首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The phenology of vegetation, particularly the length of the growing season (LOS; i.e., the period from greenup to senescence), is highly sensitive to climate change, which could imply potent feedbacks to the climate system, for example, by altering the ecosystem carbon (C) balance. In recent decades, the largest extensions of LOS have been reported at high northern latitudes, but further warming‐induced LOS extensions may be constrained by too short photoperiod or unfulfilled chilling requirements. Here, we studied subarctic grasslands, which cover a vast area and contain large C stocks, but for which LOS changes under further warming are highly uncertain. We measured LOS extensions of Icelandic subarctic grasslands along natural geothermal soil warming gradients of different age (short term, where the measurements started after 5 years of warming and long term, i.e., warmed since ≥50 years) using ground‐level measurements of normalized difference vegetation index. We found that LOS linearly extended with on average 2.1 days per °C soil warming up to the highest soil warming levels (ca. +10°C) and that LOS had the potential to extend at least 1 month. This indicates that the warming impact on LOS in these subarctic grasslands will likely not saturate in the near future. A similar response to short‐ and long‐term warming indicated a strong physiological control of the phenological response of the subarctic grasslands to warming and suggested that genetic adaptations and community changes were likely of minor importance. We conclude that the warming‐driven extension of the LOSs of these subarctic grasslands did not saturate up to +10°C warming, and hence that growing seasons of high‐latitude grasslands are likely to continue lengthening with future warming (unless genetic adaptations or species shifts do occur). This persistence of the warming‐induced extension of LOS has important implications for the C‐sink potential of subarctic grasslands under climate change.  相似文献   

2.
3.
We investigated how the legacy of warming and summer drought affected microbial communities in five different replicated long‐term (>10 years) field experiments across Europe (EU‐FP7 INCREASE infrastructure). To focus explicitly on legacy effects (i.e., indirect rather than direct effects of the environmental factors), we measured microbial variables under the same moisture and temperature in a brief screening, and following a pre‐incubation at stable conditions. Specifically, we investigated the size and composition of the soil microbial community (PLFA) alongside measurements of bacterial (leucine incorporation) and fungal (acetate in ergosterol incorporation) growth rates, previously shown to be highly responsive to changes in environmental factors, and microbial respiration. We found no legacy effects on the microbial community size, composition, growth rates, or basal respiration rates at the effect sizes used in our experimental setup (0.6 °C, about 30% precipitation reduction). Our findings support previous reports from single short‐term ecosystem studies thereby providing a clear evidence base to allow long‐term, broad‐scale generalizations to be made. The implication of our study is that warming and summer drought will not result in legacy effects on the microbial community and their processes within the effect sizes here studied. While legacy effects on microbial processes during perturbation cycles, such as drying–rewetting, and on tolerance to drought and warming remain to be studied, our results suggest that any effects on overall ecosystem processes will be rather limited. Thus, the legacies of warming and drought should not be prioritized factors to consider when modeling contemporary rates of biogeochemical processes in soil.  相似文献   

4.
Rapid temperature and precipitation changes in High Arctic tundra ecosystems are altering the biogeochemical cycles of carbon (C) and nitrogen (N), but in ways that are difficult to predict. The challenge grows from the uncertainty of N cycle responses and the extent to which shifts in soil N are coupled with the C cycle and productivity of tundra systems. We used a long‐term (since 2003) experiment of summer warming and supplemental summer water additions to a High Arctic ecosystem in NW Greenland, and applied a combination of discrete sampling and in situ soil core incubations to measure C and N pools and seasonal microbial processes that might control plant‐available N. We hypothesized that elevated temperature and increased precipitation would stimulate microbial activity and net inorganic N mineralization, thereby increasing plant N‐availability through the growing season. While we did find increased N mineralization rates under both global change scenarios, water addition also significantly increased net nitrification rates, loss of NO3?‐N via leaching, and lowered rates of labile organic N production. We also expected the chronic warming and watering would lead to long‐term changes in soil N‐cycling that would be reflected in soil δ15N values. We found that soil δ15N decreased under the different climate change scenarios. Our results suggest that temperature accelerates biological processes and existing C and N transformations, but moisture increases soil hydraulic connectivity and so alters the pathways, and changes the fate of the products of C and N transformations. In addition, our findings indicate that warmer, wetter High Arctic tundra will be cycling N and C in ways that may transform these landscapes in part leading to greater C sequestration, but simultaneously, N losses from the upper soil profile that may be transported to depth dissolved in water and or transported off site in lateral flow.  相似文献   

5.
We provide new information on changes in tundra plant sexual reproduction in response to long‐term (12 years) experimental warming in the High Arctic. Open‐top chambers (OTCs) were used to increase growing season temperatures by 1–2 °C across a range of vascular plant communities. The warming enhanced reproductive effort and success in most species; shrubs and graminoids appeared to be more responsive than forbs. We found that the measured effects of warming on sexual reproduction were more consistently positive and to a greater degree in polar oasis compared with polar semidesert vascular plant communities. Our findings support predictions that long‐term warming in the High Arctic will likely enhance sexual reproduction in tundra plants, which could lead to an increase in plant cover. Greater abundance of vegetation has implications for primary consumers – via increased forage availability, and the global carbon budget – as a function of changes in permafrost and vegetation acting as a carbon sink. Enhanced sexual reproduction in Arctic vascular plants may lead to increased genetic variability of offspring, and consequently improved chances of survival in a changing environment. Our findings also indicate that with future warming, polar oases may play an important role as a seed source to the surrounding polar desert landscape.  相似文献   

6.
Soil microorganisms, the central drivers of terrestrial Antarctic ecosystems, are being confronted with increasing temperatures as parts of the continent experience considerable warming. Here we determined short‐term temperature dependencies of Antarctic soil bacterial community growth rates, using the leucine incorporation technique, in order to predict future changes in temperature sensitivity of resident soil bacterial communities. Soil samples were collected along a climate gradient consisting of locations on the Antarctic Peninsula (Anchorage Island, 67 °34′S, 68 °08′W), Signy Island (60 °43′S, 45 °38′W) and the Falkland Islands (51 °76′S 59 °03′W). At each location, experimental plots were subjected to warming by open top chambers (OTCs) and paired with control plots on vegetated and fell‐field habitats. The bacterial communities were adapted to the mean annual temperature of their environment, as shown by a significant correlation between the mean annual soil temperature and the minimum temperature for bacterial growth (Tmin). Every 1 °C rise in soil temperature was estimated to increase Tmin by 0.24–0.38 °C. The optimum temperature for bacterial growth varied less and did not have as clear a relationship with soil temperature. Temperature sensitivity, indicated by Q10 values, increased with mean annual soil temperature, suggesting that bacterial communities from colder regions were less temperature sensitive than those from the warmer regions. The OTC warming (generally <1 °C temperature increases) over 3 years had no effects on temperature relationship of the soil bacterial community. We estimate that the predicted temperature increase of 2.6 °C for the Antarctic Peninsula would increase Tmin by 0.6–1 °C and Q10 (0–10 °C) by 0.5 units.  相似文献   

7.
Due to climatic warming, Asterias amurensis, a keystone boreal predatory seastar that has established extensive invasive populations in southern Australia, is a potential high‐risk invader of the sub‐Antarctic and Antarctic. To assess the potential range expansion of A. amurensis to the Southern Ocean as it warms, we investigated the bioclimatic envelope of the adult and larval life stages. We analysed the distribution of adult A. amurensis with respect to present‐day and future climate scenarios using habitat temperature data to construct species distribution models (SDMs). To integrate the physiological response of the dispersive phase, we determined the thermal envelope of larval development to assess their performance in present‐day and future thermal regimes and the potential for success of A. amurensis in poleward latitudes. The SDM indicated that the thermal ‘niche’ of the adult stage correlates with a 0–17 °C and 1–22.5 °C range, in winter and summer, respectively. As the ocean warms, the range of A. amurensis in Australia will contract, while more southern latitudes will have conditions favourable for range expansion. Successful fertilization occurred from 3 to 23.8 °C. By day 12, development to the early larval stage was successful from 5.5 to 18 °C. Although embryos were able to reach the blastula stage at 2 °C, they had arrested development and high mortality. The optimal thermal range for survival of pelagic stages was 3.5–19.2 °C with a lower and upper critical limit of 2.6 and 20.3 °C, respectively. Our data predict that A. amurensis faces demise in its current invasive range while more favourable conditions at higher latitudes would facilitate invasion of both larval and adult stages to the Southern Ocean. Our results show that vigilance is needed to reduce the risk that this ecologically important Arctic carnivore may invade the Southern Ocean and Antarctica.  相似文献   

8.
Ocean acidification and greenhouse warming will interactively influence competitive success of key phytoplankton groups such as diatoms, but how long-term responses to global change will affect community structure is unknown. We incubated a mixed natural diatom community from coastal New Zealand waters in a short-term (two-week) incubation experiment using a factorial matrix of warming and/or elevated pCO2 and measured effects on community structure. We then isolated the dominant diatoms in clonal cultures and conditioned them for 1 year under the same temperature and pCO2 conditions from which they were isolated, in order to allow for extended selection or acclimation by these abiotic environmental change factors in the absence of interspecific interactions. These conditioned isolates were then recombined into ‘artificial’ communities modelled after the original natural assemblage and allowed to compete under conditions identical to those in the short-term natural community experiment. In general, the resulting structure of both the unconditioned natural community and conditioned ‘artificial’ community experiments was similar, despite differences such as the loss of two species in the latter. pCO2 and temperature had both individual and interactive effects on community structure, but temperature was more influential, as warming significantly reduced species richness. In this case, our short-term manipulative experiment with a mixed natural assemblage spanning weeks served as a reasonable proxy to predict the effects of global change forcing on diatom community structure after the component species were conditioned in isolation over an extended timescale. Future studies will be required to assess whether or not this is also the case for other types of algal communities from other marine regimes.  相似文献   

9.
10.
Dwarf shrubs are a dominant plant type across many regions of the Earth and have hence a large impact on carbon and nutrient cycling rates. Climate change impacts on dwarf shrubs have been extensively studied in the Northern Hemisphere, and there appears to be large variability in response between ecosystem types and regions. In the Southern Hemisphere, less data are available despite dwarf shrub vegetation being a dominant feature of southern South America and mountainous regions of the Southern Hemisphere. Here, we present the response of an Empetrum rubrum dwarf shrub and a Poa grass community to 12 years of experimental climate manipulation achieved using open top chambers on the Falkland Islands, a cold temperate island group in the South Atlantic. The dwarf shrub and grass vegetation did not change significantly in cover, biomass or species richness over the 12 years period in response to climate warming scenarios of up to 1°C reflecting annual warming levels predicted in this region for the coming decades. The soil microarthropod community, however, responded with declines in abundance (37%) under warming conditions in the grass community, but no such changes were observed in the dwarf shrub community. Overall, our data indicate that dwarf shrub communities are resistant to the levels of climate warming predicted over the coming decades in the southern South America region and will, therefore, remain a dominant driver of local ecosystem properties.  相似文献   

11.
Quantifying soil organic carbon (SOC) decomposition under warming is critical to predict carbon–climate feedbacks. According to the substrate regulating principle, SOC decomposition would decrease as labile SOC declines under field warming, but observations of SOC decomposition under warming do not always support this prediction. This discrepancy could result from varying changes in SOC components and soil microbial communities under warming. This study aimed to determine the decomposition of SOC components with different turnover times after subjected to long‐term field warming and/or root exclusion to limit C input, and to test whether SOC decomposition is driven by substrate lability under warming. Taking advantage of a 12‐year field warming experiment in a prairie, we assessed the decomposition of SOC components by incubating soils from control and warmed plots, with and without root exclusion for 3 years. We assayed SOC decomposition from these incubations by combining inverse modeling and microbial functional genes during decomposition with a metagenomic technique (GeoChip). The decomposition of SOC components with turnover times of years and decades, which contributed to 95% of total cumulative CO2 respiration, was greater in soils from warmed plots. But the decomposition of labile SOC was similar in warmed plots compared to the control. The diversity of C‐degradation microbial genes generally declined with time during the incubation in all treatments, suggesting shifts of microbial functional groups as substrate composition was changing. Compared to the control, soils from warmed plots showed significant increase in the signal intensities of microbial genes involved in degrading complex organic compounds, implying enhanced potential abilities of microbial catabolism. These are likely responsible for accelerated decomposition of SOC components with slow turnover rates. Overall, the shifted microbial community induced by long‐term warming accelerates the decomposition of SOC components with slow turnover rates and thus amplify the positive feedback to climate change.  相似文献   

12.
Quantifying links between ecological processes and adaptation dynamics in natura remains a crucial challenge. Many studies have documented the strength, form and direction of selection, and its variations in space and time, but only a few managed to link these variations to their proximal causes. This step is, however, crucial, if we are to understand how the variation in selective pressure affects adaptive allele dynamics in natural settings. We used data from a long‐term survey (about 30 years) monitoring the adaptation to insecticides of Culex pipiens mosquitoes in Montpellier area (France), focusing on three resistance alleles of the Ester locus. We used a population genetics model taking temporal and spatial variations in selective pressure into account, to assess the quantitative relationships between variations in the proximal agent of selection (amounts of insecticide sprayed) and the fitness of resistance alleles. The response to variations in selective pressure was fast, and the alleles displayed different fitness‐to‐environment relationships: the analyses revealed that even slight changes in insecticide doses could induce changes in the strength and direction of selection, thus changing the fitness ranking of the adaptive alleles. They also revealed that selective pressures other than the insecticides used for mosquito control affected the resistance allele dynamics. These fitness‐to‐environment relationships, fast responses and continuous evolution limit our ability to predict the outcome of adaptive allele dynamics in a changing environment, but they clearly contribute to the maintenance of polymorphism in natural populations. Our study also emphasizes the necessity of long‐term surveys in evolutionary ecology.  相似文献   

13.
Experimental evolution studies with microorganisms such as bacteria and yeast have been an increasingly important and powerful tool to draw long‐term inferences of how microbes interact. However, while several strains of the same species often exist in natural environments, many ecology and evolution studies in microbes are typically performed with isogenic populations of bacteria or yeast. In the present study, we firstly perform a genotypic and phenotypic characterization of two laboratory and eight natural strains of the yeast Schizosaccharomyces pombe. We then propagated, in a rich resource environment, yeast communities of 2, 3, 4, and 5 strains for hundreds of generations and asked which fitness‐related phenotypes—maximum growth rate or relative competitive fitness—would better predict the outcome of a focal strain during the propagations. While the strain''s growth rates would wrongly predict long‐term coexistence, pairwise competitive fitness with a focal strain qualitatively predicted the success or extinction of the focal strain by a simple multigenotype population genetics model, given the initial community composition. Interestingly, we have also measured the competitive fitness of the ancestral and evolved communities by the end of the experiment (≈370 generations) and observed frequent maladaptation to the abiotic environment in communities with more than three members. Overall, our results aid establishing pairwise competitive fitness as good qualitative measurement of long‐term community composition but also reveal a complex adaptive scenario when trying to predict the evolutionary outcome of those communities.  相似文献   

14.
Experimental evolution is becoming a popular approach to study the genomic selection response of evolving populations. Computer simulation studies suggest that the accuracy of the signature increases with the duration of the experiment. Since some assumptions of the computer simulations may be violated, it is important to scrutinize the influence of the experimental duration with real data. Here, we use a highly replicated Evolve and Resequence study in Drosophila simulans to compare the selection targets inferred at different time points. At each time point, approximately the same number of SNPs deviates from neutral expectations, but only 10% of the selected haplotype blocks identified from the full data set can be detected after 20 generations. Those haplotype blocks that emerge already after 20 generations differ from the others by being strongly selected at the beginning of the experiment and display a more parallel selection response. Consistent with previous computer simulations, our results demonstrate that only Evolve and Resequence experiments with a sufficient number of generations can characterize complex adaptive architectures.  相似文献   

15.
Increases in atmospheric CO2 levels and associated ocean changes are expected to have dramatic impacts on marine ecosystems. Although the Southern Ocean is experiencing some of the fastest rates of change, few studies have explored how Antarctic fishes may be affected by co‐occurring ocean changes, and even fewer have examined early life stages. To date, no studies have characterized potential trade‐offs in physiology and behavior in response to projected multiple climate change stressors (ocean acidification and warming) on Antarctic fishes. We exposed juvenile emerald rockcod Trematomus bernacchii to three PCO2 treatments (~450, ~850, and ~1,200 μatm PCO2) at two temperatures (?1 or 2°C). After 2, 7, 14, and 28 days, metrics of physiological performance including cardiorespiratory function (heart rate [fH] and ventilation rate [fV]), metabolic rate (), and cellular enzyme activity were measured. Behavioral responses, including scototaxis, activity, exploration, and escape response were assessed after 7 and 14 days. Elevated PCO2 independently had little impact on either physiology or behavior in juvenile rockcod, whereas warming resulted in significant changes across acclimation time. After 14 days, fH, fV and significantly increased with warming, but not with elevated PCO2. Increased physiological costs were accompanied by behavioral alterations including increased dark zone preference up to 14%, reduced activity by 12%, as well as reduced escape time suggesting potential trade‐offs in energetics. After 28 days, juvenile rockcod demonstrated a degree of temperature compensation as fV, , and cellular metabolism significantly decreased following the peak at 14 days; however, temperature compensation was only evident in the absence of elevated PCO2. Sustained increases in fV and after 28 days exposure to elevated PCO2 indicate additive (fV) and synergistic () interactions occurred in combination with warming. Stressor‐induced energetic trade‐offs in physiology and behavior may be an important mechanism leading to vulnerability of Antarctic fishes to future ocean change.  相似文献   

16.
Ocean warming (OW) and acidification (OA) are intensively investigated as they pose major threats to marine organism. However, little effort is dedicated to another collateral climate change stressor, the increased frequency, and intensity of storm events, here referred to as intensified hydrodynamics. A 2‐month experiment was performed to identify how OW and OA (temperature: 21°C; pHT: 7.7, 7.4; control: 17°C‐pHT7.9) affect the resistance to hydrodynamics in the sea urchin Paracentrotus lividus using an integrative approach that includes physiology, biomechanics, and behavior. Biomechanics was studied under both no‐flow condition at the tube foot (TF) scale and flow condition at the individual scale. For the former, TF disk adhesive properties (attachment strength, tenacity) and TF stem mechanical properties (breaking force, extensibility, tensile strength, stiffness, toughness) were evaluated. For the latter, resistance to flow was addressed as the flow velocity at which individuals detached. Under near‐ and far‐future OW and OA, individuals fully balanced their acid‐base status, but skeletal growth was halved. TF adhesive properties were not affected by treatments. Compared to the control, mechanical properties were in general improved under pHT7.7 while in the extreme treatment (21°C‐pHT7.4) breaking force was diminished. Three behavioral strategies were implemented by sea urchins and acted together to cope with flow: improving TF attachment, streamlining, and escaping. Behavioral responses varied according to treatment and flow velocity. For instance, individuals at 21°C‐pHT7.4 increased the density of attached TF at slow flows or controlled TF detachment at fast flows to compensate for weakened TF mechanical properties. They also showed an absence of streamlining favoring an escaping behavior as they ventured in a riskier faster movement at slow flows. At faster flows, the effects of OW and OA were detrimental causing earlier dislodgment. These plastic behaviors reflect a potential scope for acclimation in the field, where this species already experiences diel temperature and pH fluctuations.  相似文献   

17.
Ocean acidification and warming are considered two of the greatest threats to marine biodiversity, yet the combined effect of these stressors on marine organisms remains largely unclear. Using a meta‐analytical approach, we assessed the biological responses of marine organisms to the effects of ocean acidification and warming in isolation and combination. As expected biological responses varied across taxonomic groups, life‐history stages, and trophic levels, but importantly, combining stressors generally exhibited a stronger biological (either positive or negative) effect. Using a subset of orthogonal studies, we show that four of five of the biological responses measured (calcification, photosynthesis, reproduction, and survival, but not growth) interacted synergistically when warming and acidification were combined. The observed synergisms between interacting stressors suggest that care must be made in making inferences from single‐stressor studies. Our findings clearly have implications for the development of adaptive management strategies particularly given that the frequency of stressors interacting in marine systems will be likely to intensify in the future. There is now an urgent need to move toward more robust, holistic, and ecologically realistic climate change experiments that incorporate interactions. Without them accurate predictions about the likely deleterious impacts to marine biodiversity and ecosystem functioning over the next century will not be possible.  相似文献   

18.
Climate warming is strongly altering the timing of season initiation and season length in the Arctic. Phenological activities are among the most sensitive plant responses to climate change and have important effects at all levels within the ecosystem. We tested the effects of two experimental treatments, extended growing season via snow removal and extended growing season combined with soil warming, on plant phenology in tussock tundra in Alaska from 1995 through 2003. We specifically monitored the responses of eight species, representing four growth forms: (i) graminoids (Carex bigellowii and Eriophorum vaginatum); (ii) evergreen shrubs (Ledum palustre, Cassiope tetragona, and Vaccinium vitis‐idaea); (iii) deciduous shrubs (Betula nana and Salix pulchra); and (iv) forbs (Polygonum bistorta). Our study answered three questions: (i) Do experimental treatments affect the timing of leaf bud break, flowering, and leaf senescence? (ii) Are responses to treatments species‐specific and growth form‐specific? and (iii) Which environmental factors best predict timing of phenophases? Treatment significantly affected the timing of all three phenophases, although the two experimental treatments did not differ from each other. While phenological events began earlier in the experimental plots relative to the controls, duration of phenophases did not increase. The evergreen shrub, Cassiope tetragona, did not respond to either experimental treatment. While the other species did respond to experimental treatments, the total active period for these species did not increase relative to the control. Air temperature was consistently the best predictor of phenology. Our results imply that some evergreen shrubs (i.e., C. tetragona) will not capitalize on earlier favorable growing conditions, putting them at a competitive disadvantage relative to phenotypically plastic deciduous shrubs. Our findings also suggest that an early onset of the growing season as a result of decreased snow cover will not necessarily result in greater tundra productivity.  相似文献   

19.
20.
Continental margins are disproportionally important for global primary production, fisheries and CO2 uptake. However, across the Northeast Atlantic shelves, there has been an ongoing summertime decline of key biota—large diatoms, dinoflagellates and copepods—that traditionally fuel higher tropic levels such as fish, sea birds and marine mammals. Here, we combine multiple time series with in situ process studies to link these declines to summer nutrient stress and increasing proportions of picophytoplankton that can comprise up to 90% of the combined pico‐ and nanophytoplankton biomass in coastal areas. Among the pico‐fraction, it is the cyanobacterium Synechococcus that flourishes when iron and nitrogen resupply to surface waters are diminished. Our field data show how traits beyond small size give Synechococcus a competitive edge over pico‐ and nanoeukaryotes. Key is their ability to grow at low irradiances near the nutricline, which is aided by their superior light‐harvesting system and high affinity to iron. However, minute size and lack of essential biomolecules (e.g. omega‐3 polyunsaturated fatty acids and sterols) render Synechococcus poor primary producers to sustain shelf sea food webs efficiently. The combination of earlier spring blooms and lower summer food quantity and quality creates an increasing period of suboptimal feeding conditions for zooplankton at a time of year when their metabolic demand is highest. We suggest that this nutrition‐related mismatch has contributed to the widespread, ~50% decline in summer copepod abundance we observe over the last 60 years. With Synechococcus clades being prominent from the tropics to the Arctic and their abundances increasing worldwide, our study informs projections of future food web dynamics in coastal and shelf areas where droughts and stratification lead to increasing nutrient starvation of surface waters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号