首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Northern peatland water table position is tightly coupled to carbon (C) cycling dynamics and is predicted to change from shifts in temperature and precipitation patterns associated with global climate change. However, it is uncertain how long-term water table alterations will alter C dynamics in northern peatlands because most studies have focused on short-term water table manipulations. The goal of our study was to quantify the effect of long-term water table changes (~80 years) on gaseous C fluxes in a peatland in the Upper Peninsula of Michigan. Chamber methods were utilized to measure ecosystem respiration (ER), gross primary production (GPP), net ecosystem exchange (NEE), and methane (CH4) fluxes in a peatland experiencing levee induced long-term water table drawdown and impoundment in relation to an unaltered site. Inundation raised water table levels by approximately ~10 cm and resulted in a decrease in ER and GPP, but an increase of CH4 emissions. Conversely, the drained sites, with water table levels ~15 cm lower, resulted in a significant increase in ER and GPP, but a decrease in CH4 emissions. However, NEE was not significantly different between the water table treatments. In summary, our data indicates that long-term water table drawdown and inundation was still altering peatland gaseous C fluxes, even after 80 years. In addition, many of the patterns we found were of similar magnitude to those measured in short-term studies, which indicates that short-term studies might be useful for predicting the direction and magnitude of future C changes in peatlands.  相似文献   

2.
Responses of grassland carbon (C) cycling to climate change and land use remain a major uncertainty in model prediction of future climate. To explore the impacts of global change on ecosystem C fluxes and the consequent changes in C storage, we have conducted a field experiment with warming (+3 °C), altered precipitation (doubled and halved), and annual clipping at the end of growing seasons in a mixed‐grass prairie in Oklahoma, USA, from 2009 to 2013. Results showed that although ecosystem respiration (ER) and gross primary production (GPP) negatively responded to warming, net ecosystem exchange of CO2 (NEE) did not significantly change under warming. Doubled precipitation stimulated and halved precipitation suppressed ER and GPP equivalently, with the net outcome being unchanged in NEE. These results indicate that warming and altered precipitation do not necessarily have profound impacts on ecosystem C storage. In addition, we found that clipping enhanced NEE due to a stronger positive response of GPP compared to ER, indicating that clipping could potentially be an effective land practice that could increase C storage. No significant interactions between warming, altered precipitation, and clipping were observed. Meanwhile, we found that belowground net primary production (BNPP) in general was sensitive to climate change and land use though no significant changes were found in NPP across treatments. Moreover, negative correlations of the ER/GPP ratio with soil temperature and moisture did not differ across treatments, highlighting the roles of abiotic factors in mediating ecosystem C fluxes in this grassland. Importantly, our results suggest that belowground C cycling (e.g., BNPP) could respond to climate change with no alterations in ecosystem C storage in the same period.  相似文献   

3.
Rich fens are common boreal ecosystems with distinct hydrology, biogeochemistry and ecology that influence their carbon (C) balance. We present growing season soil chamber methane emission (FCH4), ecosystem respiration (ER), net ecosystem exchange (NEE) and gross primary production (GPP) fluxes from a 9‐years water table manipulation experiment in an Alaskan rich fen. The study included major flood and drought years, where wetting and drying treatments further modified the severity of droughts. Results support previous findings from peatlands that drought causes reduced magnitude of growing season FCH4, GPP and NEE, thus reducing or reversing their C sink function. Experimentally exacerbated droughts further reduced the capacity for the fen to act as a C sink by causing shifts in vegetation and thus reducing magnitude of maximum growing season GPP in subsequent flood years by ~15% compared to control plots. Conversely, water table position had only a weak influence on ER, but dominant contribution to ER switched from autotrophic respiration in wet years to heterotrophic in dry years. Droughts did not cause inter‐annual lag effects on ER in this rich fen, as has been observed in several nutrient‐poor peatlands. While ER was dependent on soil temperatures at 2 cm depth, FCH4 was linked to soil temperatures at 25 cm. Inter‐annual variability of deep soil temperatures was in turn dependent on wetness rather than air temperature, and higher FCH4 in flooded years was thus equally due to increased methane production at depth and decreased methane oxidation near the surface. Short‐term fluctuations in wetness caused significant lag effects on FCH4, but droughts caused no inter‐annual lag effects on FCH4. Our results show that frequency and severity of droughts and floods can have characteristic effects on the exchange of greenhouse gases, and emphasize the need to project future hydrological regimes in rich fens.  相似文献   

4.
At high latitudes, winter climate change alters snow cover and, consequently, may cause a sustained change in soil frost dynamics. Altered winter soil conditions could influence the ecosystem exchange of carbon dioxide (CO2) and, in turn, provide feedbacks to ongoing climate change. To investigate the mechanisms that modify the peatland CO2 exchange in response to altered winter soil frost, we conducted a snow exclusion experiment to enhance winter soil frost and to evaluate its short‐term (1–3 years) and long‐term (11 years) effects on CO2 fluxes during subsequent growing seasons in a boreal peatland. In the first 3 years after initiating the treatment, no significant effects were observed on either gross primary production (GPP) or ecosystem respiration (ER). However, after 11 years, the temperature sensitivity of ER was reduced in the treatment plots relative to the control, resulting in an overall lower ER in the former. Furthermore, early growing season GPP was also lower in the treatment plots than in the controls during periods with photosynthetic photon flux density (PPFD) ≥800 μmol m?2 s?1, corresponding to lower sedge leaf biomass in the treatment plots during the same period. During the peak growing season, a higher GPP was observed in the treatment plots under the low light condition (i.e. PPFD 400 μmol m?2 s?1) compared to the control. As Sphagnum moss maximizes photosynthesis at low light levels, this GPP difference between the plots may have been due to greater moss photosynthesis, as indicated by greater moss biomass production, in the treatment plots relative to the controls. Our study highlights the different responses to enhanced winter soil frost among plant functional types which regulate CO2 fluxes, suggesting that winter climate change could considerably alter the growing season CO2 exchange in boreal peatlands through its effect on vegetation development.  相似文献   

5.

Peatlands are characterized by their large carbon (C) storage capacity and represent important C sinks globally. In southern Chile, young peatlands (few centuries old) have originated due to clearcutting or fire at forest sites with high precipitation on poorly drained soils. These novel ecosystems are called anthropogenic peatlands here. Their role in the regional C cycle remains largely unknown. Here, we present 18 months of eddy covariance measurements of net ecosystem exchange (NEE) of carbon dioxide (CO2) in an anthropogenic peatland in northern Chiloé Island, part of which is kept undisturbed for 30–40 years, by excluding human uses, and another section of the same peatland that has been disturbed by cattle grazing and Sphagnum moss extraction. Gross primary productivity (GPP) and ecosystem respiration (Reco) were modeled from NEE, based on measured photosynthetically active radiation and air temperature, separately for each section of the peatland. Uncertainties of the annual flux estimates were assessed from the variability of modelled fluxes induced by applying different time-windows for model development between 10 and 20 days. The undisturbed area of the peatland was on average (±?SD) a larger net CO2 sink (NEE?=???135?±?267 g?CO2?m?2?year?1) than the disturbed area (NEE?=???33?±?111 g?CO2?m?2?year?1). These NEE CO2 balances are small even though GPP and Reco were larger compared with other peatlands. Reco had a direct relationship with water table depth (from soil surface) and a negative relationship with soil water fraction. Our results show that the disturbance by moss extraction and cattle grazing is likely to reduce the CO2 sink function of many anthropogenic and natural peatlands on Chiloé Island, which are subjected to the same impacts.

  相似文献   

6.
Climate change may turn Arctic biomes from carbon sinks into sources and vice versa, depending on the balance between gross ecosystem photosynthesis, ecosystem respiration (ER) and the resulting net ecosystem exchange (NEE). Photosynthetic capacity is species specific, and thus, it is important to quantify the contribution of different target plant species to NEE and ER. At Ny Ålesund (Svalbard archipelago, Norway), we selected different Arctic tundra plant species and measured CO2 fluxes at plot scale and photosynthetic capacity at leaf scale. We aimed to analyze trends in CO2 fluxes during the transition seasons (beginning vs. end of the growing season) and assess which abiotic (soil temperature, soil moisture, PAR) and biotic (plot type, phenology, LAI, photosynthetic capacity) factors influenced CO2 emissions. NEE and ER differed between vegetation communities. All communities acted as CO2 sources, with higher source strength at the beginning than at the end of the growing season. The key factors affecting NEE were soil temperature, LAI and species-specific photosynthetic capacities, coupled with phenology. ER was always influenced by soil temperature. Measurements of photosynthetic capacity indicated different responses among species to light intensity, as well as suggesting possible gains in response to future increases in atmospheric CO2 concentrations. Species-specific adaptation to low temperatures could trigger significant feedbacks in a climate change context. Our data highlight the need to quantify the role of dominant species in the C cycle (sinks or sources), as changes of vegetation composition or species phenology in response to climate change may have great impact on the regional CO2 balance.  相似文献   

7.
典型森林和草地生态系统呼吸各组分间的相互关系   总被引:7,自引:0,他引:7  
生态系统呼吸是陆地生态系统碳收支的重要组成部分,分析其组分间的相互关系对理解生态系统呼吸过程和精确评价生态系统碳收支具有重要意义,也是当前碳循环研究工作的一大难点。本研究利用ChinaFLUX的长白山温带针阔混交林(CBS),鼎湖山亚热带常绿阔叶林(DHS)和海北灌丛草甸(HBGC)三个典型生态系统的通量观测数据,采用经验统计方法,分析了其在中国典型生态系统中的适用性及敏感性,揭示了生态系统呼吸各组分的动态变化特征及相互关系。结果表明:采用本研究中的呼吸组分拆分方法所获结果与理论推测及实测数据大致相同,拆分结果对净初级生产力与总初级生产力的比值(NPP/GPP)较为敏感,NPP/GPP变化0.1时,自养呼吸在生态系统呼吸中的比例(Ra/RE)改变0.05。各生态系统中,生态系统呼吸及其组分在年内均表现出明显的单峰型变化特征,在夏季生长旺盛的时节达到最大值。异养呼吸与生态系统呼吸的比值(Rh/RE)也具有明显的季节变化,但在生态系统间表现出明显差异,CBS和HBGC分别表现出先增大后减小和先减小后增大的变化趋势,DHS则相对稳定,在0.5附近波动, Ra/RE的季节动态与Rh/RE相反。在年总量上,HBGC主要通过异养呼吸向大气排放CO2,异养呼吸占生态系统呼吸的60%,而CBS和DHS的自养呼吸和异养呼吸所占比重大致相似,异养呼吸占生态系统呼吸的49%。这说明,该统计学模型可以用来进行生态系统呼吸组分的拆分,进而可以为生态系统碳循环过程的精细研究提供参考数据,但今后应加强NPP/GPP的测定,以提高生态系统呼吸拆分的精度。  相似文献   

8.
A large remaining source of uncertainty in global model predictions of future climate is how ecosystem carbon (C) cycle feedbacks to climate change. We conducted a field manipulative experiment of warming and nitrogen (N) addition in a temperate steppe in northern China during two contrasting hydrological growing seasons in 2006 [wet with total precipitation 11.2% above the long‐term mean (348 mm)] and 2007 (dry with total precipitation 46.7% below the long‐term mean). Irrespective of strong intra‐ and interannual variations in ecosystem C fluxes, responses of ecosystem C fluxes to warming and N addition did not change between the two growing seasons, suggesting independence of warming and N responses of net ecosystem C exchange (NEE) upon hydrological variations in the temperate steppe. Warming had no effect on NEE or its two components, gross ecosystem productivity (GEP) and ecosystem respiration (ER), whereas N addition stimulated GEP but did not affect ER, leading to positive responses of NEE. Similar responses of NEE between the two growing seasons were due to changes in both biotic and abiotic factors and their impacts on ER and GEP. In the wet growing season, NEE was positively correlated with soil moisture and forb biomass. Negative effects of warming‐induced water depletion could be ameliorated by higher forb biomass in the warmed plots. N addition increased forb biomass but did not affect soil moisture, leading to positive effect on NEE. In the dry growing season, NEE showed positive dependence on grass biomass but negative dependence on forb biomass. No changes in NEE in response to warming could result from water limitation on both GEP and ER as well as little responses of either grass or forb biomass. N addition stimulated grass biomass but reduced forb biomass, leading to the increase in NEE. Our findings highlight the importance of changes in abiotic (soil moisture, N availability) and biotic (growth of different plant functional types) in mediating the responses of NEE to climatic warming and N enrichment in the semiarid temperate steppe in northern China.  相似文献   

9.
Long-term atmospheric CO2 concentration records have suggested a reduction in the positive effect of warming on high-latitude carbon uptake since the 1990s. A variety of mechanisms have been proposed to explain the reduced net carbon sink of northern ecosystems with increased air temperature, including water stress on vegetation and increased respiration over recent decades. However, the lack of consistent long-term carbon flux and in situ soil moisture data has severely limited our ability to identify the mechanisms responsible for the recent reduced carbon sink strength. In this study, we used a record of nearly 100 site-years of eddy covariance data from 11 continuous permafrost tundra sites distributed across the circumpolar Arctic to test the temperature (expressed as growing degree days, GDD) responses of gross primary production (GPP), net ecosystem exchange (NEE), and ecosystem respiration (ER) at different periods of the summer (early, peak, and late summer) including dominant tundra vegetation classes (graminoids and mosses, and shrubs). We further tested GPP, NEE, and ER relationships with soil moisture and vapor pressure deficit to identify potential moisture limitations on plant productivity and net carbon exchange. Our results show a decrease in GPP with rising GDD during the peak summer (July) for both vegetation classes, and a significant relationship between the peak summer GPP and soil moisture after statistically controlling for GDD in a partial correlation analysis. These results suggest that tundra ecosystems might not benefit from increased temperature as much as suggested by several terrestrial biosphere models, if decreased soil moisture limits the peak summer plant productivity, reducing the ability of these ecosystems to sequester carbon during the summer.  相似文献   

10.
A small imbalance in plant productivity and decomposition accounts for the carbon (C) accumulation capacity of peatlands. As climate changes, the continuity of peatland net C storage relies on rising primary production to offset increasing ecosystem respiration (ER) along with the persistence of older C in waterlogged peat. A lowering in the water table position in peatlands often increases decomposition rates, but concurrent plant community shifts can interactively alter ER and plant productivity responses. The combined effects of water table variation and plant communities on older peat C loss are unknown. We used a full-factorial 1-m3 mesocosm array with vascular plant functional group manipulations (Unmanipulated Control, Sedge only, and Ericaceous only) and water table depth (natural and lowered) treatments to test the effects of plants and water depth on CO2 fluxes, decomposition, and older C loss. We used Δ14C and δ13C of ecosystem CO2 respiration, bulk peat, plants, and porewater dissolved inorganic C to construct mixing models partitioning ER among potential sources. We found that the lowered water table treatments were respiring C fixed before the bomb spike (1955) from deep waterlogged peat. Lowered water table Sedge treatments had the oldest dissolved inorganic 14C signature and the highest proportional peat contribution to ER. Decomposition assays corroborated sustained high rates of decomposition with lowered water tables down to 40 cm below the peat surface. Heterotrophic respiration exceeded plant respiration at the height of the growing season in lowered water table treatments. Rates of gross primary production were only impacted by vegetation, whereas ER was affected by vegetation and water table depth treatments. The decoupling of respiration and primary production with lowered water tables combined with older C losses suggests that climate and land-use-induced changes in peatland hydrology can increase the vulnerability of peatland C stores.  相似文献   

11.
Nitrogen (N) deposition is known to increase carbon (C) sequestration in N-limited boreal forests. However, the long-term effects of N deposition on ecosystem carbon fluxes have been rarely investigated in old-growth boreal forests. Here we show that decade-long experimental N additions significantly stimulated net primary production (NPP) but the effect decreased with increasing N loads. The effect on soil heterotrophic respiration (Rh) shifted from a stimulation at low-level N additions to an inhibition at higher levels of N additions. Consequently, low-level N additions resulted in a neutral effect on net ecosystem productivity (NEP), due to a comparable stimulating effect on NPP and Rh, while NEP was increased by high-level N additions. Moreover, we found nonlinear temporal responses of NPP, Rh and NEP to low-level N additions. Our findings imply that actual N deposition in boreal forests likely exerts a minor contribution to their soil C storage.  相似文献   

12.
This study reports the annual carbon balance of a drained riparian fen under two‐cut or three‐cut managements of festulolium and tall fescue. CO2 fluxes measured with closed chambers were partitioned into gross primary production (GPP) and ecosystem respiration (ER) for modelling according to environmental factors (light and temperature) and canopy reflectance (ratio vegetation index, RVI). Methodological assessments were made of (i) GPP models with or without temperature functions (Ft) to adjust GPP constraints imposed by low temperature (<10 °C) and (ii) ER models with RVI or GPP parameters as biomass proxies. The sensitivity of the models was also tested on partial datasets including only alternate measurement campaigns and on datasets only from the crop growing period. Use of Ft in GPP models effectively corrected GPP overestimation in cold periods, and this approach was used throughout. Annual fluxes obtained with ER models including RVI or GPP parameters were similar, and also annual GPP and ER fluxes obtained with full and partial datasets were similar. Annual CO2 fluxes and biomass yield were not significantly different in the crop/management combinations although the individual collars (n = 12) showed some variations in GPP (?1818 to ?2409 g CO2‐C m?2), ER (1071 to 1738 g CO2‐C m?2), net ecosystem exchange (NEE, ?669 to ?949 g CO2‐C m?2) and biomass yield (556 to 1044 g CO2‐C m?2). Net ecosystem carbon balance (NECB), as the sum of NEE and biomass carbon export, was only slightly negative to positive in all crop/management combinations. NECBs, interpreted as emission factors, tended to favour the least biomass producing systems as the best management options in relation to climate saving carbon balances. Yet, considering the down‐stream advantages of biomass for fossil fuel replacement, yield‐scaled carbon fluxes are suggested to be given additional considerations for comparison of management options in terms of atmospheric impact.  相似文献   

13.
In China, croplands account for a relatively large form of vegetation cover. Quantifying carbon dioxide exchange and understanding the environmental controls on carbon fluxes over croplands are critical in understanding regional carbon budgets and ecosystem behaviors. In this study, the net ecosystem exchange (NEE) at a winter wheat/summer maize rotation cropping site, representative of the main cropping system in the North China Plain, was continuously measured using the eddy covariance technique from 2005 to 2009. In order to interpret the abiotic factors regulating NEE, NEE was partitioned into gross primary production (GPP) and ecosystem respiration (Reco). Daytime Reco was extrapolated from the relationship between nighttime NEE and soil temperature under high turbulent conditions. GPP was then estimated by subtracting daytime NEE from the daytime estimates of Reco. Results show that the seasonal patterns of the temperature responses of Reco and light‐response parameters are closely related to the crop phenology. Daily Reco was highly dependent on both daily GPP and air temperature. Interannual variability showed that GPP and Reco were mainly controlled by temperature. Water availability also exerted a limit on Reco. The annual NEE was ?585 and ?533 g C m?2 for two seasons of 2006–2007 and 2007–2008, respectively, and the wheat field absorbed more carbon than the maize field. Thus, we concluded that this cropland was a strong carbon sink. However, when the grain harvest was taken into account, the wheat field was diminished into a weak carbon sink, whereas the maize field was converted into a weak carbon source. The observations showed that severe drought occurring during winter did not reduce wheat yield (or integrated NEE) when sufficient irrigation was carried out during spring.  相似文献   

14.
Boreal peatlands store large amounts of carbon, reflecting their important role in the global carbon cycle. The short‐term exchange and the long‐term storage of atmospheric carbon dioxide (CO2) in these ecosystems are closely associated with the permanently wet surface conditions and are susceptible to drought. Especially, the single most important peat forming plant genus, Sphagnum, depends heavily on surface wetness for its primary production. Changes in rainfall patterns are expected to affect surface wetness, but how this transient rewetting affects net ecosystem exchange of CO2 (NEE) remains unknown. This study explores how the timing and characteristics of rain events during photosynthetic active periods, that is daytime, affect peatland NEE and whether rain event associated changes in environmental conditions modify this response (e.g. water table, radiation, vapour pressure deficit, temperature). We analysed an 11‐year time series of half‐hourly eddy covariance and meteorological measurements from Degerö Stormyr, a boreal peatland in northern Sweden. Our results show that daytime rain events systematically decreased the sink strength of peatlands for atmospheric CO2. The decrease was best explained by rain associated reduction in light, rather than by rain characteristics or drought length. An average daytime growing season rain event reduced net ecosystem CO2 uptake by 0.23–0.54 gC m?2. On an annual basis, this reduction of net CO2 uptake corresponds to 24% of the annual net CO2 uptake (NEE) of the study site, equivalent to a 4.4% reduction of gross primary production (GPP) during the growing season. We conclude that reduced light availability associated with rain events is more important in explaining the NEE response to rain events than rain characteristics and changes in water availability. This suggests that peatland CO2 uptake is highly sensitive to changes in cloud cover formation and to altered rainfall regimes, a process hitherto largely ignored.  相似文献   

15.

Background

Increasing atmospheric CO2 and nitrogen (N) deposition across the globe may affect ecosystem CO2 exchanges and ecosystem carbon cycles. Additionally, it remains unknown how increased N deposition and N addition will alter the effects of elevated CO2 on wetland ecosystem carbon fluxes.

Methodology/Principal Findings

Beginning in 2010, a paired, nested manipulative experimental design was used in a temperate wetland of northeastern China. The primary factor was elevated CO2, accomplished using Open Top Chambers, and N supplied as NH4NO3 was the secondary factor. Gross primary productivity (GPP) was higher than ecosystem respiration (ER), leading to net carbon uptake (measured by net ecosystem CO2 exchange, or NEE) in all four treatments over the growing season. However, their magnitude had interannual variations, which coincided with air temperature in the early growing season, with the soil temperature and with the vegetation cover. Elevated CO2 significantly enhanced GPP and ER but overall reduced NEE because the stimulation caused by the elevated CO2 had a greater impact on ER than on GPP. The addition of N stimulated ecosystem C fluxes in both years and ameliorated the negative impact of elevated CO2 on NEE.

Conclusion/Significance

In this ecosystem, future elevated CO2 may favor carbon sequestration when coupled with increasing nitrogen deposition.  相似文献   

16.
Despite the importance of future carbon (C) pools for policy and land management decisions under various climate change scenarios, predictions of these pools under altered climate vary considerably. Chronic warming will likely impact both ecosystem C fluxes and the abundance and distribution of plant functional types (PFTs) within systems, potentially interacting to create novel patterns of C exchange. Here, we report results from a 3-year warming experiment using open top chambers (OTC) on the Tibetan Plateau meadow grassland. Warming significantly increased C uptake through gross primary productivity (GPP) but not ecosystem respiration (ER), resulting in a 31.0% reduction in net ecosystem exchange (NEE) in warmed plots. The OTC-induced changes in ecosystem C fluxes were not fully explained by the corresponding changes in soil temperature and moisture. Warming treatments significantly increased the biomass of graminoids and legumes by 12.9 and 27.6%. These functional shifts were correlated with enhanced local GPP, but not ER, resulting in more negative NEE in plots with larger increases in graminoid and legume biomass. This may be due to a link between greater legume abundance and higher levels of total inorganic nitrogen, which can potentially drive higher GPP, but not higher ER. Overall, our results indicate that C-climate feedbacks might be closely mediated by climate-induced changes in PFTs. This highlights the need to consider the impacts of changes in PFTs when predicting future responses of C pools under altered climate scenarios.  相似文献   

17.
Net ecosystem exchange (NEE) of two contrasting mountain forest types in Switzerland was measured by eddy covariance (EC) measurements at a montane mixed forest, the Lägeren forest, over 5 years (2005–2009), and at a subalpine coniferous forest, the Seehornwald in Davos, over 12 years (1997–2009). NEE was validated against annual carbon (C) storage estimates, based on biometric and soil respiration measurements as well as soil C modeling. Three different approaches were used: (1) calculation of net ecosystem production by quantifying C pools and fluxes, (2) assessment of change in wood biomass and soil C storage (ΔC), and (3) application of biomass expansion factors. Although biometric estimates were sensitive to assumptions made for each method applied, they agreed well with measured NEE. Comparing 5 years of EC measurements available at both sites during 2005 and 2009 revealed that NEE, gross primary production (GPP), and total ecosystem respiration (TER) were larger at the Lägeren forest compared to the Davos forest, whereas soil respiration and soil C sequestration were of similar magnitudes. Both sites showed similar annual trends for NEE, GPP and TER, but different seasonal courses, due to different responses to environmental conditions (temperature, soil moisture, and radiation). Differences in the magnitude as well as in the seasonality of ecosystem CO2 exchange could mainly be attributed to tree phenology, productivity, and carbon allocation patterns, which are combined effects of tree type (broad-leaved vs. coniferous trees) and site-specific climatic conditions. Flux differences between the two mountain sites highlight the importance of considering the role of altitude in ecological studies and modeling.  相似文献   

18.
The advancement of spring and the differential ability of organisms to respond to changes in plant phenology may lead to “phenological mismatches” as a result of climate change. One potential for considerable mismatch is between migratory birds and food availability in northern breeding ranges, and these mismatches may have consequences for ecosystem function. We conducted a three‐year experiment to examine the consequences for CO2 exchange of advanced spring green‐up and altered timing of grazing by migratory Pacific black brant in a coastal wetland in western Alaska. Experimental treatments represent the variation in green‐up and timing of peak grazing intensity that currently exists in the system. Delayed grazing resulted in greater net ecosystem exchange (NEE) and gross primary productivity (GPP), while early grazing reduced CO2 uptake with the potential of causing net ecosystem carbon (C) loss in late spring and early summer. Conversely, advancing the growing season only influenced ecosystem respiration (ER), resulting in a small increase in ER with no concomitant impact on GPP or NEE. The experimental treatment that represents the most likely future, with green‐up advancing more rapidly than arrival of migratory geese, results in NEE changing by 1.2 µmol m?2 s?1 toward a greater CO2 sink in spring and summer. Increased sink strength, however, may be mitigated by early arrival of migratory geese, which would reduce CO2 uptake. Importantly, while the direct effect of climate warming on phenology of green‐up has a minimal influence on NEE, the indirect effect of climate warming manifest through changes in the timing of peak grazing can have a significant impact on C balance in northern coastal wetlands. Furthermore, processes influencing the timing of goose migration in the winter range can significantly influence ecosystem function in summer habitats.  相似文献   

19.
The role of plant phenology as a regulator for gross ecosystem productivity (GEP) in peatlands is empirically not well constrained. This is because proxies to track vegetation development with daily coverage at the ecosystem scale have only recently become available and the lack of such data has hampered the disentangling of biotic and abiotic effects. This study aimed at unraveling the mechanisms that regulate the seasonal variation in GEP across a network of eight European peatlands. Therefore, we described phenology with canopy greenness derived from digital repeat photography and disentangled the effects of radiation, temperature and phenology on GEP with commonality analysis and structural equation modeling. The resulting relational network could not only delineate direct effects but also accounted for possible effect combinations such as interdependencies (mediation) and interactions (moderation). We found that peatland GEP was controlled by the same mechanisms across all sites: phenology constituted a key predictor for the seasonal variation in GEP and further acted as a distinct mediator for temperature and radiation effects on GEP. In particular, the effect of air temperature on GEP was fully mediated through phenology, implying that direct temperature effects representing the thermoregulation of photosynthesis were negligible. The tight coupling between temperature, phenology and GEP applied especially to high latitude and high altitude peatlands and during phenological transition phases. Our study highlights the importance of phenological effects when evaluating the future response of peatland GEP to climate change. Climate change will affect peatland GEP especially through changing temperature patterns during plant phenologically sensitive phases in high latitude and high altitude regions.  相似文献   

20.
Northern peatlands have accumulated one third of the Earth's soil carbon stock since the last Ice Age. Rapid warming across northern biomes threatens to accelerate rates of peatland ecosystem respiration. Despite compensatory increases in net primary production, greater ecosystem respiration could signal the release of ancient, century‐ to millennia‐old carbon from the peatland organic matter stock. Warming has already been shown to promote ancient peatland carbon release, but, despite the key role of vegetation in carbon dynamics, little is known about how plants influence the source of peatland ecosystem respiration. Here, we address this issue using in situ 14C measurements of ecosystem respiration on an established peatland warming and vegetation manipulation experiment. Results show that warming of approximately 1 °C promotes respiration of ancient peatland carbon (up to 2100 years old) when dwarf‐shrubs or graminoids are present, an effect not observed when only bryophytes are present. We demonstrate that warming likely promotes ancient peatland carbon release via its control over organic inputs from vascular plants. Our findings suggest that dwarf‐shrubs and graminoids prime microbial decomposition of previously ‘locked‐up’ organic matter from potentially deep in the peat profile, facilitating liberation of ancient carbon as CO2. Furthermore, such plant‐induced peat respiration could contribute up to 40% of ecosystem CO2 emissions. If consistent across other subarctic and arctic ecosystems, this represents a considerable fraction of ecosystem respiration that is currently not acknowledged by global carbon cycle models. Ultimately, greater contribution of ancient carbon to ecosystem respiration may signal the loss of a previously stable peatland carbon pool, creating potential feedbacks to future climate change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号