different dominant oxygenic phototrophs, with scytonemin-producing areas consisting primarily of Lyngbya aestuarii and scytonemin-deficient areas dominated by a eukaryotic alga. The nonlaminated mat was populated by a diverse group of cyanobacteria and did not contain algae. The amplification and phylogenetic assignment of scytonemin biosynthetic gene scyC from laminated mat samples confirmed that the dominant cyanobacterium in these areas, L. aestuarii, is likely responsible for sunscreen production. This study is the first to utilize an understanding of the molecular basis of scytonemin assembly to explore its synthesis and function within natural microbial communities.  相似文献   

9.
We here show that nano‐scale mapping of elements commonly utilized in biological cycles provides a promising new additional line of evidence when evaluating the extent of the contribution of biology to microbialites. Our case study comes from Lake Clifton in Western Australia, a unique environment where living domical and conical microbialites occur in close proximity to ≤4000‐year‐old fossilized equivalents. The outer margins of a partially lithified, actively growing Lake Clifton microbialite are characterized by abundant filamentous cyanobacteria within a loosely cemented aragonite matrix. Nano‐scale chemical maps have been successfully matched to specific morphological features such as trichomes, sheaths and putative extracellular polymeric substances (EPS). A suite of elements (C, O, Mg, N, Si, S) is concentrated within cyanobacterial sheaths, with carbon, magnesium, nitrogen and sulfur also enriched within trichomes and putative EPS. Calcium distribution highlights the sites of aragonite mineralization. In contrast, the fossilized Lake Clifton microbialite contains only rare, extensively degraded cyanobacterial filaments, the mean diameter of which is <50% of the living equivalents. Nevertheless, nano‐scale chemical maps can again be matched with morphological features. Here, poorly preserved filamentous microfossils are highlighted by enrichments in nitrogen and sulfur. Magnesium is no longer concentrated within the filaments, instead it co‐occurs with calcium and oxygen in the calcite cement. Extension of this study to a ∼2720‐million‐year‐old stromatolitic microbialite from the Tumbiana Formation of Western Australia shows that similar nano‐scale signals, in particular nitrogen and sulfur enrichments, are characteristic of stromatolite laminations, even when morphological microfossils are absent. The close similarities of nano‐scale elemental distributions in organic material from modern and ancient microbialites show that this technique provides a valuable addition to the morphological investigation of such structures, particularly in non‐fossiliferous ancient examples.  相似文献   

10.
Heterotrophic bacterial biomass and growth rates were examined in stromatolites formed from four different types of benthic cyanobacterial mats. Bacteria in algal mats were counted using direct microscopy and biomass was estimated from the numbers of bacteria. Heterotrophic bacterial growth rates were estimated from the rate of incorporation of tritiated thy‐midine into DNA. Pustular mat, which occurs in the upper in‐tertidal zone, contained relatively few bacteria in the surface layers (0–5 mm), having about 0.2 x 106 cells mm‐3, or 20 mgC m‐2 per millimetre depth. Other mats in the lower intertidal and subtidal zones had from 1 x 106 cells mm‐3 to 8 x 106 cells mm‐3. Heterotrophic bacterial productivities were 2.1 to 5.0 mgC m‐2 h‐1. Turnover times were an average of 1 day in the sandy sediment and 5 days in the colloform mat. Although these results are minimum estimates, they indicate that heterotrophic bacteria contribute substantially to the carbon cycle in stromatolites, by utilizing about 20 to 30% of primary production.  相似文献   

11.
Stromatolites composed of apatite occur in post‐Lomagundi–Jatuli successions (late Palaeoproterozoic) and suggest the emergence of novel types of biomineralization at that time. The microscopic and nanoscopic petrology of organic matter in stromatolitic phosphorites might provide insights into the suite of diagenetic processes that formed these types of stromatolites. Correlated geochemical micro‐analyses of the organic matter could also yield molecular, elemental and isotopic compositions and thus insights into the role of specific micro‐organisms among these communities. Here, we report on the occurrence of nanoscopic disseminated organic matter in the Palaeoproterozoic stromatolitic phosphorite from the Aravalli Supergroup of north‐west India. Organic petrography by micro‐Raman and Transmission Electron Microscopy demonstrates syngeneity of the organic matter. Total organic carbon contents of these stromatolitic phosphorite columns are between 0.05 and 3.0 wt% and have a large range of δ13Corg values with an average of ?18.5‰ (1σ = 4.5‰). δ15N values of decarbonated rock powders are between ?1.2 and +2.7‰. These isotopic compositions point to the important role of biological N2‐fixation and CO2‐fixation by the pentose phosphate pathway consistent with a population of cyanobacteria. Microscopic spheroidal grains of apatite (MSGA) occur in association with calcite microspar in microbial mats from stromatolite columns and with chert in the core of diagenetic apatite rosettes. Organic matter extracted from the stromatolitic phosphorites contains a range of molecular functional group (e.g. carboxylic acid, alcohol, and aliphatic hydrocarbons) as well as nitrile and nitro groups as determined from C‐ and N‐XANES spectra. The presence of organic nitrogen was independently confirmed by a CN? peak detected by ToF‐SIMS. Nanoscale petrography and geochemistry allow for a refinement of the formation model for the accretion and phototrophic growth of stromatolites. The original microbial biomass is inferred to have been dominated by cyanobacteria, which might be an important contributor of organic matter in shallow‐marine phosphorites.  相似文献   

12.
Lipophilic pigments were examined in microbial mat communities dominated by cyanobacteria in the intertidal zone and by diatoms in the subtidal and sublittoral zones of Hamelin Pool, Shark Bay, Western Australia. These microbial mats have evolutionary significance because of their similarity to lithified stromatolites from the Proterozoic and Early Paleozoic eras. Fucoxanthin, diatoxanthin, diadinoxanthin, β-carotene, and chlorophylls a and c characterized the diatom mats, whereas cyanobacterial mats contained myxoxanthophyll zeaxanthin, echinenone, β-carotene, chlorophyll a and, in some cases, sheath pigment. The presence of bacteriochlorophyll a with in the mats suggest a close association of photosynthetic bacteria with diatoms and cyanobacteria. The high carotenoids: chlorophyll a ratios (0.84–2.44 wt/wt) in the diatom mats suggest that carotenoids served a photoprotective function in this high light environment. By contrast, cyanobacterial sheath pigment may have largely supplanted the photoprotective role of carotenoids in the intertidal mats.  相似文献   

13.
Abstract Cyanobacterial mats developed on fine sandy sediments of the upper littoral of the island of Mellum (North Sea). Freshly colonized sediment was dominated by the non-heterocystous, nitrogen-fixing cyanobacterium Oscillatoria limosa . Well established mats in which the cosmopolitan cyanobacterium Microcoleus chthonoplastes was the dominant organism also usually contained O. limosa as a minor component. This mat was about 1 mm thick and contained high biomass. Photosynthesis was maximal at about 150 μm depth and reached values of 280 μmol oxygen. 1−1 · min−1. On the other hand, in the dark, high respiratory activity turned the mat anaerobic within minutes. Freshly colonized sediment consisted of low cyanobacterial biomass loosely attached to the sand grains and present up to a depth of 2.5 mm. Respiratory activity was low and the sediment remained aerobic to a depth of 2 mm throughout the night. Nitrogen fixation (acetylene reduction) was measured during 24-h periods in both types of mats in order to elucidate interactions with oxygenic photosynthesis and oxygen concentration. Acetylene reduction in the mats showed very different diurnal patterns which depended on the type of mat investigated and the time of year. The results indicated that a temporary separation of oxygenic photosynthesis and nitrogen fixation occurred in the mat. Established mats fixed nitrogen predominantly during the transition from dark to light and vice versa, when oxygenic photosynthesis was reduced or absent. Freshly colonized sediment-fixed nitrogen throughout the night but often a stimulation was seen at dawn. The latter showed much higher specific activities than the established type. Also in spring, specific activities were much higher.  相似文献   

14.
Microbialites (stromatolites and thrombolites) are mineralized mat structures formed via the complex interactions of diverse microbial‐mat communities. At Highborne Cay, in the Bahamas, the carbonate component of these features is mostly comprised of ooids. These are small, spherical to ellipsoidal grains characterized by concentric layers of calcium carbonate and organic matter and these sand‐sized particles are incorporated with the aid of extra‐cellular polymeric substances (EPS), into the matrix of laminated stromatolites and clotted thrombolite mats. Here, we present a comparison of the bacterial diversity within oolitic sand samples and bacterial diversity previously reported in thrombolitic and stromatolitic mats of Highborne Cay based on analysis of clone libraries of small subunit ribosomal RNA gene fragments and lipid biomarkers. The 16S‐rRNA data indicate that the overall bacterial diversity within ooids is comparable to that found within thrombolites and stromatolites of Highborne Cay, and this significant overlap in taxonomic groups suggests that ooid sands may be a source for much of the bacterial diversity found in the local microbialites. Cyanobacteria were the most diverse taxonomic group detected, followed by Alphaproteobacteria, Gammaproteobacteria, Planctomyces, Deltaproteobacteria, and several other groups also found in mat structures. The distributions of intact polar lipids, the fatty acids derived from them, and bacteriohopanepolyols provide broad general support for the bacterial diversity identified through analysis of nucleic acid clone libraries.  相似文献   

15.
Lake Vanda is a cold nonturbulent, perennially ice‐covered lake in the valleys of southern Victoria Land, Antarctica. Observations made and samples collected under the 3.5 m ice in 1980 by SCUBA divers reveal that an extensive benthic microbial mat dominated by the filamentous blue‐green algae (cyanobacteria) Phormidium frigidum and Lyngbya martensiana is growing there. As is the case in other Antarctic lakes investigated by us thus far, the mat in Lake Vanda traps and binds sediment and precipitates calcite and is undisturbed by grazers and burrowers. Therefore, stromatolitic laminae are being generated. Unlike the other Antarctic lakes investigated in this region, Lake Vanda has (a) an ice cover and water that transmits significantly more light; (b) an ice cover that is permeable to gases and aeolian sediment; (c) no zone of lift‐off mat where photosynthetically generated oxygen would render the mat buoyant and cause it to separate from the substrate and float away; and (d) mat that has a distinctive pinnacle macrostructure. Although the laminae being laid down by the Lake Vanda mat do not retain the cone and ridge morphology of the living mat, the pinnacle macrostructure of the mat is similar to the Precambrian Conophyton stromatolites as well as microbial structures forming in Yellowstone hot springs, freshwater marshes in the Bahamas, and hypersaline intertidal mats in Baja California, Mexico, and Shark Bay, Australia. This suggests (a) Conophyton‐like structures similar to those abundant during the Precambrian can form under widely varying environmental conditions and (b) high latitudes should not be overlooked as sites of formation of ancient stromatolites.  相似文献   

16.
Cyanobacteria are renowned as the mediators of Earth's oxygenation. However, little is known about the cyanobacterial communities that flourished under the low-O(2) conditions that characterized most of their evolutionary history. Microbial mats in the submerged Middle Island Sinkhole of Lake Huron provide opportunities to investigate cyanobacteria under such persistent low-O(2) conditions. Here, venting groundwater rich in sulfate and low in O(2) supports a unique benthic ecosystem of purple-colored cyanobacterial mats. Beneath the mat is a layer of carbonate that is enriched in calcite and to a lesser extent dolomite. In situ benthic metabolism chambers revealed that the mats are net sinks for O(2), suggesting primary production mechanisms other than oxygenic photosynthesis. Indeed, (14)C-bicarbonate uptake studies of autotrophic production show variable contributions from oxygenic and anoxygenic photosynthesis and chemosynthesis, presumably because of supply of sulfide. These results suggest the presence of either facultatively anoxygenic cyanobacteria or a mix of oxygenic/anoxygenic types of cyanobacteria. Shotgun metagenomic sequencing revealed a remarkably low-diversity mat community dominated by just one genotype most closely related to the cyanobacterium Phormidium autumnale, for which an essentially complete genome was reconstructed. Also recovered were partial genomes from a second genotype of Phormidium and several Oscillatoria. Despite the taxonomic simplicity, diverse cyanobacterial genes putatively involved in sulfur oxidation were identified, suggesting a diversity of sulfide physiologies. The dominant Phormidium genome reflects versatile metabolism and physiology that is specialized for a communal lifestyle under fluctuating redox conditions and light availability. Overall, this study provides genomic and physiologic insights into low-O(2) cyanobacterial mat ecosystems that played crucial geobiological roles over long stretches of Earth history.  相似文献   

17.
A Miocene methane-seep limestone from the Romagna Apennine (Pietralunga, Italy) was found to contain an extraordinarily well-preserved microbial mat consisting of filamentous fossils. Individual filaments of the lithified Pietralunga mat are 50 to 80 μ m in diameter and resemble the sulfide-oxidizing bacterium Beggiatoa. Mats of sulfur bacteria are common around modern methane-seeps, but have not yet been reported from ancient seep limestones. This is thought to be related to the conditions prevailing in metabolically active mats of sulfur bacteria that do not favor carbonate formation. The preservation of the Pietralunga mat was most likely caused by a sudden change from oxidizing to anoxic conditions, leading to the rapid carbonate precipitation induced by anaerobic oxidation of methane. Lipid biomarkers specific for archaea and sulfate-reducing bacteria linked with the anaerobic oxidation of methane co-occur with compounds derived from methanotrophic bacteria and ciliates. These findings confirm a close proximity of oxic and anoxic conditions, as required for the growth of sulfide-oxidizing bacteria in the methane-based ecosystem. The lack of earlier reports on fossilized thiotrophic mats in seep limestones is most likely related to the rarity of environmental changes rapid enough to preserve the filaments rather than to a lower frequency of thiotrophic mats around methane-seeps in the geological past.  相似文献   

18.
In the geological record, fossil phosphatic stromatolites date back to the Great Oxidation Event in the Paleoproterozoic, but living phosphatic stromatolites have not been described previously. Here, we report on cyanobacterial stromatolites in a supratidal freshwater environment at Cape Recife, South African southern coast, precipitating Ca carbonate alternating with episodes of Ca phosphate deposition. In their structure and composition, the living stromatolites from Cape Recife closely resemble their fossilized analogues, showing phosphatic zonation, microbial casts, tunnel structures and phosphatic crusts of biogenic origin. The microbial communities appear to be also similar to those proposed to have formed fossil phosphatic stromatolites. Phosphatic domains in the material from Cape Recife are spatially and texturally associated with carbonate precipitates, but form distinct entities separated by sharp boundaries. Electron Probe Micro‐Analysis shows that Ca/P ratios and the overall chemical compositions of phosphatic precipitates are in the range of octacalcium phosphate, amorphous tricalcium phosphate and apatite. The coincidence in time of the emergence of phosphatic stromatolites in the fossil record with a major episode of atmospheric oxidation led to the assumption that at times of increased oxygen release the underlying increased biological production may have been linked to elevated phosphorus availability. The stromatolites at Cape Recife, however, form in an environment where ambient phosphorus concentrations do not exceed 0.28 μM, one to two orders of magnitude below the previously predicted minimum threshold of >5 μM for biogenic phosphate precipitation in paleo‐systems. Accordingly, we contest the previously proposed suitability of phosphatic stromatolites as a proxy for high ambient phosphate concentrations in supratidal to shallow ocean settings in earth history.  相似文献   

19.
Extensive microbial mats colonize sandy tidal flats that form along the coasts of today's Earth. The microbenthos (mainly cyanobacteria) respond to the prevailing physical sediment dynamics by biostabilization, baffling and trapping, as well as binding. This biotic-physical interaction gives rise to characteristic microbially induced sedimentary structures (MISS) that differ greatly from both purely physical structures and from stromatolites. Actualistic studies of the MISS on modern tidal flats have been shown to be the key for understanding equivalent fossil structures that occur in tidal and shelf sandstones of all Earth ages. However, until now the fossil record of Archean MISS has been poor, and relatively few specimens have been found. This paper describes a study location that displays a unique assemblage with a multitude of exceptionally preserved MISS in the 2.9-Ga-old Pongola Supergroup, South Africa. The 'Nhlazatse Section' includes structures such as 'erosional remnants and pockets', 'multidirected ripple marks', 'polygonal oscillation cracks', and 'gas domes'. Optical and geochemical analyses support the biogenicity of microscopic textures such as filamentous laminae or 'orientated grains'. Textures resembling filaments are lined by iron oxide and hydroxides, as well as clay minerals. They contain organic matter, whose isotope composition is consistent with carbon of biological origin. The ancient tidal flats of the Nhlazatse Section record four microbial mat facies that occur in modern tidal settings as well. We distinguish endobenthic and epibenthic microbial mats, including planar, tufted, and spongy subtypes. Each microbial mat facies is characterized by a distinct set of MISS, and relates to a typical tidal zone. The microbial mat structures are preserved in situ, and are consistent with similar features constructed today by benthic cyanobacteria. However, other mat-constructing microorganisms also could have formed the structures in the Archean tidal flats.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号