首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 826 毫秒
1.
2.
The abundant centre hypothesis (ACH) assumes that population abundance, population size, density and per‐capita reproductive output should peak at the centre of a species' geographic range and decline towards the periphery. Increased isolation among and decreased reproductive output within edge populations should reduce within‐population genetic diversity and increase genetic differentiation among edge relative to central populations. The ACH also predicts asymmetrical gene flow, with net movement of migrants from the centre to edges. We evaluated these ecological assumptions and population‐genetic predictions in the endemic flowering plant Leavenworthia stylosa. Although populations were more spatially isolated near range edges, the geographic centre was surrounded by and not coincident with areas of peak population abundance, and plant density increased towards range edges. Per‐capita seed number was not associated with distance to the range centre, but seed number/m2 increased near range edges. In support of ACH predictions, allelic diversity at 12 microsatellite loci declined with distance from the range centre, and pairwise FST values were higher between edge populations than between central populations. Coalescent analyses confirmed that gene flow was most infrequent between edge populations, but there was not an asymmetric pattern of gene flow predicted by the ACH. This study shows that among‐population demographic variability largely did not support the ACH, while patterns of genetic diversity, differentiation and gene flow were generally consistent with its predictions. Such mixed support has frequently been observed in tests of the ACH and raises concerns regarding the generality of this hypothesis for species range limits.  相似文献   

3.
Detailed large-scale information on mammal distribution has often been lacking, hindering conservation efforts. We used the information from the 2009 IUCN Red List of Threatened Species as a baseline for developing habitat suitability models for 5027 out of 5330 known terrestrial mammal species, based on their habitat relationships. We focused on the following environmental variables: land cover, elevation and hydrological features. Models were developed at 300 m resolution and limited to within species' known geographical ranges. A subset of the models was validated using points of known species occurrence. We conducted a global, fine-scale analysis of patterns of species richness. The richness of mammal species estimated by the overlap of their suitable habitat is on average one-third less than that estimated by the overlap of their geographical ranges. The highest absolute difference is found in tropical and subtropical regions in South America, Africa and Southeast Asia that are not covered by dense forest. The proportion of suitable habitat within mammal geographical ranges correlates with the IUCN Red List category to which they have been assigned, decreasing monotonically from Least Concern to Endangered. These results demonstrate the importance of fine-resolution distribution data for the development of global conservation strategies for mammals.  相似文献   

4.
Climate change is driving the poleward redistribution of coral species, but the rate and magnitude of future range extensions within temperate regions are rarely quantified. A better understanding of the likely future distribution of corals is needed to anticipate the resulting social, economic and environmental implications. Here, we project the rate and magnitude of extensions of suitable thermal conditions for hard coral communities along the east Australian coastline, using data on coral community presence, in conjunction with historical and projected ocean temperatures. Our projections indicate that temperatures will be suitable for coral communities dominated by the subtropical coral Pocillopora aliciae, currently found off Sydney, to extend their range poleward by 80 (RCP 2.6) to 450 km (RCP 8.5) by 2100, corresponding to a rate of 0.9–5.0 km year−1. Similarly, thermal conditions will be such that diverse coral communities, such as those currently occurring in the Solitary Islands, may extend their range by 130 (RCP 2.6) to 580 km (RCP 8.5) by 2100, at a rate of 1.4–6.4 km year−1. These projections are similar to those forecast for coral species in other parts of the world. Newly establishing coral communities in temperate regions may provide a range of novel local economic opportunities, particularly for marine tourism.  相似文献   

5.

Aim

Climate change is affecting biodiversity at an accelerating rate. Despite the importance of fungi in ecosystems in general, and in the global carbon and nitrogen cycle in particular, there is little research on the response of fungi to climate change compared with plants and animals. Earlier studies show that climatic factors and tree species are key determinants of macrofungal diversity and distribution at large spatial scales. However, our knowledge of how climate change will affect macrofungal diversity and distribution in the future remains poorly understood.

Location

Europe.

Methods

Using openly available occurrence data of 1845 macrofungal species from eight European countries (i.e. Norway, Sweden, Finland, Denmark, Netherlands, Germany, France and Spain), we built ensemble species distribution models to predict macrofungal response to climate change alone and combined climate and tree distribution change under the IPCC special report on 2080 emissions scenarios (SRES A2 and B2).

Results

Considering climate change alone, we predict that about 77% (74.1%–80.7%) of the modelled species will expand their distribution range, and around 57% (56.1%–58.4%) of the modelled area will have an increase in macrofungal species richness. However, when considering the combined climate and tree species distribution change, only 50% (50%–50.9%) of the species are predicted to expand their distribution range and 49% (47.4%–51.1%) of the modelled area will experience an increase in macrofungal species richness.

Main Conclusions

Overall, our models projected that large areas would exhibit increased macrofungal species richness under future climate change. However, tree species distribution might play a restrictive role in the future distributional shifts of macrofungi. In addition, macrofungal responses appear heterogeneous, varying among species and regions. Our findings highlight the importance of including tree species in the projection of climate change impacts on the macrofungal diversity and distribution on a continental scale.  相似文献   

6.
Aim Humans have dramatically transformed landscapes along the US–Mexico border. We aim to assess the risk of barriers that may significantly impede animal migrations within this ecologically sensitive region. Location United States and Mexico. Methods We examined the intersection of current and possible future barriers along the border with the geographic ranges of 313 amphibian, reptile and non‐volant mammal species. We considered the areas of intensive human land use and ~ 600 km of pedestrian fence as current barriers along the border. We evaluated the impacts of two scenarios of dispersal barriers – continuation of existing and construction of new barriers – and identified species vulnerable to global and local extinction. Results Among the species most at risk from current barriers are four species listed as threatened globally or by both nations, 23 species for which the larger of their two national subranges is < 105 km2 and 29 species whose ranges cross the border only marginally. Three border regions, California, Madrean archipelago and Gulf coast, emerge as being of particular concern. These regions are characterized by high overall species richness and high richness of species at risk from existing barriers and from construction of potential new barriers. Main conclusions New barriers along the border would increase the number of species at risk, especially in the three identified regions, which should be prioritized for mitigation of the impacts of current barriers. The species we identified as being potentially at risk merit further study to determine impacts of border dispersal barriers.  相似文献   

7.
The reptile fauna of Romania comprises 23 species, out of which 12 species reach here the limit of their geographic range. We compiled and updated a national database of the reptile species occurrences from a variety of sources including our own field surveys, personal communication from specialists, museum collections and the scientific literature. The occurrence records were georeferenced and stored in a geodatabase for additional analysis of their spatial patterns. The spatial analysis revealed a biased sampling effort concentrated in various protected areas, and deficient in the vast agricultural areas of the southern part of Romania. The patterns of species richness showed a higher number of species in the warmer and drier regions, and a relatively low number of species in the rest of the country. Our database provides a starting point for further analyses, and represents a reliable tool for drafting conservation plans.  相似文献   

8.
Nineteen species of amphibians inhabit Romania, 9 of which reach their range limit on this territory. Based on published occurrence reports, museum collections and our own data we compiled a national database of amphibian occurrences. We georeferenced 26779 amphibian species occurrences, and performed an analysis of their spatial patterns, checking for hotspots and patterns of species richness. The results of spatial statistic analyses supported the idea of a biased sampling for Romania, with clear hotspots of increased sampling efforts. The sampling effort is biased towards species with high detectability, protected areas, and large cities. Future sampling efforts should be focused mostly on species with a high rarity score in order to accurately map their range. Our results are an important step in achieving the long-term goals of increasing the efficiency of conservation efforts and evaluating the species range shifts under climate change scenarios.  相似文献   

9.
10.
Species range shifts and expansion are subjects of primary research interest in the context of climate warming and biological invasions. Few studies have focused on reexpansion of species that suffered severe declines. Here, we focused on population recovery of Eurasian otters (Lutra lutra) in Italy, first detected in 2003 after a southward range contraction. We modeled the rate of range expansion and occupancy at the northern expanding front (central Italy), to gain insights into the progress of recovery and mechanisms of reexpansion. We performed a field survey in 2021, which redefined the northern limit of distribution further north, in close proximity to the Gran Sasso National Park. Then we analyzed a time series (1985–2021) of distances of northernmost occurrences from the center of the 1985 range. Using segmented regression, we were able to identify a prolonged stasis of the northern range edge and a simultaneous increase in occupancy from 0.151 to 0.4. A breakpoint was estimated in 2006, after which the range expanded northwards at an average rate of 5.48 km/year. From 2006 to 2021, the overall northward shift was about 80 km. Occupancy continued to increase until 2019 and abruptly declined in 2021. These patterns suggest that the reexpansion of the range can be limited by low occupancy at the expanding front. As occupancy increases, long-distance dispersal increases and then range expands. The low occupancy at the current distribution limit of otters may reflect a higher anthropogenic pressure on northern habitats, which could slow down the reexpansion process.  相似文献   

11.
Poleward and upward species range shifts are the most commonly anticipated and studied consequences of climate warming. However, these global responses to climate change obscure more complex distribution change patterns. We hypothesize that the spatial arrangement of mountain ranges and, consequently, climatic gradients in Europe, will result in range disjunctions. This hypothesis was investigated for submountainous forest plant species at two temporal and spatial scales: (i) under future climate change (between 1950–2000 and 2061–2080 periods) at the European scale and (ii) under contemporary climate change (between 1914–1987 and 1997–2013 periods) at the French scale. We selected 97 submountainous forest plant species occurring in France, among which distribution data across Europe are available for 25 species. By projecting future distribution changes for the 25 submountainous plant species across Europe, we demonstrated that range disjunction is a likely consequence of future climate change. To assess whether it is already taking place, we used a large forest vegetation‐plot database covering the entire French territory over 100 years (1914–2013) and found an average decrease in frequency (?0.01 ± 0.004) in lowland areas for the 97 submountainous species – corresponding to a loss of 6% of their historical frequency – along with southward and upward range shifts, suggesting early signs of range disjunctions. Climate‐induced range disjunctions should be considered more carefully since they could have dramatic consequences on population genetics and the ability of species to face future climate changes.  相似文献   

12.
Based on information obtained from publications, online material and experienced birdwatchers we describe changes in the breeding avifauna of Israel between 2003 and 2016. We provide details on nine species that were found breeding in Israel during this period for the first time (Common Shelduck, Great Cormorant, Black-winged Kite, Caspian Tern, White-cheeked Tern, Common Wood Pigeon, Black Bush Robin, Basra Reed Warbler, Chiffchaff); two species that were found breeding in Israel after they were not documented breeding for more than 50 years (Great Crested Grebe, Pallid Scops Owl), one species that significantly extended its breeding range in Israel (Striated Heron), and two exotic species that have recently established populations in Israel (Monk Parakeet, Vinous-breasted Starling). This brings the number of bird species breeding in Israel in 2016 to 220. We also report here that out of six new breeding species reported in 2003, three species established breeding populations in Israel, while the other species did not continue to breed in Israel regularly.  相似文献   

13.
Microbial symbionts can influence their hosts in stunningly diverse ways. Emerging research suggests that an underappreciated facet of these relationships is the influence microbes can have on their host''s responses to novel, or stressful, environmental conditions. We sought to address these and related questions in populations resulting from the recent introduction and subsequent rapid range expansion of Onthophagus taurus dung beetles. Specifically, we manipulated both microbial communities and rearing temperature to detect signatures of developmental and life history differentiation in response to the local thermal conditions in two populations derived from the southern most (Florida) and northern most (Michigan) extremes of the exotic Eastern U.S. range of O. taurus. We then sought to determine the contributions, if any, of host‐associated microbiota to this differentiation. We found that when reared under common garden conditions individuals from Florida and Michigan populations differed significantly in developmental performance measures and life history traits, consistent with population divergence. At the same time, and contrary to our predictions, we failed to find support for the hypothesis that animals perform better if reared at temperatures that match their location of origin and that performance differences may be mediated by host‐associated microbiota. Instead, we found that microbiome swapping across host populations improved developmental performance in both populations, consistent with enemy release dynamics. We discuss the implications of our results for our understanding of the rapid spread of exotic O. taurus through the Eastern United States and the significance of symbiosis in host responses to novel environmental conditions more broadly.  相似文献   

14.
15.
Global patterns of species range and richness are a consequence of many interacting factors, including environmental conditions, competition, geographical area, and historical/evolutionary development. Two widely studied global patterns of distribution are the latitudinal and elevation gradients of species range and richness. The fundamental mechanisms by which environment and physiology of the plants themselves interact to generate global-scale correlations between increased species range or decreased species richness and latitude/elevation have not previously been established. This paper develops the hypothesis that the primary climatic variables determining global-scale gradients in ectotherm species range and richness are temperature (T) and temperature variability (T), and that the primary physiological variable defining adaptation of ectotherms to temperature is respiratory energy metabolism. This hypothesis is based on a postulate that adaptation of ectotherms to latitudinal/altitudinal gradients of T and T leads to corresponding gradients in properties of energy metabolism. The gradients of metabolic properties give rise to gradients of species range and richness that are observed on a global scale. We demonstrate that natural selection results in ectotherms with metabolic properties matched to their environment and that energy use efficiency and the temperature range allowing growth are inversely related. Thus, opposing selective pressures to increase metabolic energy-use-efficiency or to increase the probability of surviving climate extremes control adaptation of ectotherms to climate. The principles developed in this paper yield fundamental laws of ecology that allow calculation of the contributions of global temperature patterns to the formation of gradients of species range and diversity. Relative values of richness and range are calculated solely from data on abiotic variables. Predictions agree with known patterns of ectotherm distribution.  相似文献   

16.
Genetic diversity provides the basic substrate for evolution, yet few studies assess the impacts of global climate change (GCC) on intraspecific genetic variation. In this review, we highlight the importance of incorporating neutral and non‐neutral genetic diversity when assessing the impacts of GCC, for example, in studies that aim to predict the future distribution and fate of a species or ecological community. Specifically, we address the following questions: Why study the effects of GCC on intraspecific genetic diversity? How does GCC affect genetic diversity? How is the effect of GCC on genetic diversity currently studied? Where is potential for future research? For each of these questions, we provide a general background and highlight case studies across the animal, plant and microbial kingdoms. We further discuss how cryptic diversity can affect GCC assessments, how genetic diversity can be integrated into studies that aim to predict species' responses on GCC and how conservation efforts related to GCC can incorporate and profit from inclusion of genetic diversity assessments. We argue that studying the fate of intraspecifc genetic diversity is an indispensable and logical venture if we are to fully understand the consequences of GCC on biodiversity on all levels.  相似文献   

17.
18.
19.
Species richness patterns are characterized either by overlaying species range maps or by compiling geographically extensive survey data for multiple local communities. Although, these two approaches are clearly related, they need not produce identical richness patterns because species do not occur everywhere in their geographical range. Using North American breeding birds, we present the first continent‐wide comparison of survey and range map data. On average, bird species were detected on 40.5% of the surveys within their range. As a result of this range porosity, the geographical richness patterns differed markedly, with the greatest disparity in arid regions and at higher elevations. Environmental productivity was a stronger predictor of survey richness, while elevational heterogeneity was more important in determining range map richness. In addition, range map richness exhibited greater spatial autocorrelation and lower estimates of spatial turnover in species composition. Our results highlight the fact that range map richness represents species coexistence at a much coarser scale than survey data, and demonstrate that the conclusions drawn from species richness studies may depend on the data type used for analyses.  相似文献   

20.
The geographical distribution of species richness and species range size of African anthropoid primates (catarrhines) is investigated and related to patterns of habitat and dietary niche breadth. Catarrhine species richness is concentrated in the equatorial regions of central and west Africa; areas that are also characterised by low average species range sizes and increased ecological specificity. Species richness declines with increasing latitude north and south of the equator, while average species range size, habitat and dietary breadth increase. Relationships between species richness, species range size and niche breadth remain once latitudinal and longitudinal effects have been removed. Among areas of lowest species richness, however, there is increased variation in terms of average species range size and niche breadth, and two trends are identified. While most such areas are occupied by a few wide-ranging generalists, others are occupied by range-restricted specialist species. That conservation efforts increasingly focus on regions of high species richness may be appropriate if these regions are also characterised by species that are more restricted in both their range size and their ecological versatility, although special consideration may be required for some areas of low species richness.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号