首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Agricultural expansion is a leading driver of biodiversity loss across the world, but little is known on how future land‐use change may encroach on remaining natural vegetation. This uncertainty is, in part, due to unknown levels of future agricultural intensification and international trade. Using an economic land‐use model, we assessed potential future losses of natural vegetation with a focus on how these may threaten biodiversity hotspots and intact forest landscapes. We analysed agricultural expansion under proactive and reactive biodiversity protection scenarios, and for different rates of pasture intensification. We found growing food demand to lead to a significant expansion of cropland at the expense of pastures and natural vegetation. In our reference scenario, global cropland area increased by more than 400 Mha between 2015 and 2050, mostly in Africa and Latin America. Grazing intensification was a main determinant of future land‐use change. In Africa, higher rates of pasture intensification resulted in smaller losses of natural vegetation, and reduced pressure on biodiversity hotspots and intact forest landscapes. Investments into raising pasture productivity in conjunction with proactive land‐use planning appear essential in Africa to reduce further losses of areas with high conservation value. In Latin America, in contrast, higher pasture productivity resulted in increased livestock exports, highlighting that unchecked trade can reduce the land savings of pasture intensification. Reactive protection of sensitive areas significantly reduced the conversion of natural ecosystems in Latin America. We conclude that protection strategies need to adapt to region‐specific trade positions. In regions with a high involvement in international trade, area‐based conservation measures should be preferred over strategies aimed at increasing pasture productivity, which by themselves might not be sufficient to protect biodiversity effectively.  相似文献   

3.
Does agricultural intensification reduce the area used for agricultural production in Brazil? Census and other data for time periods 1975–1996 and 1996–2006 were processed and analyzed using Geographic Information System and statistical tools to investigate whether and if so, how, changes in yield and stocking rate coincide with changes in cropland and pasture area. Complementary medium‐resolution data on total farmland area changes were used in a spatially explicit assessment of the land‐use transitions that occurred in Brazil during 1960–2006. The analyses show that in agriculturally consolidated areas (mainly southern and southeastern Brazil), land‐use intensification (both on cropland and pastures) coincided with either contraction of both cropland and pasture areas, or cropland expansion at the expense of pastures, both cases resulting in farmland stability or contraction. In contrast, in agricultural frontier areas (i.e., the deforestation zones in central and northern Brazil), land‐use intensification coincided with expansion of agricultural lands. These observations provide support for the thesis that (i) technological improvements create incentives for expansion in agricultural frontier areas; and (ii) farmers are likely to reduce their managed acreage only if land becomes a scarce resource. The spatially explicit examination of land‐use transitions since 1960 reveals an expansion and gradual movement of the agricultural frontier toward the interior (center‐western Cerrado) of Brazil. It also indicates a possible initiation of a reversed trend in line with the forest transition theory, i.e., agricultural contraction and recurring forests in marginally suitable areas in southeastern Brazil, mainly within the Atlantic Forest biome. The significant reduction in deforestation that has taken place in recent years, despite rising food commodity prices, indicates that policies put in place to curb conversion of native vegetation to agriculture land might be effective. This can improve the prospects for protecting native vegetation by investing in agricultural intensification.  相似文献   

4.
Increased deployment of renewable energy can contribute towards mitigating climate change and improving air quality, wealth and development. However, renewable energy technologies are not free of environmental impacts; thus, it is important to identify opportunities and potential threats from the expansion of renewable energy deployment. Currently, there is no cross‐national comprehensive analysis linking renewable energy potential simultaneously to socio‐economic and political factors and biodiversity priority locations. Here, we quantify the relationship between the fraction of land‐based renewable energy (including solar photovoltaic, wind and bioenergy) potential available outside the top biodiversity areas (i.e. outside the highest ranked 30% priority areas for biodiversity conservation) within each country, with selected socio‐economic and geopolitical factors as well as biodiversity assets. We do so for two scenarios that identify priority areas for biodiversity conservation alternatively in a globally coordinated manner vs. separately for individual countries. We show that very different opportunities and challenges emerge if the priority areas for biodiversity protection are identified globally or designated nationally. In the former scenario, potential for solar, wind and bioenergy outside the top biodiversity areas is highest in developing countries, in sparsely populated countries and in countries of low biodiversity potential but with high air pollution mortality. Conversely, when priority areas for biodiversity protection are designated nationally, renewable energy potential outside the top biodiversity areas is highest in countries with good governance but also in countries with high biodiversity potential and population density. Overall, these results identify both clear opportunities but also risks that should be considered carefully when making decisions about renewable energy policies.  相似文献   

5.
The conversion of natural, or seminatural, habitats to agricultural land and changes in agricultural land use are significant drivers of biodiversity loss. Within the context of land‐sharing versus land‐sparing debates, large‐scale commercial agriculture is known to be detrimental to biodiversity, but the effects of small‐scale subsistence farming on biodiversity are disputed. This poses a problem for sustainable land‐use management in the Global South, where approximately 30% of farmland is small‐scale. Following a rapid land redistribution program in Zimbabwe, we evaluated changes in avian biodiversity by examining richness, abundance, and functional diversity. Rapid land redistribution has, in the near term, resulted in increased avian abundance in newly farmed areas containing miombo woodland and open habitat. Conversion of seminatural ranched land to small‐scale farms had a negative impact on larger‐bodied birds, but species richness increased, and birds in some feeding guilds maintained or increased abundance. We found evidence that land‐use change caused a shift in the functional traits of the communities present. However, functional analyses may not have adequately reflected the trait filtering effect of land redistribution on large species. Whether newly farmed landscapes in Zimbabwe can deliver multiple benefits in terms of food production and habitat for biodiversity in the longer term is an open question. When managing agricultural land transitions, relying on taxonomic measures of diversity, or abundance‐weighted measures of function diversity, may obscure important information. If the value of smallholder‐farmed land for birds is to be maintained or improved, it will be essential to ensure that a wide array of habitat types is retained alongside efforts to reduce hunting and persecution of large bird species.  相似文献   

6.
7.
Carbon emissions from land‐use changes in tropical dry forest systems are poorly understood, although they are likely globally significant. The South American Chaco has recently emerged as a hot spot of agricultural expansion and intensification, as cattle ranching and soybean cultivation expand into forests, and as soybean cultivation replaces grazing lands. Still, our knowledge of the rates and spatial patterns of these land‐use changes and how they affected carbon emissions remains partial. We used the Landsat satellite image archive to reconstruct land‐use change over the past 30 years and applied a carbon bookkeeping model to quantify how these changes affected carbon budgets. Between 1985 and 2013, more than 142 000 km2 of the Chaco's forests, equaling 20% of all forest, was replaced by croplands (38.9%) or grazing lands (61.1%). Of those grazing lands that existed in 1985, about 40% were subsequently converted to cropland. These land‐use changes resulted in substantial carbon emissions, totaling 824 Tg C between 1985 and 2013, and 46.2 Tg C for 2013 alone. The majority of these emissions came from forest‐to‐grazing‐land conversions (68%), but post‐deforestation land‐use change triggered an additional 52.6 Tg C. Although tropical dry forests are less carbon‐dense than moist tropical forests, carbon emissions from land‐use change in the Chaco were similar in magnitude to those from other major tropical deforestation frontiers. Our study thus highlights the urgent need for an improved monitoring of the often overlooked tropical dry forests and savannas, and more broadly speaking the value of the Landsat image archive for quantifying carbon fluxes from land change.  相似文献   

8.
Global change, especially land‐use intensification, affects human well‐being by impacting the delivery of multiple ecosystem services (multifunctionality). However, whether biodiversity loss is a major component of global change effects on multifunctionality in real‐world ecosystems, as in experimental ones, remains unclear. Therefore, we assessed biodiversity, functional composition and 14 ecosystem services on 150 agricultural grasslands differing in land‐use intensity. We also introduce five multifunctionality measures in which ecosystem services were weighted according to realistic land‐use objectives. We found that indirect land‐use effects, i.e. those mediated by biodiversity loss and by changes to functional composition, were as strong as direct effects on average. Their strength varied with land‐use objectives and regional context. Biodiversity loss explained indirect effects in a region of intermediate productivity and was most damaging when land‐use objectives favoured supporting and cultural services. In contrast, functional composition shifts, towards fast‐growing plant species, strongly increased provisioning services in more inherently unproductive grasslands.  相似文献   

9.
《Ecology and evolution》2014,4(24):4701-4735
Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species’ threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project – and avert – future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups – including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems – http://www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015.  相似文献   

10.
Current global scale land‐change models used for integrated assessments and climate modeling are based on classifications of land cover. However, land‐use management intensity and livestock keeping are also important aspects of land use, and are an integrated part of land systems. This article aims to classify, map, and to characterize Land Systems (LS) at a global scale and analyze the spatial determinants of these systems. Besides proposing such a classification, the article tests if global assessments can be based on globally uniform allocation rules. Land cover, livestock, and agricultural intensity data are used to map LS using a hierarchical classification method. Logistic regressions are used to analyze variation in spatial determinants of LS. The analysis of the spatial determinants of LS indicates strong associations between LS and a range of socioeconomic and biophysical indicators of human‐environment interactions. The set of identified spatial determinants of a LS differs among regions and scales, especially for (mosaic) cropland systems, grassland systems with livestock, and settlements. (Semi‐)Natural LS have more similar spatial determinants across regions and scales. Using LS in global models is expected to result in a more accurate representation of land use capturing important aspects of land systems and land architecture: the variation in land cover and the link between land‐use intensity and landscape composition. Because the set of most important spatial determinants of LS varies among regions and scales, land‐change models that include the human drivers of land change are best parameterized at sub‐global level, where similar biophysical, socioeconomic and cultural conditions prevail in the specific regions.  相似文献   

11.
Urbanization and agricultural intensification of landscapes are important drivers of global change, which in turn have direct impacts on local ecological communities leading to shifts in species distributions and interactions. Here, we illustrate how human‐altered landscapes, with novel ornamental and crop plant communities, result not only in changes to local community diversity of floral‐dependent species, but also in shifts in seasonal abundance of bee pollinators. Three years of data on the spatio‐temporal distributions of 91 bee species show that seasonal patterns of abundance and species richness in human‐altered landscapes varied significantly less compared to natural habitats in which floral resources are relatively scarce in the dry summer months. These findings demonstrate that anthropogenic environmental changes in urban and agricultural systems, here mediated through changes in plant resources and water inputs, can alter the temporal dynamics of pollinators that depend on them. Changes in phenology of interactions can be an important, though frequently overlooked, mechanism of global change.  相似文献   

12.
13.
While agricultural intensification and expansion are major factors driving loss and degradation of natural habitat and species decline, some wildlife species also benefit from agriculturally managed habitats. This may lead to high population densities with impacts on both human livelihoods and wildlife conservation. Cranes are a group of 15 species worldwide, affected both negatively and positively by agricultural practices. While eleven species face critical population declines, numbers of common cranes (Grus grus) and sandhill cranes (Grus canadensis) have increased drastically in the last 40 years. Their increase is associated with higher incidences of crane foraging on agricultural crops, causing financial losses to farmers. Our aim was to synthesize scientific knowledge on the bilateral effects of land use change and crane populations. We conducted a systematic literature review of peer‐reviewed publications on agriculture‐crane interactions (n = 135) and on the importance of agricultural crops in the diet of cranes (n = 81). Agricultural crops constitute a considerable part of the diet of all crane species (average of 37%, most frequently maize (Zea mays L.) and wheat (Triticum aestivum L.)). Crop damage was identified in only 10% of all agriculture‐crane interactions, although one‐third of interactions included cranes foraging on cropland. Using a conceptual framework analysis, we identified two major pathways in agriculture‐crane interactions: (1) habitat loss with negative effects on crane species dependent on specific habitats, and (2) expanding agricultural habitats with superabundant food availability beneficial for opportunistic crane species. The degree to which crane species can adapt to agricultural land use changes may be an important factor explaining their population response. We conclude that multi‐objective management needs to combine land sparing and land sharing strategies at landscape scale. To support viable crane populations while guaranteeing sustainable agricultural production, it is necessary to include the perspectives of diverse stakeholders and streamline conservation initiatives and agricultural policy accordingly.  相似文献   

14.
Agroecosystems have traditionally been considered incompatible with biological conservation goals, and often been excluded from spatial conservation prioritization strategies. The consequences for the representativeness of identified priority areas have been little explored. Here, we evaluate these for biodiversity and carbon storage representation when agricultural land areas are excluded from a spatial prioritization strategy for South America. Comparing different prioritization approaches, we also assess how the spatial overlap of priority areas changes. The exclusion of agricultural lands was detrimental to biodiversity representation, indicating that priority areas for agricultural production overlap with areas of relatively high occurrence of species. By contrast, exclusion of agricultural lands benefits representation of carbon storage within priority areas, as lands of high value for agriculture and carbon storage overlap little. When agricultural lands were included and equally weighted with biodiversity and carbon storage, a balanced representation resulted. Our findings suggest that with appropriate management, South American agroecosystems can significantly contribute to biodiversity conservation.  相似文献   

15.
Nations have committed to ambitious conservation targets in response to accelerating rates of global biodiversity loss. Anticipating future impacts is essential to inform policy decisions for achieving these targets, but predictions need to be of sufficiently high spatial resolution to forecast the local effects of global change. As part of the intercomparison of biodiversity and ecosystem services models of the Intergovernmental Science‐Policy Platform on Biodiversity and Ecosystem Services, we present a fine‐resolution assessment of trends in the persistence of global plant biodiversity. We coupled generalized dissimilarity models, fitted to >52 million records of >254 thousand plant species, with the species–area relationship, to estimate the effect of land‐use and climate change on global biodiversity persistence. We estimated that the number of plant species committed to extinction over the long term has increased by 60% globally between 1900 and 2015 (from ~10,000 to ~16,000). This number is projected to decrease slightly by 2050 under the most optimistic scenario of land‐use change and to substantially increase (to ~18,000) under the most pessimistic scenario. This means that, in the absence of climate change, scenarios of sustainable socio‐economic development can potentially bring extinction risk back to pre‐2000 levels. Alarmingly, under all scenarios, the additional impact from climate change might largely surpass that of land‐use change. In this case, the estimated number of species committed to extinction increases by 3.7–4.5 times compared to land‐use‐only projections. African regions (especially central and southern) are expected to suffer some of the highest impacts into the future, while biodiversity decline in Southeast Asia (which has previously been among the highest globally) is projected to slow down. Our results suggest that environmentally sustainable land‐use planning alone might not be sufficient to prevent potentially dramatic biodiversity loss, unless a stabilization of climate to pre‐industrial times is observed.  相似文献   

16.
17.
18.
19.
The impact of biomass crop cultivation on temperate biodiversity   总被引:2,自引:0,他引:2  
The urgency for mitigation actions in response to climate change has stimulated policy makers to encourage the rapid expansion of bioenergy, resulting in major land‐use changes over short timescales. Despite the potential impacts on biodiversity and the environment, scientific concerns about large‐scale bioenergy production have only recently been given adequate attention. Environmental standards or legislative provisions in the majority of countries are still lagging behind the rapid development of energy crops. Ranging from the field to the regional scale, this review (i) summarizes the current knowledge about the impact of biomass crops on biodiversity in temperate regions, (ii) identifies knowledge gaps and (iii) drafts guidelines for a sustainable biomass crop production with respect to biodiversity conservation. The majority of studies report positive effects on biodiversity at the field scale but impacts strongly depend on the management, age, size and heterogeneity of the biomass plantations. At the regional scale, significant uncertainties exist and there is a major concern that extensive commercial production could have negative effects on biodiversity, in particular in areas of high nature‐conservation value. However, integration of biomass crops into agricultural landscapes could stimulate rural economy, thus counteracting negative impacts of farm abandonment or supporting restoration of degraded land, resulting in improved biodiversity values. Given the extent of landconversion necessary to reach the bioenergy targets, the spatial layout and distribution of biomass plantations will determine impacts. To ensure sustainable biomass crop production, biodiversity would therefore have to become an essential part of risk assessment measures in all those countries which have not yet committed to making it an obligatory part of strategic landscape planning. Integrated environmental and economic research is necessary to formulate standards that help support long‐term economic and ecological sustainability of biomass production and avoid costly mistakes in our attempts to mitigate climate change.  相似文献   

20.
Aim The impact of multiple stressors on biodiversity is one of the most pressing questions in ecology and biodiversity conservation. Here we critically assess how often and efficiently two main drivers of global change have been simultaneously integrated into research, with the aim of providing practical solutions for better integration in the future. We focus on the integration of climate change (CC) and land‐use change (LUC) when studying changes in species distributions. Location Global. Methods We analysed the peer‐reviewed literature on the effects of CC and LUC on observed changes in species distributions, i.e. including species range and abundance, between 2000 and 2014. Results Studies integrating CC and LUC remain extremely scarce, which hampers our ability to develop appropriate conservation strategies. The lack of CC–LUC integration is likely to be a result of insufficient recognition of the co‐occurrence of CC and LUC at all scales, covariation and interactions between CC and LUC, as well as correlations between species thermal and habitat requirements. Practical guidelines for the study of these interactive effects include considering multiple drivers and processes when designing studies, using available long‐term datasets on multiple drivers, revisiting single‐driver studies with additional drivers or conducting comparative studies and meta‐analyses. Combining various methodological approaches, including time lags and adaptation processes, represent further avenues to improve global change science. Main conclusions Despite repeated claims for a better integration of multiple drivers, the effects of CC and LUC on species distributions and abundances have been mostly studied in isolation, which calls for a shift of standards towards more integrative global change science. The guidelines proposed here will encourage study designs that account for multiple drivers and improve our understanding of synergies or antagonisms among drivers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号