首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Perennial bioenergy crops have significant potential to reduce greenhouse gas (GHG) emissions and contribute to climate change mitigation by substituting for fossil fuels; yet delivering significant GHG savings will require substantial land‐use change, globally. Over the last decade, research has delivered improved understanding of the environmental benefits and risks of this transition to perennial bioenergy crops, addressing concerns that the impacts of land conversion to perennial bioenergy crops could result in increased rather than decreased GHG emissions. For policymakers to assess the most cost‐effective and sustainable options for deployment and climate change mitigation, synthesis of these studies is needed to support evidence‐based decision making. In 2015, a workshop was convened with researchers, policymakers and industry/business representatives from the UK, EU and internationally. Outcomes from global research on bioenergy land‐use change were compared to identify areas of consensus, key uncertainties, and research priorities. Here, we discuss the strength of evidence for and against six consensus statements summarising the effects of land‐use change to perennial bioenergy crops on the cycling of carbon, nitrogen and water, in the context of the whole life‐cycle of bioenergy production. Our analysis suggests that the direct impacts of dedicated perennial bioenergy crops on soil carbon and nitrous oxide are increasingly well understood and are often consistent with significant life cycle GHG mitigation from bioenergy relative to conventional energy sources. We conclude that the GHG balance of perennial bioenergy crop cultivation will often be favourable, with maximum GHG savings achieved where crops are grown on soils with low carbon stocks and conservative nutrient application, accruing additional environmental benefits such as improved water quality. The analysis reported here demonstrates there is a mature and increasingly comprehensive evidence base on the environmental benefits and risks of bioenergy cultivation which can support the development of a sustainable bioenergy industry.  相似文献   

2.
《Global Change Biology》2018,24(6):2339-2351
Projected changes in temperature and drought regime are likely to reduce carbon (C) storage in forests, thereby amplifying rates of climate change. While such reductions are often presumed to be greatest in semi‐arid forests that experience widespread tree mortality, the consequences of drought may also be important in temperate mesic forests of Eastern North America (ENA) if tree growth is significantly curtailed by drought. Investigations of the environmental conditions that determine drought sensitivity are critically needed to accurately predict ecosystem feedbacks to climate change. We matched site factors with the growth responses to drought of 10,753 trees across mesic forests of ENA, representing 24 species and 346 stands, to determine the broad‐scale drivers of drought sensitivity for the dominant trees in ENA. Here we show that two factors—the timing of drought, and the atmospheric demand for water (i.e., local potential evapotranspiration; PET)—are stronger drivers of drought sensitivity than soil and stand characteristics. Drought‐induced reductions in tree growth were greatest when the droughts occurred during early‐season peaks in radial growth, especially for trees growing in the warmest, driest regions (i.e., highest PET). Further, mean species trait values (rooting depth and ψ50) were poor predictors of drought sensitivity, as intraspecific variation in sensitivity was equal to or greater than interspecific variation in 17 of 24 species. From a general circulation model ensemble, we find that future increases in early‐season PET may exacerbate these effects, and potentially offset gains in C uptake and storage in ENA owing to other global change factors.  相似文献   

3.
Most climate mitigation scenarios involve negative emissions, especially those that aim to limit global temperature increase to 2°C or less. However, the carbon uptake potential in land‐based climate change mitigation efforts is highly uncertain. Here, we address this uncertainty by using two land‐based mitigation scenarios from two land‐use models (IMAGE and MAgPIE) as input to four dynamic global vegetation models (DGVMs; LPJ‐GUESS, ORCHIDEE, JULES, LPJmL). Each of the four combinations of land‐use models and mitigation scenarios aimed for a cumulative carbon uptake of ~130 GtC by the end of the century, achieved either via the cultivation of bioenergy crops combined with carbon capture and storage (BECCS) or avoided deforestation and afforestation (ADAFF). Results suggest large uncertainty in simulated future land demand and carbon uptake rates, depending on the assumptions related to land use and land management in the models. Total cumulative carbon uptake in the DGVMs is highly variable across mitigation scenarios, ranging between 19 and 130 GtC by year 2099. Only one out of the 16 combinations of mitigation scenarios and DGVMs achieves an equivalent or higher carbon uptake than achieved in the land‐use models. The large differences in carbon uptake between the DGVMs and their discrepancy against the carbon uptake in IMAGE and MAgPIE are mainly due to different model assumptions regarding bioenergy crop yields and due to the simulation of soil carbon response to land‐use change. Differences between land‐use models and DGVMs regarding forest biomass and the rate of forest regrowth also have an impact, albeit smaller, on the results. Given the low confidence in simulated carbon uptake for a given land‐based mitigation scenario, and that negative emissions simulated by the DGVMs are typically lower than assumed in scenarios consistent with the 2°C target, relying on negative emissions to mitigate climate change is a highly uncertain strategy.  相似文献   

4.
Reduction in energy sector greenhouse gas GHG emissions is a key aim of European Commission plans to expand cultivation of bioenergy crops. Since agriculture makes up 10–12% of anthropogenic GHG emissions, impacts of land‐use change must be considered, which requires detailed understanding of specific changes to agroecosystems. The greenhouse gas (GHG) balance of perennials may differ significantly from the previous ecosystem. Net change in GHG emissions with land‐use change for bioenergy may exceed avoided fossil fuel emissions, meaning that actual GHG mitigation benefits are variable. Carbon (C) and nitrogen (N) cycling are complex interlinked systems, and a change in land management may affect both differently at different sites, depending on other variables. Change in evapotranspiration with land‐use change may also have significant environmental or water resource impacts at some locations. This article derives a multi‐criteria based decision analysis approach to objectively identify the most appropriate assessment method of the environmental impacts of land‐use change for perennial energy crops. Based on a literature review and conceptual model in support of this approach, the potential impacts of land‐use change for perennial energy crops on GHG emissions and evapotranspiration were identified, as well as likely controlling variables. These findings were used to structure the decision problem and to outline model requirements. A process‐based model representing the complete agroecosystem was identified as the best predictive tool, where adequate data are available. Nineteen models were assessed according to suitability criteria, to identify current model capability, based on the conceptual model, and explicit representation of processes at appropriate resolution. FASSET, ECOSSE, ANIMO, DNDC, DayCent, Expert‐N, Ecosys, WNMM and CERES‐NOE were identified as appropriate models, with factors such as crop, location and data availability dictating the final decision for a given project. A database to inform such decisions is included.  相似文献   

5.
The increasing carbon dioxide (CO2) concentration in the atmosphere in combination with climatic changes throughout the last century are likely to have had a profound effect on the physiology of trees: altering the carbon and water fluxes passing through the stomatal pores. However, the magnitude and spatial patterns of such changes in natural forests remain highly uncertain. Here, stable carbon isotope ratios from a network of 35 tree‐ring sites located across Europe are investigated to determine the intrinsic water‐use efficiency (iWUE), the ratio of photosynthesis to stomatal conductance from 1901 to 2000. The results were compared with simulations of a dynamic vegetation model (LPX‐Bern 1.0) that integrates numerous ecosystem and land–atmosphere exchange processes in a theoretical framework. The spatial pattern of tree‐ring derived iWUE of the investigated coniferous and deciduous species and the model results agreed significantly with a clear south‐to‐north gradient, as well as a general increase in iWUE over the 20th century. The magnitude of the iWUE increase was not spatially uniform, with the strongest increase observed and modelled for temperate forests in Central Europe, a region where summer soil‐water availability decreased over the last century. We were able to demonstrate that the combined effects of increasing CO2 and climate change leading to soil drying have resulted in an accelerated increase in iWUE. These findings will help to reduce uncertainties in the land surface schemes of global climate models, where vegetation–climate feedbacks are currently still poorly constrained by observational data.  相似文献   

6.
Global change will likely affect savanna and forest structure and distributions, with implications for diversity within both biomes. Few studies have examined the impacts of both expected precipitation and land use changes on vegetation structure in the future, despite their likely severity. Here, we modeled tree cover in sub‐Saharan Africa, as a proxy for vegetation structure and land cover change, using climatic, edaphic, and anthropic data (R2 = 0.97). Projected tree cover for the year 2070, simulated using scenarios that include climate and land use projections, generally decreased, both in forest and savanna, although the directionality of changes varied locally. The main driver of tree cover changes was land use change; the effects of precipitation change were minor by comparison. Interestingly, carbon emissions mitigation via increasing biofuels production resulted in decreases in tree cover, more severe than scenarios with more intense precipitation change, especially within savannas. Evaluation of tree cover change against protected area extent at the WWF Ecoregion scale suggested areas of high biodiversity and ecosystem services concern. Those forests most vulnerable to large decreases in tree cover were also highly protected, potentially buffering the effects of global change. Meanwhile, savannas, especially where they immediately bordered forests (e.g. West and Central Africa), were characterized by a dearth of protected areas, making them highly vulnerable. Savanna must become an explicit policy priority in the face of climate and land use change if conservation and livelihoods are to remain viable into the next century.  相似文献   

7.
Climate change is expected to lead to upslope shifts in tree species distributions, but the evidence is mixed partly due to land‐use effects and individualistic species responses to climate. We examined how individual tree species demography varies along elevational climatic gradients across four states in the northeastern United States to determine whether species elevational distributions and their potential upslope (or downslope) shifts were controlled by climate, land‐use legacies (past logging), or soils. We characterized tree demography, microclimate, land‐use legacies, and soils at 83 sites stratified by elevation (~500 to ~1200 m above sea level) across 12 mountains containing the transition from northern hardwood to spruce‐fir forests. We modeled elevational distributions of tree species saplings and adults using logistic regression to test whether sapling distributions suggest ongoing species range expansion upslope (or contraction downslope) relative to adults, and we used linear mixed models to determine the extent to which climate, land use, and soil variables explain these distributions. Tree demography varied with elevation by species, suggesting a potential upslope shift only for American beech, downslope shifts for red spruce (more so in cool regions) and sugar maple, and no change with elevation for balsam fir. While soils had relatively minor effects, climate was the dominant predictor for most species and more so for saplings than adults of red spruce, sugar maple, yellow birch, cordate birch, and striped maple. On the other hand, logging legacies were positively associated with American beech, sugar maple, and yellow birch, and negatively with red spruce and balsam fir – generally more so for adults than saplings. All species exhibited individualistic rather than synchronous demographic responses to climate and land use, and the return of red spruce to lower elevations where past logging originally benefited northern hardwood species indicates that land use may mask species range shifts caused by changing climate.  相似文献   

8.
Bioenergy with carbon capture and storage (BECCS) has been proposed as a potential climate mitigation strategy raising concerns over trade‐offs with existing ecosystem services. We evaluate the feasibility of BECCS in the Upper Missouri River Basin (UMRB), a landscape with diverse land use, ownership, and bioenergy potential. We develop land‐use change scenarios and a switchgrass (Panicum virgatum L.) crop functional type to use in a land‐surface model to simulate second‐generation bioenergy production. By the end of this century, average annual switchgrass production over the UMRB ranges from 60 to 210 Tg dry mass/year and is dependent on the Representative Concentration Pathway for greenhouse gas emissions and on land‐use change assumptions. Under our simple phase‐in assumptions this results in a cumulative total production of 2,000–6,000 Tg C over the study period with the upper estimates only possible in the absence of climate change. Switchgrass yields decreased as average CO2 concentrations and temperatures increased, suggesting the effect of elevated atmospheric CO2 was small because of its C4 photosynthetic pathway. By the end of the 21st century, the potential energy stored annually in harvested switchgrass averaged between 1 and 4 EJ/year assuming perfect conversion efficiency, or an annual electrical generation capacity of 7,000–28,000 MW assuming current bioenergy efficiency rates. Trade‐offs between bioenergy and ecosystem services were identified, including cumulative direct losses of 1,000–2,600 Tg C stored in natural ecosystems from land‐use change by 2090. Total cumulative losses of ecosystem carbon stocks were higher than the potential ~300 Tg C in fossil fuel emissions from the single largest power plant in the region over the same time period, and equivalent to potential carbon removal from the atmosphere from using biofuels grown in the same region. Numerous trade‐offs from BECCS expansion in the UMRB must be balanced against the potential benefits of a carbon‐negative energy system.  相似文献   

9.
The climate impact of bioenergy is commonly quantified in terms of CO2 equivalents, using a fixed 100‐year global warming potential as an equivalency metric. This method has been criticized for the inability to appropriately address emissions timing and the focus on a single impact metric, which may lead to inaccurate or incomplete quantification of the climate impact of bioenergy production. In this study, we introduce Dynamic Relative Climate Impact (DRCI) curves, a novel approach to visualize and quantify the climate impact of bioenergy systems over time. The DRCI approach offers the flexibility to analyze system performance for different value judgments regarding the impact category (e.g., emissions, radiative forcing, and temperature change), equivalency metric, and analytical time horizon. The DRCI curves constructed for fourteen bioenergy systems illustrate how value judgments affect the merit order of bioenergy systems, because they alter the importance of one‐time (associated with land use change emissions) versus sustained (associated with carbon debt or foregone sequestration) emission fluxes and short‐ versus long‐lived climate forcers. Best practices for bioenergy production (irrespective of value judgments) include high feedstock yields, high conversion efficiencies, and the application of carbon capture and storage. Furthermore, this study provides examples of production contexts in which the risk of land use change emissions, carbon debt, or foregone sequestration can be mitigated. For example, the risk of indirect land use change emissions can be mitigated by accompanying bioenergy production with increasing agricultural yields. Moreover, production contexts in which the counterfactual scenario yields immediate or additional climate impacts can provide significant climate benefits. This paper is accompanied by an Excel‐based calculation tool to reproduce the calculation steps outlined in this paper and construct DRCI curves for bioenergy systems of choice.  相似文献   

10.
Accounting for water stress‐induced tree mortality in forest productivity models remains a challenge due to uncertainty in stress tolerance of tree populations. In this study, logistic regression models were developed to assess species‐specific relationships between probability of mortality (Pm) and drought, drawing on 8.1 million observations of change in vital status (m) of individual trees across North America. Drought was defined by standardized (relative) values of soil water content (Ws,z) and reference evapotranspiration (ETr,z) at each field plot. The models additionally tested for interactions between the water‐balance variables, aridity class of the site (AC), and estimated tree height (h). Considering drought improved model performance in 95 (80) per cent of the 64 tested species during calibration (cross‐validation). On average, sensitivity to relative drought increased with site AC (i.e. aridity). Interaction between water‐balance variables and estimated tree height indicated that drought sensitivity commonly decreased during early height development and increased during late height development, which may reflect expansion of the root system and decreasing whole‐plant, leaf‐specific hydraulic conductance, respectively. Across North America, predictions suggested that changes in the water balance caused mortality to increase from 1.1% yr?1 in 1951 to 2.0% yr?1 in 2014 (a net change of 0.9 ± 0.3% yr?1). Interannual variation in mortality also increased, driven by increasingly severe droughts in 1988, 1998, 2006, 2007 and 2012. With strong confidence, this study indicates that water stress is a common cause of tree mortality. With weak‐to‐moderate confidence, this study strengthens previous claims attributing positive trends in mortality to increasing levels of water stress. This ‘learn‐as‐we‐go’ approach – defined by sampling rare drought events as they continue to intensify – will help to constrain the hydraulic limits of dominant tree species and the viability of boreal and temperate forest biomes under continued climate change.  相似文献   

11.
12.
Aim The goals of this study are: (1) to determine whether increasing atmospheric CO2 concentrations and changing climate increased intrinsic water use efficiency (iWUE, as detected by changes in Δ13C) over the last four decades; and if it did increase iWUE, whether it led to increased tree growth (as measured by tree‐ring growth); (2) to assess whether CO2 responses are biome dependent due to different environmental conditions, including availability of nutrients and water; and (3) to discuss how the findings of this study can better inform assumptions of CO2 fertilization and climate change effects in biospheric and climate models. Location A global range of sites covering all major forest biome types. Methods The analysis encompassed 47 study sites including boreal, wet temperate, mediterranean, semi‐arid and tropical biomes for which measurements of tree ring Δ13C and growth are available over multiple decades. Results The iWUE inferred from the Δ13C analyses of comparable mature trees increased 20.5% over the last 40 years with no significant differences between biomes. This increase in iWUE did not translate into a significant overall increase in tree growth. Half of the sites showed a positive trend in growth while the other half had a negative or no trend. There were no significant trends within biomes or among biomes. Main conclusions These results show that despite an increase in atmospheric CO2 concentrations of over 50 p.p.m. and a 20.5% increase in iWUE during the last 40 years, tree growth has not increased as expected, suggesting that other factors have overridden the potential growth benefits of a CO2‐rich world in many sites. Such factors could include climate change (particularly drought), nutrient limitation and/or physiological long‐term acclimation to elevated CO2. Hence, the rate of biomass carbon sequestration in tropical, arid, mediterranean, wet temperate and boreal ecosystems may not increase with increasing atmospheric CO2 concentrations as is often implied by biospheric models and short‐term elevated CO2 experiments.  相似文献   

13.
The potential for climate change mitigation by bioenergy crops and terrestrial carbon sinks has been the object of intensive research in the past decade. There has been much debate about whether energy crops used to offset fossil fuel use, or carbon sequestration in forests, would provide the best climate mitigation benefit. Most current food cropland is unlikely to be used for bioenergy, but in many regions of the world, a proportion of cropland is being abandoned, particularly marginal croplands, and some of this land is now being used for bioenergy. In this study, we assess the consequences of land‐use change on cropland. We first identify areas where cropland is so productive that it may never be converted and assess the potential of the remaining cropland to mitigate climate change by identifying which alternative land use provides the best climate benefit: C4 grass bioenergy crops, coppiced woody energy crops or allowing forest regrowth to create a carbon sink. We do not present this as a scenario of land‐use change – we simply assess the best option in any given global location should a land‐use change occur. To do this, we use global biomass potential studies based on food crop productivity, forest inventory data and dynamic global vegetation models to provide, for the first time, a global comparison of the climate change implications of either deploying bioenergy crops or allowing forest regeneration on current crop land, over a period of 20 years starting in the nominal year of 2000 ad . Globally, the extent of cropland on which conversion to energy crops or forest would result in a net carbon loss, and therefore likely always to remain as cropland, was estimated to be about 420.1 Mha, or 35.6% of the total cropland in Africa, 40.3% in Asia and Russia Federation, 30.8% in Europe‐25, 48.4% in North America, 13.7% in South America and 58.5% in Oceania. Fast growing C4 grasses such as Miscanthus and switch‐grass cultivars are the bioenergy feedstock with the highest climate mitigation potential. Fast growing C4 grasses such as Miscanthus and switch‐grass cultivars provide the best climate mitigation option on ≈485 Mha of cropland worldwide with ~42% of this land characterized by a terrain slope equal or above 20%. If that land‐use change did occur, it would displace ≈58.1 Pg fossil fuel C equivalent (Ceq oil). Woody energy crops such as poplar, willow and Eucalyptus species would be the best option on only 2.4% (≈26.3 Mha) of current cropland, and if this land‐use change occurred, it would displace ≈0.9 Pg Ceq oil. Allowing cropland to revert to forest would be the best climate mitigation option on ≈17% of current cropland (≈184.5 Mha), and if this land‐use change occurred, it would sequester ≈5.8 Pg C in biomass in the 20‐year‐old forest and ≈2.7 Pg C in soil. This study is spatially explicit, so also serves to identify the regional differences in the efficacy of different climate mitigation options, informing policymakers developing regionally or nationally appropriate mitigation actions.  相似文献   

14.
Bioenergy is expected to play a critical role in climate change mitigation. Most integrated assessment models assume an expansion of agricultural land for cultivation of energy crops. This study examines the suitability of land for growing a range of energy crops on areas that are not required for food production, accounting for climate change impacts and conservation requirements. A global fuzzy logic model is employed to ascertain the suitable cropping areas for a number of sugar, starch and oil crops, energy grasses and short rotation tree species that could be grown specifically for energy. Two climate change scenarios are modelled (RCP2.6 and RCP8.5), along with two scenarios representing the land which cannot be used for energy crops due to forest and biodiversity conservation, food agriculture and urban areas. Results indicate that 40% of the global area currently suitable for energy crops overlaps with food land and 31% overlaps with forested or protected areas, highlighting hotspots of potential land competition risks. Approximately 18.8 million km2 is suitable for energy crops, to some degree, and does not overlap with protected, forested, urban or food agricultural land. Under the climate change scenario RCP8.5, this increases to 19.6 million km2 by the end of the century. Broadly, climate change is projected to decrease suitable areas in southern regions and increase them in northern regions, most notably for grass crops in Russia and China, indicating that potential production areas will shift northwards which could potentially affect domestic use and trade of biomass significantly. The majority of the land which becomes suitable is in current grasslands and is just marginally or moderately suitable. This study therefore highlights the vital importance of further studies examining the carbon and ecosystem balance of this potential land‐use change, energy crop yields in sub‐optimal soil and climatic conditions and potential impacts on livelihoods.  相似文献   

15.
Competition for land is increasing, and policy needs to ensure the efficient supply of multiple ecosystem services from land systems. We modelled the spatially explicit potential future supply of ecosystem services in Australia's intensive agricultural land in response to carbon markets under four global outlooks from 2013 to 2050. We assessed the productive efficiency of greenhouse gas emissions abatement, agricultural production, water resources, and biodiversity services and compared these to production possibility frontiers (PPFs). While interacting commodity markets and carbon markets produced efficient outcomes for agricultural production and emissions abatement, more efficient outcomes were possible for water resources and biodiversity services due to weak price signals. However, when only two objectives were considered as per typical efficiency assessments, efficiency improvements involved significant unintended trade‐offs for the other objectives and incurred substantial opportunity costs. Considering multiple objectives simultaneously enabled the identification of land use arrangements that were efficient over multiple ecosystem services. Efficient land use arrangements could be selected that meet society's preferences for ecosystem service provision from land by adjusting the metric used to combine multiple services. To effectively manage competition for land via land use efficiency, market incentives are needed that effectively price multiple ecosystem services.  相似文献   

16.
Biofuels offer one method for decreasing emissions of carbon dioxide (CO2) from fossil fuels, thus helping to meet UK and EU targets for mitigating climate change. They also provide a rational option for land use within the EU that could be economically viable, provided that an appropriate financial and policy environment is developed. If 80% of current set‐aside land in the UK were used for production of biomass crops for electricity generation, about 3% of current UK electricity demand could be met from this source. Considering possibilities for increasing yields and land area devoted to such crops over the coming decades, this could possibly rise to 12%. These estimates exclude consideration of developments in electricity generation which should increase the efficiency of conversion. Also, the use of combined heat and power units at local level (e.g. on farms or in rural communities) gives additional energy saving. Dedicated biomass crops such as willow, poplar, miscanthus, switchgrass or reed canary grass are perennials: in comparison with annual arable crops they would be expected to deliver additional environmental benefits. The elimination of annual cultivation should give a more stable environment, beneficial for farmland biodiversity. Some increase in soil organic matter content is likely, leading to some sequestration of carbon in soil and long‐term improvements in soil quality. The impact on water quality may be positive as nitrate losses are small and a similar trend is expected for phosphate and pesticides. However, these crops may well use more water than arable crops so their impact on water resources could be negative – an issue for further research. Agricultural land can also be used to produce liquid fuels for use in transport. At present biodiesel can be produced from oilseed rape and ethanol from either sucrose in sugar beet or cellulose from virtually any plant material. In the short‐term, liquid biofuels are an easy option as they require little change to either agriculture or transport infrastructure. However, their benefits for CO2 emissions are much less than for biomass used for generating electricity. It is therefore necessary to debate the priorities for land use in this context.  相似文献   

17.
Contemporary forest inventory data are widely used to understand environmental controls on tree species distributions and to construct models to project forest responses to climate change, but the stability and representativeness of contemporary tree‐climate relationships are poorly understood. We show that tree‐climate relationships for 15 tree genera in the upper Midwestern US have significantly altered over the last two centuries due to historical land‐use and climate change. Realised niches have shifted towards higher minimum temperatures and higher rainfall. A new attribution method implicates both historical climate change and land‐use in these shifts, with the relative importance varying among genera and climate variables. Most climate/land‐use interactions are compounding, in which historical land‐use reinforces shifts in species‐climate relationships toward wetter distributions, or confounding, in which land‐use complicates shifts towards warmer distributions. Compounding interactions imply that contemporary‐based models of species distributions may underestimate species resilience to climate change.  相似文献   

18.
Tree line shifts in the Swiss Alps: Climate change or land abandonment?   总被引:6,自引:0,他引:6  
Questions: Did the forest area in the Swiss Alps increase between 1985 and 1997? Does the forest expansion near the tree line represent an invasion into abandoned grasslands (ingrowth) or a true upward shift of the local tree line? What land cover / land use classes did primarily regenerate to forest, and what forest structural types did primarily regenerate? And, what are possible drivers of forest regeneration in the tree line ecotone, climate and/or land use change? Location: Swiss Alps. Methods: Forest expansion was quantified using data from the repeated Swiss land use statistics GEOSTAT. A moving window algorithm was developed to distinguish between forest ingrowth and upward shift. To test a possible climate change influence, the resulting upward shifts were compared to a potential regional tree line. Results: A significant increase of forest cover was found between 1650 m and 2450 m. Above 1650 m, 10% of the new forest areas were identified as true upward shifts whereas 90% represented ingrowth, and we identified both land use and climate change as likely drivers. Most upward shift activities were found to occur within a band of 300 m below the potential regional tree line, indicating land use as the most likely driver. Only 4% of the upward shifts were identified to rise above the potential regional tree line, thus indicating climate change. Conclusions: Land abandonment was the most dominant driver for the establishment of new forest areas, even at the tree line ecotone. However, a small fraction of upwards shift can be attributed to the recent climate warming, a fraction that is likely to increase further if climate continues to warm, and with a longer time‐span between warming and measurement of forest cover.  相似文献   

19.
Recent studies have suggested that tropical forests may not be resilient against climate change in the long term, primarily owing to predicted reductions in rainfall and forest productivity, increased tree mortality, and declining forest biomass carbon sinks. These changes will be caused by drought‐induced water stress and ecosystem disturbances. Several recent studies have reported that climate change has increased tree mortality in temperate and boreal forests, or both mortality and recruitment rates in tropical forests. However, no study has yet examined these changes in the subtropical forests that account for the majority of China's forested land. In this study, we describe how the monsoon evergreen broad‐leaved forest has responded to global warming and drought stress using 32 years of data from forest observation plots. Due to an imbalance in mortality and recruitment, and changes in diameter growth rates between larger and smaller trees and among different functional groups, the average DBH of trees and forest biomass have decreased. Sap flow measurements also showed that larger trees were more stressed than smaller trees by the warming and drying environment. As a result, the monsoon evergreen broad‐leaved forest community is undergoing a transition from a forest dominated by a cohort of fewer and larger individuals to a forest dominated by a cohort of more and smaller individuals, with a different species composition, suggesting that subtropical forests are threatened by their lack of resilience against long‐term climate change.  相似文献   

20.
Andean plant species are predicted to shift their distributions, or ‘migrate,’ upslope in response to future warming. The impacts of these shifts on species' population sizes and their abilities to persist in the face of climate change will depend on many factors including the distribution of individuals within species' ranges, the ability of species to migrate and remain at equilibrium with climate, and patterns of human land‐use. Human land‐use may be especially important in the Andes where anthropogenic activities above tree line may create a hard barrier to upward migrations, imperiling high‐elevation Andean biodiversity. In order to better understand how climate change may impact the Andean biodiversity hotspot, we predict the distributional responses of hundreds of plant species to changes in temperature incorporating population density distributions, migration rates, and patterns of human land‐use. We show that plant species from high Andean forests may increase their population sizes if able to migrate onto the expansive land areas above current tree line. However, if the pace of climate change exceeds species' abilities to migrate, all species will experience large population losses and consequently may face high risk of extinction. Using intermediate migration rates consistent with those observed for the region, most species are still predicted to experience population declines. Under a business‐as‐usual land‐use scenario, we find that all species will experience large population losses regardless of migration rate. The effect of human land‐use is most pronounced for high‐elevation species that switch from predicted increases in population sizes to predicted decreases. The overriding influence of land‐use on the predicted responses of Andean species to climate change can be viewed as encouraging since there is still time to initiate conservation programs that limit disturbances and/or facilitate the upward migration and persistence of Andean plant species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号