共查询到20条相似文献,搜索用时 15 毫秒
1.
Microalgal-facilitated bacterial oxidation of manganese 总被引:1,自引:0,他引:1
R M Stuetz A C Greene J C Madgwick 《Journal of industrial microbiology & biotechnology》1996,16(5):267-273
In the presence of unicellular microalgae, bacterial manganese oxidation was increased by up to ten times the rate produced by bacterial oxidation alone. Azide-poisoned controls demonstrated that the manganese-oxidizing bacteria were active in the algal-bacterial oxidation of manganese. Scanning electron microscopy showed that oxide formation occurred in a number of structurally different deposits on the surface of the alga. Studies involving algal cell fractionation showed that bacterial manganese oxidation was facilitated by the algal cell wall, possibly via Mn2+ adsorption. Variations in growth conditions had an effect on algal-bacterial oxide formation and composition. High nutrient (yeast extract, peptone and/or sucrose) levels favored microbial growth but lowered oxide formation, whereas optimal levels of manganese oxide formation required minimal media. High concentrations of either organic nutrients or mineral salts promoted manganese carbonate precipitation. 相似文献
2.
Katie L. Pickrahn Sang Wook Park Yelena Gorlin Han‐Bo‐Ram Lee Thomas F. Jaramillo Stacey F. Bent 《Liver Transplantation》2012,2(10):1269-1277
The ability to deposit conformal catalytic thin films enables opportunities to achieve complex nanostructured designs for catalysis. Atomic layer deposition (ALD) is capable of creating conformal thin films over complex substrates. Here, ALD‐MnOx on glassy carbon is investigated as a catalyst for the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR), two reactions that are of growing interest due to their many applications in alternative energy technologies. The films are characterized by X‐ray photoelectron spectroscopy, X‐ray diffraction, scanning electron microscopy, ellipsometry, and cyclic voltammetry. The as‐deposited films consist of Mn(II)O, which is shown to be a poor catalyst for the ORR, but highly active for the OER. By controllably annealing the samples, Mn2O3 catalysts with good activity for both the ORR and OER are synthesized. Hypotheses are presented to explain the large difference in the activity between the MnO and Mn2O3 catalysts for the ORR, but similar activity for the OER, including the effects of surface oxidation under experimental conditions. These catalysts synthesized though ALD compare favorably to the best MnOx catalysts in the literature, demonstrating a viable way to produce highly active, conformal thin films from earth‐abundant materials for the ORR and the OER. 相似文献
3.
Kazushi Takahashi 《Ecological Research》1998,13(1):1-5
Since the oxygen isotopic ratio of water extracted from stems reflects that of water taken up by roots, the stem water isotope ratio can be used to analyze the source of water for plant growth. However, it is known that the fractionation of isotopes during evaporation from the surface soil increases the isotope ratio in soil water drastically. In this study, it was experimentally confirmed that the stem water of Elaeocarpus sylvestris vs. ellipticus Hara seedlings is not isotopically similar to the water source in the case where evaporation from the soil occurs actively. However, since water in these plant bodies was replaced in about 2 days in the pot experiments, the 2-day-averaged values of the soil water isotope ratio approached the stem water isotope ratio. Thus, time-course samplings of the soil and stems, and measurements of the replacement time of water in the plant body (water volume in plant/transpiration rate) are recommended for correct interpretation of the isotopic signature of soil water and stem water. 相似文献
4.
Yejing Li Xuefeng Wang Yurui Gao Qinghua Zhang Guoqiang Tan Qingyu Kong Seongmin Bak Gang Lu Xiao‐Qing Yang Lin Gu Jun Lu Khalil Amine Zhaoxiang Wang Liquan Chen 《Liver Transplantation》2019,9(4)
Cathode materials with high energy density, long cycle life, and low cost are of top priority for energy storage systems. The Li‐rich transition metal (TM) oxides achieve high specific capacities by redox reactions of both the TM and oxygen ions. However, the poor reversible redox reaction of the anions results in severe fading of the cycling performance. Herein, the vacancy‐containing Na4/7[Mn6/7(?Mn)1/7]O2 (?Mn for vacancies in the Mn? O slab) is presented as a novel cathode material for Na‐ion batteries. The presence of native vacancies endows this material with attractive properties including high structural flexibility and stability upon Na‐ion extraction and insertion and high reversibility of oxygen redox reaction. Synchrotron X‐ray absorption near edge structure and X‐ray photoelectron spectroscopy studies demonstrate that the charge compensation is dominated by the oxygen redox reaction and Mn3+/Mn4+ redox reaction separately. In situ synchrotron X‐ray diffraction exhibits its zero‐strain feature during the cycling. Density functional theory calculations further deepen the understanding of the charge compensation by oxygen and manganese redox reactions and the immobility of the Mn ions in the material. These findings provide new ideas on searching for and designing materials with high capacity and high structural stability for novel energy storage systems. 相似文献
5.
We investigated the effects of oxygen (O2) concentration on methane (CH4) production and oxidation in two humid tropical forests that differ in long‐term, time‐averaged soil O2 concentrations. We identified sources and sinks of CH4 through the analysis of soil gas concentrations, surface emissions, and carbon isotope measurements. Isotope mass balance models were used to calculate the fraction of CH4 oxidized in situ. Complementary laboratory experiments were conducted to determine the effects of O2 concentration on gross and net rates of methanogenesis. Field and laboratory experiments indicated that high levels of CH4 production occurred in soils that contained between 9±1.1% and 19±0.2% O2. For example, we observed CH4 concentrations in excess of 3% in soils with 9±1.1% O2. CH4 emissions from the lower O2 sites were high (22–101 nmol CH4 m?2 s?1), and were equal in magnitude to CH4 emissions from natural wetlands. During peak periods of CH4 efflux, carbon dioxide (CO2) emissions became enriched in 13C because of high methanogenic activity. Gross CH4 production was probably greater than flux measurements indicated, as isotope mass balance calculations suggested that 48–78% of the CH4 produced was oxidized prior to atmospheric egress. O2 availability influenced CH4 oxidation more strongly than methanogenesis. Gross CH4 production was relatively insensitive to O2 concentrations in laboratory experiments. In contrast, methanotrophic bacteria oxidized a greater fraction of total CH4 production with increasing O2 concentration, shifting the δ13C composition of CH4 to values that were more positive. Isotopic measurements suggested that CO2 was an important source of carbon for methanogenesis in humid forests. The δ13C value of methanogenesis was between ?84‰ and ?98‰, which is well within the range of CH4 produced from CO2 reduction, and considerably more depleted in 13C than CH4 formed from acetate. 相似文献
6.
Leaf gas exchange and leaf water (18)O enrichment (Delta(18)O(L)) were measured in three Clusia species under field conditions during dry and wet seasons and in Miconia argentea during the dry season in the Republic of Panama. During the dry season, all three Clusia species used crassulacean acid metabolism (CAM); during the wet season Clusia pratensis operated in the C(3) mode, while Clusia uvitana and Clusia rosea used CAM. Large departures from isotopic steady state were observed in daytime Delta(18)O(L) of the Clusia species, especially during the dry season. In contrast, daytime Delta(18)O(L) was near isotopic steady state in the C(3) tree M. argentea. Across the full data set, non-steady-state predictions explained 49% of variation in observed Delta(18)O(L), whereas steady-state predictions explained only 14%. During the wet season, when Delta(18)O(L) could be compared with Clusia individuals operating in both C(3) and CAM modes, steady-state and non-steady-state models gave contrasting predictions with respect to interspecific variation in daytime Delta(18)O(L). The observed Delta(18)O(L) pattern matched that predicted for the non-steady state. The results provided a clear example of how non-steady-state control of leaf water (18)O dynamics can shift the slope of the relationship between transpiration rate and daytime Delta(18)O(L) from negative to positive. 相似文献
7.
Water isotope analysis for tracing ecosystem processes: measurement techniques,ecological applications,and future challenges 总被引:1,自引:0,他引:1 下载免费PDF全文
《植物生态学报》2020,44(4):350
水分是生态系统的重要因子, 水同位素自然示踪和人工标记是研究生态系统水循环过程的重要方法, 利用水同位素所具有的示踪、整合和指示等功能特征, 通过测量和分析生态系统中不同组分所含水分的氢氧同位素比值的变化情况, 可实现生态系统蒸散发的拆分、植物水分来源判定和叶片水同位素富集机理研究, 是研究生态系统水循环过程机理和生态学效应不可或缺的技术手段。该文首先简要回顾了生态系统水同位素发展和应用的历史, 在此基础上阐述了水同位素技术和方法在生态学研究热点领域应用的基本原理, 概述了水同位素在植物水分来源判定、蒸散发拆分、露水来源拆分、降水的水汽来源拆分以及 17O-excess的研究进展, 并介绍了植物叶片水富集机理及基于稳定同位素的碳水耦合研究。最后, 指出了水同位素研究亟待解决的问题, 展望了水同位素应用的前沿方向, 旨在利用水同位素分析加深对生态系统的水分动态、植被格局和生理过程的理解。 相似文献
8.
Gunter TE Miller LM Gavin CE Eliseev R Salter J Buntinas L Alexandrov A Hammond S Gunter KK 《Journal of neurochemistry》2004,88(2):266-280
Excess brain manganese can produce toxicity with symptoms that resemble those of Parkinsonism and causes that remain elusive. Manganese accumulates in mitochondria, a major source of superoxide, which can oxidize Mn2+ to the powerful oxidizing agent Mn3+. Oxidation of important cell components by Mn3+ has been suggested as a cause of the toxic effects of manganese. Determining the oxidation states of intramitochondrial manganese could help to identify the dominant mechanism of manganese toxicity. Using X-ray absorbance near edge structure (XANES) spectroscopy, we have characterized the oxidation state of manganese in mitochondria isolated from brain, liver, and heart over concentrations ranging from physiological to pathological. Results showed that (i) spectra from different model manganese complexes of the same oxidation state were similar to each other and different from those of other oxidation states and that the position of the absorption edge increases with oxidation state; (ii) spectra from intramitochondrial manganese in isolated brain, heart and liver mitochondria were virtually identical; and (iii) under these conditions intramitochondrial manganese exists primarily as a combination of Mn2+ complexes. No evidence for Mn3+ was detected in samples containing more than endogenous manganese levels, even after incubation under conditions promoting reactive oxygen species (ROS) production. While the presence of Mn3+ complexes cannot be proven in the spectrum of endogenous mitochondrial manganese, the shape of this spectrum could suggest the presence of Mn3+ near the limit of detection, probably as MnSOD. 相似文献
9.
【目的】研究3种真菌对锰离子的耐受性,并研究其对溶液中Mn2+吸附的最佳条件和吸附机理,为治理锰离子污染提供技术参考。【方法】测定哈茨木霉(Trichoderma harzianum)、深绿木霉(Trichoderma atroviride)和棘孢木霉(Trichoderma asperellum)三株真菌的最低抑菌浓度(minimum inhibitory concentration,MIC),探究最佳吸附条件,并利用扫描电子显微镜(scanning electron microscopy-energy dispersive X-ray spectroscopy,SEM-EDS)和傅里叶变换红外光谱(Fourier transform infrared spectroscopy,FTIR)对吸附前后菌体进行分析。【结果】哈茨木霉、深绿木霉、棘孢木霉对重金属锰耐受的浓度可达到1 600、1 800、2 000 mg/L,最佳吸附条件为p H为7,吸附时间80 h,温度28℃,吸附率最高可达23.7%,哈茨木霉参与吸附的官能团有-OH、胺基中的-C-N-、-C=O。... 相似文献
10.
LLORENÇ CABRERA-BOSQUET CIRO SÁNCHEZ & JOSÉ LUIS ARAUS 《Plant, cell & environment》2009,32(11):1487-1499
Measurement of stable isotopes in plant dry matter is a useful phenotypic tool for speeding up breeding advance in C3 crops exposed to different water regimes. However, the situation in C4 crops is far from resolved, since their photosynthetic metabolism precludes (at least in maize) the use of carbon isotope discrimination. This paper investigates the use of oxygen isotope enrichment (Δ18 O) as a new secondary trait for yield potential and drought resistance in maize ( Zea mays L). A set of tropical maize hybrids developed by the International Maize and Wheat Improvement Center was grown under three contrasting water regimes in field conditions. Water regimes clearly affected plant growth and yield. In accordance with the current theory, a decrease in water input was translated into large decreases in stomatal conductance and increases in leaf temperature together with concomitant 18 O enrichment of plant matter (leaves and kernels). In addition, kernel Δ18 O correlated negatively with grain yield under well-watered and intermediate water stress conditions, while it correlated positively under severe water stress conditions. Therefore, genotypes showing lower kernel Δ18 O under well-watered and intermediate water stress had higher yields in these environments, while the opposite trend was found under severe water stress conditions. This illustrates the usefulness of Δ18 O for selecting the genotypes best suited to differing water conditions. 相似文献
11.
动物血红素过氧化物酶参与细菌氧化Mn(Ⅱ)的研究进展 总被引:1,自引:0,他引:1
锰氧化物是自然环境中一种重要的高活性矿物,在多种元素的生物地球化学循环中起着重要作用。细菌对锰氧化物的形成具有推动作用。截至目前,研究者已从环境中分离出多株锰氧化细菌,并在氧化机理的研究上取得了一定的进展。目前细菌中已知的锰氧化酶包括多铜氧化酶和动物血红素过氧化物酶。与多铜氧化酶相比,动物血红素过氧化物酶在蛋白结构与氧化方式上都具有自己的特点。本文结合国内外最新研究结果,在氧化菌株、氧化酶和基因、氧化方式及影响因素等方面对动物血红素过氧化物酶参与细菌氧化Mn(Ⅱ)的研究进行了总结,对未来研究方向进行了展望。 相似文献
12.
Farquhar and Gan [10] have proposed a model for the spatial variation in the isotopic enrichment of H218O across a leaf, which is specifically formulated for monocotyledoneous leaves. The model is based on the interaction between mass fluxes longitudinally within the xylem, and fluxes laterally through veinlets into the lamina mesophyll, where moisture leaves the leaf through transpiration. The lighter, more abundant, molecule H216O escapes preferentially with the evaporating water, resulting in the enrichment of H218O at these sites. Enriched water diffuses throughout the leaf, and it is this spatial distribution of enriched water which the model seeks to capture. In this paper we present a general formulation of the model in terms of mass flux, extending it to include variable transpiration rates across the leaf surface, as well as a tapering xylem. Solutions are developed for the general case and, since the solutions present in the form of Kummer functions, properties are established as well as methods for estimating the solutions under certain conditions relevant to the biology. The model output is compared with Gans data ([14, 15]) collected from maize plants. 相似文献
13.
14.
Summary Oxygen isotope ratios were determined in leaf cellulose from two plant species at Barro Colorado (Republic of Panama) in 4 different plots, two of which were undergoing an irrigation treatment during the dry season. There is a gradient in 18O values of leaf cellulose from the understory to canopy leaves, reflecting the differences in relative humidity between these two levels of the forest. This gradient is most pronounced in irrigated plots. For irrigated plots there was a highly significant correlation between 18O and 13C values, which was not observed in control plots. This relationship can be explained by humidity controlling stomatal conductance. Low humidity affects 18O values of leaf water during photosynthesis, which isotopically labels cellulose during its synthesis. Low humidity also decreases stomatal conductance, which affects discrimination against carbon-13 by photosynthetic reactions, thus affecting the 13C values of photosynthates. WUE values calculated by using plant carbon and oxygen isotope ratios were similar to those observed with gas exchange measurements in other tropical and temperate area. Thus the concurrent analysis of carbon and oxygen isotope ratios of leaf material can potentially be useful for long term estimation of assimilation and evapotranspiration regimes of plants. 相似文献
15.
The oxygen isotopic composition of plant cellulose is commonly used for the interpretations of climate, ecophysiology and dendrochronology in both modern and palaeoenvironments. Further applications of this analytical tool depends on our in-depth knowledge of the isotopic fractionations associated with the biochemical pathways leading to cellulose. Here, we test two important assumptions regarding isotopic effects resulting from the location of oxygen in the carbohydrate moiety and the biosynthetic pathway towards cellulose synthesis. We show that the oxygen isotopic fractionation of the oxygen attached to carbon 2 of the glucose moieties differs from the average fractionation of the oxygens attached to carbons 3-6 from cellulose by at least 9%, for cellulose synthesized within seedlings of two different species (Triticum aestivum L. and Ricinus communis L.). The fractionation for a given oxygen in cellulose synthesized by the Triticum seedlings, which have starch as their primary carbon source, is different than the corresponding fractionation in Ricinus seedlings, within which lipids are the primary carbon source. This observation shows that the biosynthetic pathway towards cellulose affects oxygen isotope partitioning, a fact heretofore undemonstrated. Our findings may explain the species-dependent variability in the overall oxygen isotope fractionation during cellulose synthesis, and may provide much-needed insight for palaeoclimate reconstruction using fossil cellulose. 相似文献
16.
稳定同位素技术在植物水分利用研究中的应用 总被引:24,自引:0,他引:24
近20a稳定同位素技术在植物生态学研究中的应用得到了长足发展,使得对植物与水分关系也有了更深一步的了解。介绍稳定同位素性碳、氢、氧同位素在研究植物水分关系中的应用及进展,以期能为国内植物水分利用研究提供参考。由于植物根系从土壤中吸收水分时并不发生同位素分馏,对木质部水分同位素分析有助于对植物利用水分来源,生态系统中植物对水分的竞争和利用策略的研究,更好地了解生态系统结构与功能。稳定碳同位素作为植物水分利用效率的一个间接指标,在不同水分梯度环境中,及植物不同代谢产物与水分关系中有着广泛的应用。同位素在土壤-植被-大气连续体水分中的应用,有助于了解生态系统的水分平衡。随着稳定同位素方法的使用,植物与水分关系的研究将取得更大的进展。 相似文献
17.
氧同位素分馏法和氧肟酸抑制法的测定结果都表明,马铃薯切片在12 ~24 h 陈化期间抗氰呼吸途径的实际活性基本保持恒定,尽管前者的测定结果是后者的2 倍。此外,用上述2 种不同方法进行研究的结果都表明,内源乙烯在诱导陈化切片抗氰呼吸途径容量产生的同时并不调控其实际运行。上述结果表明尽管氧肟酸抑制法不能准确测定抗氰呼吸途径的实际活性,但用于一些比较研究仍是可行的 相似文献
18.
Relationship between synovial fluid and plasma manganese,arginase, and nitric oxide in patients with rheumatoid arthritis 总被引:3,自引:0,他引:3
Nitric oxide (NO) participates in the pathogenesis of inflammatory reactions in many autoimmune diseases such as rheumatoid
arthritis (RA). There is a reciprocal pathway between arginase and nitric oxide synthese (NOS) for NO production, and Mn is
required for arginase activity and stability. To investigate whether NO production related with the arginine-nitric oxide
pathway in patients with RA, we measured synovial fluid and plasma nitrite (NOx) levels, arginase activities, and its cofactor manganese (Mn) concentrations in 21 RA patients and 13 healthy control subjects.
Plasma albumin levels were measured as an index of nutritional status. NOx levels were determined after the reduction of nitrates to nitrites using the Griess reaction. Whereas, synovial fluid arginase
activities and Mn levels were found to be significantly lower (p<0.001, p<0.001, respectively), plasma arginase activities and Mn levels were similar in patients with RA when compared to the control
subjects. Plasma and synovial fluid NO levels were similar in patients with RA and in healthy subjects (p>0.05, p>0.05, respectively). There were significantly positive correlations between synovial fluid and plasma arginase activities
vs Mn content (r=0.543, p=0.011; r=0.516, p=0.017, respectively) and significantly negative correlations between synovial fluid and plasma NO levels vs arginase activities
(r=−0.497, p=0.022; r=−0.508, p=0.019 respectively) in the patients group. Our results indicate that the lower concentration of synovial fluid Mn could cause
lower arginase activity and this could also upregulate NO production by increasing L-arginine content in patients with RA. 相似文献
19.
目的 人体组织的稳定同位素组成与其生长期间的个体饮食情况、所处环境及代谢状况有关。人头发一经长出便不再与身体进行物质交换,化学性质稳定,易于采集,是研究人体组织稳定同位素组成的良好对象。构成人体的氧、氢元素主要来自于所摄入的水和食物,其中氧、氢稳定同位素组成会通过角蛋白的形式被记录于头发当中。不同地区居民头发中氧、氢稳定同位素组成差异可被用于推断人的饮食情况、生活地域和活动轨迹信息,在法庭科学等研究领域具有重要意义。方法 本研究利用元素分析仪-稳定同位素比质谱仪(EA-IRMS)对国内不同地区常住居民头发样本进行氧、氢稳定同位素比值检测和分析。结果 部分城市间居民头发δ18O和δ2H存在显著性差异,整体δ18O和δ2H存在显著正相关性。对所得稳定同位素数据进行判别分析推断头发的地域来源,其交互验证整体判别准确率为63.9%,结合碳、氮稳定同位素数据后,其判别准确率大幅提升,交互验证的整体判别准确率达到76.0%。随着判别分析中使用的稳定同位素种类的增加,判别函数模型的判别能力明显增强。结论 利用4种元素稳定同位素数据建立的多层感知器神经网络模型的整体判别准确率为82.8%,径向基函数神经网络模型整体判别准确率为78.8%,3种溯源推断数学模型中,多层感知器神经网络模型的判别准确率最高。 相似文献
20.
利用稳定氢氧同位素定量区分白刺水分来源的方法比较 总被引:6,自引:0,他引:6
水是影响植物分布的重要生态因子之一,对植物水源的研究有助于在全球变化背景下了解植物的时空分布格局.根据同位素质量守恒,利用稳定氢氧同位素可以确定植物水分来源,相关的方法也不断改进.利用三源线性混合模型、多源线性混合模型、吸水深度模型以及动态模型分别对格尔木白刺(Nitraria Tangutorum)的水分来源进行了对比研究,发现格尔木白刺主要吸收利用50-100 cm处的土壤水及地下水.在研究方法上,各模型都有自己的应用范围和局限:三源线性混合模型一般只能在植物吸收的水分来源不超过3个的情况下运行;多源线性混合模型弥补了三源线性混合模型的不足,可以同时比较多种来源水各自对白刺的贡献率及贡献范围;吸水深度模型弥补了混合模型中不能计算白刺对土壤水的平均吸水深度的缺陷;动态模型则会为未来降水格局变化对植物的时空分布的影响研究起很大作用.针对不同的适用范围,模型的选择及综合应用会更广泛.但是,该技术还存在一些不足,需要结合测定土水势,富氘水的示踪等方法来弥补. 相似文献