首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Understanding how different components of species diversity of regenerating areas respond to both time of abandonment and landscape metrics may offer crucial information for both theoretical and practical purposes. Using 15 regeneration areas (from 4 to 30 years) and nine areas of mature forest, we assessed how tree seedling assemblage responds to time of abandonment and forest cover in terms of species diversity and taxonomic composition. We found that species diversity of seedlings responded positively to time of abandonment, but was not influence by forest cover. Diversity of rare and common species (0D and 1D, respectively) but not dominant species (2D) increased with time of abandonment, reaching reference values very quickly (ca. 20 years). However, species composition seemed to respond to both ageing of forest stand and landscape structure represented by forest cover. Our findings reinforce that in human‐dominated landscapes, local processes related to recovery with time should be more important for plant community assembly than landscape structure, leading to a number of possibilities for multiple successional pathways. Abstract in Portuguese is available with online material.  相似文献   

2.
    
The long‐term impacts of wildfires on animal populations are largely unknown. We used time‐series data based on a tracking index, from coastal NSW spanning 28 years after a wildfire, to investigate the relative influence of habitat structure, species interactions and climate on post‐fire animal population dynamics. The fire had an immediate impact on habitat structure, reducing and simplifying vegetation cover, which then underwent post‐fire successional change including an increase and plateau in tree canopy cover; an increase, stabilization and then decline in shrub cover; and an increase in ground litter cover. Population changes of different animal species were influenced by different components of successional change, but there was also evidence that species interactions were important. For example, bandicoots (Isoodon obesulus and Perameles nasuta combined) increased concurrent with an increase in shrub cover then declined at a faster rate than a direct association with senescing shrub cover would suggest, while the feral cat (Felis catus) population changed with the bandicoot population, suggesting a link between these species. Potoroos (Potorous tridactylus) increased 10 years after the fire concurrent with the closing tree canopy, but there was also evidence of a negative association with feral foxes (Vulpes vulpes). Variation in rainfall did not have significant effects on the population dynamics of any species. Our results suggest that changes in habitat structure play a key role in the post‐fire dynamics of many ground‐dwelling animals and hence different fire regimes are likely to influence animal dynamics through their effects on habitat structure. However, the role of predator–prey interactions, particularly with feral predators, is less clear and further study will require manipulative experiments of predators in conjunction with fire treatments to determine whether feral predator control should be integrated with fire management to improve outcomes for some native species.  相似文献   

3.
    
This study examined the ability of different electron donors (i.e., hydrogen, methanol, butyrate, and yeast extract) to sustain long-term (500 days) reductive dechlorination of tetrachloroethene (PCE) in anerobic fill-and-draw bioreactors operated at 3:1 donor:PCE ratio (defined on a total-oxidation basis for the donor). Initially (i.e., until approximately day 80), the H(2)-fed bioreactor showed the best ability to completely dechlorinate the dosed PCE (0.5 mmol/L) to ethene whereas, in the presence of methanol, butyric acid or no electron donor added (but low-level yeast extract), dechlorination was limited by the fermentation of the organic substrates and in turn by H(2) availability. As the study progressed, the H(2)-fed reactor experienced a diminishing ability to dechlorinate, while more stable dechlorinating activity was maintained in the reactors that were fed organic donors. The initial diminished ability of the H(2)-fed reactor to dechlorinate (after about 100 days), could be partially explained in terms of increased competition for H(2) between dechlorinators and methanogens, whereas other factors such as growth-factor limitation and/or accumulation of toxic and/or inhibitory metabolites were shown to play a role for longer incubation periods (over 500 days). In spite of decreasing activity with time, the H(2)-fed reactor proved to be the most effective in PCE dechlorination: after about 500 days, more than 65% of the added PCE was dechlorinated to ethene in the H(2)-fed reactor, versus 36%, 22%, and <1% in the methanol-fed, butyrate-fed, and control reactors, respectively.  相似文献   

4.
    
We studied the effects of restoration on water‐table depth (WTD), element concentrations of peat and vegetation composition of peatlands drained for forestry in southern Finland. The restoration aimed to return the trajectory of vegetation succession toward that of undisturbed systems through the blockage of ditches and the removal of trees. Permanent plots established on a bog and a fen were sampled 1 year before, and 1, 2, 3, and 10 years after the restoration. The restoration resulted in a long‐term rise of the water‐table in both peatlands. Ten years after restoration, the mineral element concentrations (Ca, K, Mg, Mn, and P) of peat corresponded to those reported from comparable pristine peatlands. In particular, the increase of K and Mn concentrations at both sites suggests the recovery of ecosystem functionality in terms of nutrient cycling between peat and plants. The restoration resulted in the succession of plant communities toward the targeted peatland vegetation of wetter condition at both sites. This was evident from the decreased abundance of species benefiting from drainage and the corresponding increase of peatland species. However, many species typical of pristine peatlands were missing 10 years after restoration. We conclude that the restoration led to a reversal of the effects of drainage in vegetation and studied habitat conditions. However, due to the slow recovery of peatland ecosystems and the possibility that certain failures in the restoration measures may become apparent only after extended time periods, long‐term monitoring is needed to determine whether the goals of restoration will be met.  相似文献   

5.
    
A long‐term rainforest restoration experiment was established on abandoned pasture in northeastern Queensland in 1993 to examine the effectiveness of five different restoration planting methods: (T1) control (no plantings); (T2) pioneer monoculture (planting seedlings of one pioneer species, Homalanthus novoguineensis, Euphorbiaceae); (T3) Homalanthus group framework method (H. novoguineensis and eight other pioneer species); (T4) Alphitonia group framework method (Alphitonia petriei, Rhamnaceae, with eight other pioneer species); and (T5) maximum diversity method (planting pioneers, middle‐phase species, and mature‐phase species). We investigated temporal patterns in the (1) fate of seedlings originally planted in 1993; (2) natural recruitment of native plant species; and (3) current habitat structure (canopy cover and ground cover of grasses and invasive plants) within each restoration treatment. A total of 97% of seedlings planted in T2 died within the first 13 years and all had died by 2014. A total of 72% of seedlings planted in T3, 55.5% of seedlings planted in T4, and 55% of seedlings planted in T5 also died by 2014. By 2014, 42 species from 21 families had recruited across the experimental site, and the abundance of recruits was almost twice that recorded in 2001 and 2006. Overall, T3, T4, and T5 had the greatest diversity and abundance of recruits. By 2014, canopy cover was greatest in T3, T4, and T5 but grass cover was least in T5. It is concluded that some restoration success measures increase with planting diversity, but overall the rate of recovery is similar in framework species and maximum diversity method.  相似文献   

6.
    
  相似文献   

7.
    
Plant succession theory underpins the development of strategies for the conservation and regeneration of native communities. Current theory has been based largely on space‐for‐time rather than long‐term monitoring data, which have known limitations. There is general consensus that more site‐specific studies are needed to corroborate existing hypotheses. The target vegetation is a brigalow (Acacia harpophylla, Mimosaceae) forest in one of Australia's most endangered ecosystems, which was cleared and burnt in 1963. Forty quadrats were placed systematically within each of six 20 m × 20 m permanent plots. Presence, density and per cent canopy cover data were recorded for each species at 18 times over 46 years. Brigalow dominated the original vegetation, assumed dominance soon after clearing through massive root suckering and remained dominant throughout the study. It achieved maximum density within two years when severe intraspecific competition led to self‐thinning. After approximately 30 years, vacant niches appeared. Woody understorey species were slow to recolonise. Species richness and other diversity indices increased rapidly to a maximum after 2–4 years, declined until the 30th year when they again increased. This was the pattern of the species‐rich herbaceous layer; woody species showed a steady monotonic increase. The ‘hump‐shaped’ relationship between cover (biomass) and species richness was confirmed. This example fits the inhibition model for which few examples have been described. While the long‐term successional pattern is slightly confounded by climatic variability preceding sample surveys, this space‐for‐time study not only supports a bimodal pattern of diversity over time but also indicates that the relative species richness of the herbaceous and woody layers may explain the extreme variability reported in the literature.  相似文献   

8.
Abstract We examined faecal samples of the eastern chestnut mouse (Pseudomys gracilicaudatus) that were collected during a removal experiment conducted in a coastal heathland at Myall Lakes National Park to see whether removal of the swamp rat (Rattus lutreolus) had any effects on food resource use by P. gracilicaudatus. The results showed that, at the young successional stage of vegetation (1. 5 years since last fire), the diet of P. gracilicaudatus changed significantly after the number of R. lutreolus was significantly reduced on the experimental sites. Two months after the removal treatment was terminated there were no significant differences between the control and experimental sites. Factor analysis showed that seasonal change was significant for all three food factors on the control sites, whereas on experimental sites the change was significant only for factor 1. At the middle successional stage (3.5 years since last fire), P. gracilicaudatus showed relatively small seasonal changes on both control and experimental sites, and significant differences between the control and experimental sites did not occur until after the removal manipulation was completed, showing a delayed response. Comparisons of the young and the middle successional stages on both control and experimental sites showed that P. gracilicaudatus used proportionally different food when R. lutreolus was present, but consumed similar food when R. lutreolus was removed. These results suggest that R. lutreolus might have restricted the access of P. gracilicaudatus to better microhabitats, and hence to a better food supply. The ecological implication of these results is that the interpretation of observed population and community patterns must take into account the direct effects of species interactions.  相似文献   

9.
    
  1. The effects of habitat restoration are usually studied using cross‐sectional comparisons of species assemblages among sites of various ages or disturbance levels. Longitudinal studies, however, are necessary for detecting long‐term responses to habitat restoration and for understanding annual demographic variation.
  2. To investigate the time course of bee community restoration in sites previously made uninhabitable by anthropogenic disturbance, we studied a former landfill site for 10 years from initial revegetation in 2003 until 2013, comparing two restored sites with three nearby, undisturbed control sites. We used permutational multivariate analysis of variance and generalised additive mixed models to investigate how bee abundance and species richness varied over time (years), between seasons and between restoration levels.
  3. Landfill restoration and the creation of foraging and nesting habitat resulted in rapid and persistent occupation by bees, suggesting that efforts to restore bee communities can be successful when a source of colonists exists nearby.
  4. Based on earlier studies, we predicted that in restored sites there would be an initial rapid increase in bee abundance and species richness, followed by a decline to a stable intermediate level. This prediction was supported as bee abundance and species richness in restored sites increased until 2006/2007 and subsequently declined.
  5. In control sites, there were significant declines in abundance and species richness over time, despite a lack of anthropogenic disturbance. Possible contributors are changing weather patterns, especially severe droughts; plant community succession resulting in loss of bare ground for nesting sites; and increasing suburbanisation of the surrounding landscape.
  相似文献   

10.
  总被引:2,自引:0,他引:2  
Understanding the sensitivity of tundra vegetation to climate warming is critical to forecasting future biodiversity and vegetation feedbacks to climate. In situ warming experiments accelerate climate change on a small scale to forecast responses of local plant communities. Limitations of this approach include the apparent site-specificity of results and uncertainty about the power of short-term studies to anticipate longer term change. We address these issues with a synthesis of 61 experimental warming studies, of up to 20 years duration, in tundra sites worldwide. The response of plant groups to warming often differed with ambient summer temperature, soil moisture and experimental duration. Shrubs increased with warming only where ambient temperature was high, whereas graminoids increased primarily in the coldest study sites. Linear increases in effect size over time were frequently observed. There was little indication of saturating or accelerating effects, as would be predicted if negative or positive vegetation feedbacks were common. These results indicate that tundra vegetation exhibits strong regional variation in response to warming, and that in vulnerable regions, cumulative effects of long-term warming on tundra vegetation - and associated ecosystem consequences - have the potential to be much greater than we have observed to date.  相似文献   

11.
1. Rapid expansion and intensification of anthropogenic activities in the 20th century has caused profound changes in freshwater assemblages. Unfortunately, knowledge of the extent and causes of species loss (SL) is limited due to the lack of reliable historical data. An unusual data set allows us to compare changes in the most sensitive of aquatic insect orders, the Plecoptera, at some 170 locations in the Czech Republic between two time periods, 1955–1960 and 2006–2010. Historical data (1890–1911) on assemblages of six lowland rivers allow us to infer even earlier changes. 2. Regional stonefly diversity decreased in the first half of the 20th century. Streams at lower altitudes lost a substantial number of species, which were never recovered. In the second half of the century, large‐scale anthropogenic pressure caused SL in all habitats, leading to a dissimilarity of contemporary and previous assemblages. The greatest changes were found at sites affected by organic pollution and a mixture of organic pollution and channelisation or impoundment. Colonisation of new habitats was observed in only three of the 80 species evaluated. 3. Species of moderate habitat specialisation and tolerance to organic pollution were most likely to be lost. Those with narrow specialisations in protected habitats were present in both historical and contemporary collections. 4. Contemporary assemblages are the consequence of more than a 100 years of anthropogenic impacts. In particular, streams at lower altitude and draining intensively exploited landscapes host a mere fragment of the original species complement. Most stonefly species are less frequently present than before, although their assemblages remain almost intact in near‐natural mountain streams. Our analyses demonstrate dramatic restriction of species ranges and, in some cases, apparent changes in altitudinal preference throughout the area.  相似文献   

12.
    
Prenatal opiate exposure causes a series of neurobehavioral disturbances by affecting brain development. However, the question of whether prenatal opiate exposure increases vulnerability to memory‐related neuropsychiatric disorders in adult offspring remains largely unknown. Here, we found that rats prenatally exposed to morphine (PM) showed impaired acquisition but enhanced maintenance of contextual fear memory compared with control animals that were prenatally exposed to saline (PS). The impairment of acquisition was rescued by increasing the intensity of footshocks (1.2 mA rather than 0.8 mA). Meanwhile, we also found that PM rats exhibited impaired extinction of contextual fear, which is associated with enhanced maintenance of fear memory. The impaired extinction lasted for 1 week following extinction training. Furthermore, PM rats exhibited reduced anxiety‐like behavior in the elevated plus‐maze and light/dark box test without differences in locomotor activity. These alterations in PM rats were mirrored by abnormalities in synaptic plasticity in the Schaffer collateral‐CA1 synapses of the hippocampus in vivo. PS rats showed blocked long‐term potentiation and enabled long‐term depression in CA1 synapses following contextual fear conditioning, while prenatal morphine exposure restricted synaptic plasticity in CA1 synapses. The smaller long‐term potentiation in PM rats was not further blocked by contextual fear conditioning, and the long‐term depression enabled by contextual fear conditioning was abolished. Taken together, our results provide the first evidence suggesting that prenatal morphine exposure may increase vulnerability to fear memory‐related neuropsychiatric disorders in adulthood.  相似文献   

13.
Cdk5 (cyclin-dependent kinase 5) activity is dependent upon association with one of two neuron-specific activators, p35 or p39. Genetic deletion of Cdk5 causes perinatal lethality with severe defects in corticogenesis and neuronal positioning. p35(-/-) mice are viable with milder histological abnormalities. Although substantial evidence implicates Cdk5 in synaptic plasticity, its role in learning and memory has not been evaluated using mutant mouse models. We report here that p35(-/-) mice have deficiencies in spatial learning and memory. Close examination of hippocampal circuitry revealed subtle histological defects in CA1 pyramidal cells. Furthermore, p35(-/-) mice exhibit impaired long-term depression and depotentiation of long-term potentiation in the Schaeffer collateral CA1 pathway. Moreover, the Cdk5-dependent phosphorylation state of protein phosphatase inhibitor-1 was increased in 4-week-old mice due to increased levels of p39, which co-localized with inhibitor-1 and Cdk5 in the cytoplasm. These results demonstrate that p35-dependent Cdk5 activity is important to learning and synaptic plasticity. Deletion of p35 may shift the substrate specificity of Cdk5 due to compensatory expression of p39.  相似文献   

14.
    
A major goal of learning and memory research is to correlate the function of molecules with the behaviour of organisms. The beautiful laminar structure of the cerebellar cortex lends itself to the study of synaptic plasticity, because its clearly defined patterns of neurons and their synapses form circuits that have been implicated in simple motor behaviour paradigms. The best understood in terms of molecular mechanism is the parallel fibre-Purkinje cell synapse, where presynaptic long-term potentiation and postsynaptic long-term depression and potentiation finely tune cerebellar output. Our understanding of these forms of plasticity has mostly come from the electrophysiological and behavioural analysis of knockout mutant mice, but more recently the knock-in of synaptic molecules with mutated phosphorylation sites and binding domains has provided more detailed insights into the signalling events. The present review details the major forms of plasticity in the cerebellar cortex, with particular attention to the membrane trafficking and intracellular signalling responsible. This overview of the current literature suggests it will not be long before the involvement of the cerebellum in certain motor behaviours is fully explained in molecular terms.  相似文献   

15.
    
The spatial pattern of vegetation changes during ecological restoration, and these changes are affected by the process of restoration. The objective of this study was to integrate the pattern and mechanism of forest restoration in the Dinghushan Nature Reserve (DNR), Guangdong, China, based on data from remote sensing and long‐term field observations. We studied the pattern dynamics of three main forest types and their underlying mechanisms during restoration following a multiscale, hierarchical patch dynamics framework that integrates population, community, and landscape processes. Remote sensing data were used to determine the changes in landscape pattern during different periods of forest restoration from 1978 to 2006. At the landscape scale, the number, area, and perimeter of the needle/broad‐leaved mixed forest (MF) and the evergreen broad‐leaved forest (BF) increased, whereas those of the tropical needle‐leaved forest (NF) decreased during succession. Our analysis based on long‐term field observations indicated that the change rate of NF was lower than that of MF during 1981–1996, but became much higher during 1996–2007. The rate of change in landscape pattern and the progression of succession stages were consistent with each other. Our results also showed that species regeneration and community succession are the biological basis of forest landscape dynamics during vegetation restoration. Landscape pattern analysis allowed us to show “what” happened during vegetation restoration and “where,” and population and community analysis indicated “why” and “how” it happened.  相似文献   

16.
17.
Murine polyomavirus is used in various models of persistent virus infection. This study was undertaken to assess the spatial and temporal patterns of MPyV infection in the brains of immunocompetent (BALB/c) and immunocompromised (KSN nude) mice. MPyV was stereotaxically microinfused into the brain parenchyma, and the kinetics of infection were examined by quantitative PCR. In BALB/c mice, the amount of viral DNA in the brain peaked at 4 days p.i. and then rapidly diminished. In contrast, MPyV DNA levels increased up to 4 days and then gradually decreased over the 30‐day observation period in the brain of KSN mice. In both mouse strains, viral DNA was readily detected around the sites of inoculation from 2 to 6 days p.i., and continued to be detected for up to 30 days p.i. In addition, MPyV infection did not lead to a drastic induction of innate immune response in the brains, nor did MPyV‐inoculated mice show any signs of disease. These results indicate that MPyV establishes an asymptomatic long‐term infection in the mouse brain.  相似文献   

18.
    
Ethanol (EtOH) induces cognitive impairment through modulation of synaptic plasticity notably in the hippocampus. The cellular mechanism(s) of these EtOH effects may range from synaptic signaling modulation to alterations of the epigenome. Previously, we reported that two binge‐like exposures to EtOH (3 g/kg, ip, 9 h apart) in adolescent rats abolished long‐term synaptic depression (LTD) in hippocampus slices, induced learning deficits, and increased N‐methyl‐d ‐aspartate (NMDA) receptor signaling through its GluN2B subunit after 48 hours. Here, we tested the hypothesis of EtOH‐induced epigenetic alterations leading to modulation of GluN2B and GluN2A NMDA receptor subunits. Forty‐two days old rats were treated with EtOH or the histone deacetylase inhibitor (HDACi) sodium butyrate (NaB, 600 mg/kg, ip) injected alone or 30 minutes before EtOH. After 48 hours, learning was tested with novel object recognition while synaptic plasticity and the role of GluN2A and GluN2B subunits in NMDA‐fEPSP were measured in CA1 field of hippocampus slices. LTD and memory were impaired 48 hours after EtOH and NMDA‐fEPSP analysis unraveled changes in the GluN2A/GluN2B balance. These results were associated with an increase in histone deacetylase (HDAC) activity and HDAC2 mRNA and protein while Ac‐H4K12 labelling was decreased. EtOH increases expression of HDAC2 and mRNA level for GluN2B subunit (but not GluN2A), while HDAC2 modulates the promoter of the gene encoding GluN2B. Interestingly, NaB pretreatment prevented all the cellular and memory‐impairing effects of EtOH. In conclusion, the memory‐impairing effects of two binge‐like EtOH exposure involve NMDA receptor‐dependent LTD deficits due to a GluN2A/GluN2B imbalance resulting from changes in GluN2B expression induced by HDAC2.  相似文献   

19.
Nitrogen‐stressed microcosms of the C3 grass Danthonia richardsonii gained nitrogen from the environment when grown under ambient or enriched (359, ‘amb’ or 719 μL L? 1‘enr’, respectively) atmospheric CO2 concentrations over a 4‐y period. This gain was apparent at all rates of supplied mineral N (2.2, 6.7 or 19.8 g N m? 2 y? 1– low‐N, mid‐N or high‐N), although it was small at high‐N. Small losses of N occurred from the microcosm as leachate, while gaseous losses of N were estimated to be between 10% and 25% of applied mineral N. Losses of applied mineral N were slightly lower under CO2 enrichment only at the highest rate of mineral N supply. Levels of 15N natural abundance in green leaf (δ15Ν) of ? 2‰ (amb low‐N) and of below ? 4‰ (enr low‐ & mid‐N) suggest that absorption of atmospheric NH3 may have been a source of some of the extra N in the low and mid‐N treatments. Biological N2 fixation, of up to 2 g m? 2 y? 1 was hypothesized to form the remainder of the environmental N source. Microcosm C:N ratio was higher under CO2 enrichment. Nitrogen productivity of microcosm carbon gain (g C accumulated g? 1 leaf N day? 1) was increased (up to 100%) by CO2 enrichment at all rates of mineral N supply. Green leaf %N was reduced by CO2 enrichment, and there was less nitrogen in the green leaf pool under CO2 enrichment. Less, or the same amount of nitrogen was present in senesced leaf, surface litter and root under CO2 enrichment while more nitrogen was present in the soil in organic forms, and as NH4 + at the highest rate of mineral N supply.  相似文献   

20.
    
Species extinctions and declines are occurring globally and commonly have cascading effects on ecosystems. In Australia, mammal extinctions have been extensive, particularly in arid areas, where precipitation drives ecosystems. Many ecologically extinct mammals feed on soil‐dwelling insects. However, how this top‐down pressure affected their prey and how this contrasts with the bottom‐up impacts of fluctuating precipitation remains unclear. We constructed a long‐term exclusion experiment in a multi‐species mammal reintroduction zone in semi‐arid Australia to test how top‐down (reintroduced mammals) and bottom‐up (precipitation) factors affect root‐feeding chafer beetles (Coleoptera: Melolonthinae). We used emergence traps in ten replicate 20 × 20 m plots of control, exclusion and procedural control treatments to trap chafers biannually from 2009 to 2015. Annual precipitation during this period varied from 173 to 481 mm. Mammal exclusion did not affect chafers, indicating that top‐down regulation was not important. Instead, chafer abundance, species density and biomass increased with precipitation. Chafer body size and assemblage composition were best predicted by sampling year, suggesting that random drift determined species abundances. Increased resource availability therefore favoured all species similarly. We thus found no evidence that mammal predation alters chafer populations and conclude that they may be driven primarily by bottom‐up processes. Further research should determine if the cascading effects of species loss are less important for herbivores generally than for higher level trophic groups and the role of ecosystem stability in mediating these patterns.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号