首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Aim

Whether intraspecific spatial patterns in body size are generalizable across species remains contentious, as well as the mechanisms underlying these patterns. Here we test several hypotheses explaining within-species body size variation in terrestrial vertebrates including the heat balance, seasonality, resource availability and water conservation hypotheses for ectotherms, and the heat conservation, heat dissipation, starvation resistance and resource availability hypotheses for endotherms.

Location

Global.

Time period

1970–2016.

Major taxa studied

Amphibians, reptiles, birds and mammals.

Methods

We collected 235,905 body size records for 2,229 species (amphibians = 36; reptiles = 81; birds = 1,545; mammals = 567) and performed a phylogenetic meta-analysis of intraspecific correlations between body size and environmental variables. We further tested whether correlations differ between migratory and non-migratory bird and mammal species, and between thermoregulating and thermoconforming ectotherms.

Results

For bird species, smaller intraspecific body size was associated with higher mean and maximum temperatures and lower resource seasonality. Size–environment relationships followed a similar pattern in resident and migratory birds, but the effect of resource availability on body size was slightly positive only for non-migratory birds. For mammals, we found that intraspecific body size was smaller with lower resource availability and seasonality, with this pattern being more evident in sedentary than migratory species. No clear size–environment relationships were found for reptiles and amphibians.

Main conclusions

Within-species body size variation across endotherms is explained by disparate underlying mechanisms for birds and mammals. Heat conservation (Bergmann's rule) and heat dissipation are the dominant processes explaining biogeographic intraspecific body size variation in birds, whereas in mammals, body size clines are mostly explained by the starvation resistance and resource availability hypotheses. Our findings contribute to a better understanding of the mechanisms behind species adaptations to the environment across their geographic distributions.  相似文献   

2.

Aim

The identification of biogeographical zones has been fundamental in broadscale biodiversity analyses over the last 150 years. If processes underlying bioregionalization, such as climatic differences, tectonics and physical barriers, are consistent across vertebrate clades, we expect that groups with more similar ecological characteristics would show more similar bioregions. Lack of data has so far hampered the delineation of global bioregions for reptiles. Therefore, we integrated comprehensive geographic distribution and phylogenetic data of lepidosaurian reptiles to delineate global reptile bioregions, compare determinants of biogeographical boundaries across terrestrial vertebrates and test whether clades showing similar responses to environmental factors also show more similar bioregions.

Location

Global.

Time Period

Present.

Major Taxa Studied

Reptiles, amphibians, birds, mammals.

Methods

For reptiles, we used phylogenetic beta diversity to quantify changes in community composition, and hierarchical clustering to identify biogeographic ‘realms’ and ‘regions’. Then, we assessed the determinants of biogeographical boundaries using spatially explicit regression models, testing the effect of climatic factors, physical barriers and tectonics. Bioregions of reptiles were compared to those of other vertebrate clades by testing the overall similarity of the spatial structure of bioregions, and the match of the position of biogeographical boundaries.

Results

For reptiles, we identified 24 evolutionarily unique regions, nested within 14 realms. Biogeographical boundaries of reptiles were related to both climatic factors and past tectonic movements. Bioregions were very consistent across vertebrate clades. Bioregions of reptiles and mammals showed the highest similarity, followed by reptiles/birds and mammals/birds while amphibian bioregions were less similar to those of the other clades.

Main Conclusions

The overall high similarity among bioregions suggests that bioregionalization was affected by similar underlying processes across terrestrial vertebrates. Nevertheless, clades with different eco-physiological characteristics respond somewhat differently to the same environmental factors, resulting in similar but not identical regionalizations across vertebrate clades.  相似文献   

3.

Background  

Snake venom composition varies widely both among closely related species and within the same species, based on ecological variables. In terrestrial snakes, such variation has been proposed to be due to snakes' diet. Land snakes target various prey species including insects (arthropods), lizards (reptiles), frogs and toads (amphibians), birds (aves), and rodents (mammals), whereas sea snakes target a single vertebrate class (fishes) and often specialize on specific types of fish. It is therefore interesting to examine the evolution of toxins in sea snake venoms compared to that of land snakes.  相似文献   

4.
《PloS one》2014,9(8)

Background

An understanding of the conservation status of Madagascar''s endemic reptile species is needed to underpin conservation planning and priority setting in this global biodiversity hotspot, and to complement existing information on the island''s mammals, birds and amphibians. We report here on the first systematic assessment of the extinction risk of endemic and native non-marine Malagasy snakes, lizards, turtles and tortoises.

Methodology/Principal Findings

Species range maps from The IUCN Red List of Threatened Species were analysed to determine patterns in the distribution of threatened reptile species. These data, in addition to information on threats, were used to identify priority areas and actions for conservation. Thirty-nine percent of the data-sufficient Malagasy reptiles in our analyses are threatened with extinction. Areas in the north, west and south-east were identified as having more threatened species than expected and are therefore conservation priorities. Habitat degradation caused by wood harvesting and non-timber crops was the most pervasive threat. The direct removal of reptiles for international trade and human consumption threatened relatively few species, but were the primary threats for tortoises. Nine threatened reptile species are endemic to recently created protected areas.

Conclusions/Significance

With a few alarming exceptions, the threatened endemic reptiles of Madagascar occur within the national network of protected areas, including some taxa that are only found in new protected areas. Threats to these species, however, operate inside and outside protected area boundaries. This analysis has identified priority sites for reptile conservation and completes the conservation assessment of terrestrial vertebrates in Madagascar which will facilitate conservation planning, monitoring and wise-decision making. In sharp contrast with the amphibians, there is significant reptile diversity and regional endemism in the southern and western regions of Madagascar and this study highlights the importance of these arid regions to conserving the island''s biodiversity.  相似文献   

5.
Determining drivers of species richness is recognised as highly complex, involving many synergies and interactions. We examine the utility of newly available remote sensing representations of vegetation productivity and vegetation structure to examine drivers of species richness at continental and regional scales. We related richness estimates derived from stacked species distribution models for birds, mammals, amphibians, and reptiles to estimates of actual and potential evapotranspiration (AET and PET), forest structure, and forest productivity across Australia as a whole as well as by bioclimatic zones. We used structural equation modeling to partition correlations between climate energy and vegetation attributes and their subsequent associations with species richness. Continentally, vertebrate richness patterns were strongly related to patterns of energy availability. Richness of amphibians, mammals, and birds were positively associated with AET. However, reptile richness was most strongly associated with PET. Regionally, forest structure and productivity associations with bird, mammal, and amphibian richness were strongest. Again, reptile richness associated most strongly with PET. Our results suggest that a hierarchy of drivers of broad‐scale vertebrate richness patterns exist (reptiles excluded): 1) climate energy is most important at the continental scale; next, 2) vegetation productivity and vegetation structure are most important at the regional scale; except 3) at low extremes of climate energy when energy becomes limiting.  相似文献   

6.

Aim

How population density varies across animal species in the context of environmental gradients, and associated migratory strategies, remains poorly understood. The recent influx of avian trait data and population density estimates allows these patterns to be described and explored in unprecedented detail. This study aims to identify the main macroecological drivers of population density in birds.

Location

Global.

Time period

1970–2021.

Major taxa studied

Birds (Aves).

Methods

We collated a dataset of 5072 local population density estimates for 1853 species and modelled population density as a function of trait and environmental predictors in a Bayesian framework accounting for phylogenetic and spatial autocorrelation. We explored the influence of body mass, diet, primary lifestyle, mating system, nesting behaviour, territoriality, and migratory behaviour on population density, accounting for a range of environmental variables, including preferred habitat type, primary productivity, precipitation and temperature. Based on this empirical baseline, we then predicted the mean population density for 9089 species of birds and estimated global geographic patterns of bird population density.

Results

Population density was lower in species with larger body mass and higher trophic levels, and also declined in territorial species, migratory species, brood parasites and species inhabiting resource-poor habitat types (e.g., deserts). Conversely, population density increased in cooperative breeders. Environmental drivers were most influential for migratory birds, with precipitation and temperature both associated with higher population density. Overall, bird population densities were higher at lower latitudes.

Main conclusions

Our results support previous findings on the role of body mass, diet and environmental gradients, but also reveal novel species-specific drivers of avian densities related to reproduction, migration and resource-holding behaviour. Substantial fine-scale variation remains unexplained. We provide a global dataset of population density predictions for use in macroecological analyses and conservation assessments.  相似文献   

7.
Understanding the factors that regulate geographical variation in species richness has been one of the fundamental questions in ecology for decades, but our knowledge of the cause of geographical variation in species richness remains poor. This is particularly true for herpetofaunas (including amphibians and reptiles). Here, using correlation and regression analyses, we examine the relationship of herpetofaunal species richness in 245 localities across China with 30 environmental factors, which include nearly all major environmental factors that are considered to explain broad-scale species richness gradients in such theories as ambient energy, water–energy dynamics, productivity, habitat heterogeneity, and climatic stability. We found that the species richness of amphibians and reptiles is moderately to strongly correlated with most of the environmental variables examined, and that the best fit models, which include explanatory variables of temperature, precipitation, net primary productivity, minimum elevation, and range in elevation, explain ca 70% the variance in species richness for both amphibians and reptiles after accounting for sample area. Although water and temperature are important explanatory variables to both amphibians and reptiles, water variables explain more variance in amphibian species richness than in reptile species richness whereas temperature variables explain more variance in reptile species richness than in amphibian species richness, which is consistent with different physiological requirements of the two groups of organisms.  相似文献   

8.

Motivation

Biodiversity in many areas is rapidly declining because of global change. As such, there is an urgent need for new tools and strategies to help identify, monitor and conserve biodiversity hotspots. This is especially true for frugivores, species consuming fruit, because of their important role in seed dispersal and maintenance of forest structure and health. One way to identify these areas is by quantifying functional diversity, which measures the unique roles of species within a community and is valuable for conservation because of its relationship with ecosystem functioning. Unfortunately, the functional trait information required for these studies can be sparse for certain taxa and specific traits and difficult to harmonize across disparate data sources, especially in biodiversity hotspots. To help fill this need, we compiled Frugivoria, a trait database containing ecological, life-history, morphological and geographical traits for mammals and birds exhibiting frugivory. Frugivoria encompasses species in contiguous moist montane forests and adjacent moist lowland forests of Central and South America—the latter specifically focusing on the Andean states. Compared with existing trait databases, Frugivoria harmonizes existing trait databases, adds new traits, extends traits originally only available for mammals to birds also and fills gaps in trait categories from other databases. Furthermore, we create a cross-taxa subset of shared traits to aid in analysis of mammals and birds. In total, Frugivoria adds 8662 new trait values for mammals and 14,999 for birds and includes a total of 45,216 trait entries with only 11.37% being imputed. Frugivoria also contains an open workflow that harmonizes trait and taxonomic data from disparate sources and enables users to analyse traits in space. As such, this open-access database, which aligns with FAIR data principles, fills a major knowledge gap, enabling more comprehensive trait-based studies of species in this ecologically important region.

Main Types of Variable Contained

Ecological, life-history, morphological and geographical traits.

Spatial Location and Grain

Neotropical countries (Mexico, Guatemala, Costa Rica, Panama, El Salvador, Belize, Nicaragua, Ecuador, Colombia, Peru, Bolivia, Argentina, Venezuela and Chile) with contiguous montane regions.

Time Period and Grain

IUCN spatial data: obtained February 2023, spanning range maps collated from 1998 to 2022. IUCN species data: obtained June 2019–September 2022. Newly included traits: span 1924 to 2023.

Major Taxa and Level of Measurement

Classes Mammalia and Aves; 40,074 species-level traits; 5142 imputed traits for 1733 species (mammals: 582; birds: 1147) and 16 sub-species (mammals).

Software Format

.csv; R.  相似文献   

9.
10.

Aim

Land use is the most pervasive driver of biodiversity loss. Predicting its impact on species richness (SR) is often based on indicators of habitat loss. However, the degradation of habitats, especially through land-use intensification, also affects species. Here, we evaluate whether an integrative metric of land-use intensity, the human appropriation of net primary production, is correlated with the decline of SR in used landscapes across the globe.

Location

Global.

Time period

Present.

Major taxa studied

Birds, mammals and amphibians.

Methods

Based on species range maps (spatial resolution: 20 km × 20 km) and an area-of-habitat approach, we calibrated a “species–energy model” by correlating the SR of three groups of vertebrates with net primary production and biogeographical covariables in “wilderness” areas (i.e., those where available energy is assumed to be still at pristine levels). We used this model to project the difference between pristine SR and the SR corresponding to the energy remaining in used landscapes (i.e., SR loss expected owing to human energy extraction outside wilderness areas). We validated the projected species loss by comparison with the realized and impending loss reconstructed from habitat conversion and documented by national Red Lists.

Results

Species–energy models largely explained landscape-scale variation of mapped SR in wilderness areas (adjusted R2-values: 0.79–0.93). Model-based projections of SR loss were lower, on average, than reconstructed and documented ones, but the spatial patterns were correlated significantly, with stronger correlation in mammals (Pearson's r = 0.68) than in amphibians (r = 0.60) and birds (r = 0.57).

Main conclusions

Our results suggest that the human appropriation of net primary production is a useful indicator of heterotrophic species loss in used landscapes, hence we recommend its inclusion in models based on species–area relationships to improve predictions of land-use-driven biodiversity loss.  相似文献   

11.
Aim To examine the influence of environmental variables on species richness patterns of amphibians, reptiles, mammals and birds and to assess the general usefulness of regional atlases of fauna. Location Navarra (10,421 km2) is located in the north of the Iberian Peninsula, in a territory shared by Mediterranean and Eurosiberian biogeographic regions. Important ecological patterns, climate, topography and land‐cover vary significantly from north to south. Methods Maps of vertebrate distribution and climatological and environmental data bases were used in a geographic information systems framework. Generalized additive models and partial regression analysis were used as statistical tools to differentiate (A) the purely spatial fraction, (B) the spatially structured environmental fraction and (C) the purely environmental fraction. In this way, we can evaluate the explanatory capacity of each variable, avoiding false correlations and assessing true causality. Final models were obtained through a stepwise procedure. Results Energy‐related features of climate, aridity and land‐cover variables show significant correlation with the species richness of reptiles, mammals and birds. Mammals and birds exhibit a spatial pattern correlated with variables such as aridity index and vegetation land‐cover. However, the high values of the spatially structured environmental fraction B and the low values of the purely environmental fraction A suggest that these predictor variables have a limited causal relationship with species richness for these vertebrate groups. An increment in land‐cover diversity is correlated with an increment of specific richness in reptiles, mammals and birds. No variables were found to be statistically correlated with amphibian species richness. Main conclusions Although aridity and land‐cover are the best predictor variables, their causal relationship with species richness must be considered with caution. Historical factors exhibiting a similar spatial pattern may be considered equally important in explaining the patterns of species richness. Also, land‐cover diversity appears as an important factor for maintaining biological diversity. Partial regression analysis has proved a useful technique in dealing with spatial autocorrelation. These results highlight the usefulness of coarsely sampled data and cartography at regional scales to predict and explain species richness patterns for mammals and birds. The accuracy of models appears to be related to the range perception of each group and the scale of the information.  相似文献   

12.
Partitioning sources of variation in vertebrate species richness   总被引:4,自引:0,他引:4  
Aim To explore biogeographic patterns of terrestrial vertebrates in Maine, USA using techniques that would describe local and spatial correlations with the environment. Location Maine, USA. Methods We delineated the ranges within Maine (86,156 km2) of 275 species using literature and expert review. Ranges were combined into species richness maps, and compared to geomorphology, climate, and woody plant distributions. Methods were adapted that compared richness of all vertebrate classes to each environmental correlate, rather than assessing a single explanatory theory. We partitioned variation in species richness into components using tree and multiple linear regression. Methods were used that allowed for useful comparisons between tree and linear regression results. For both methods we partitioned variation into broad‐scale (spatially autocorrelated) and fine‐scale (spatially uncorrelated) explained and unexplained components. By partitioning variance, and using both tree and linear regression in analyses, we explored the degree of variation in species richness for each vertebrate group that could be explained by the relative contribution of each environmental variable. Results In tree regression, climate variation explained richness better (92% of mean deviance explained for all species) than woody plant variation (87%) and geomorphology (86%). Reptiles were highly correlated with environmental variation (93%), followed by mammals, amphibians, and birds (each with 84–82% deviance explained). In multiple linear regression, climate was most closely associated with total vertebrate richness (78%), followed by woody plants (67%) and geomorphology (56%). Again, reptiles were closely correlated with the environment (95%), followed by mammals (73%), amphibians (63%) and birds (57%). Main conclusions Comparing variation explained using tree and multiple linear regression quantified the importance of nonlinear relationships and local interactions between species richness and environmental variation, identifying the importance of linear relationships between reptiles and the environment, and nonlinear relationships between birds and woody plants, for example. Conservation planners should capture climatic variation in broad‐scale designs; temperatures may shift during climate change, but the underlying correlations between the environment and species richness will presumably remain.  相似文献   

13.

Motivation

Population density is a key demographic parameter influencing many ecological processes, and macroecology has described both intra‐ and interspecific patterns of variation. Population density data are expensive to collect and contain many forms of noise and potential bias; these factors have impeded investigation of macroecological patterns, and many hypotheses remain largely unexplored. Population density also represents fundamental information for conservation, because it underlies population dynamics and, ultimately, extinction risk. Here we present TetraDENSITY, an extensive dataset with > 18,000 records of density estimates for terrestrial vertebrates, in order to facilitate new research on this topic.

Main types of variable contained

The dataset includes taxonomic information on species, population density estimate, year of data collection, season, coordinates of the locality, locality name, habitat, sampling method and sampling area.

Spatial location and grain

Global. Spatial accuracy varies across studies; conservatively, it can be considered at 1°, but for many data it is much finer.

Time period and grain

From 1926 to 2017. Temporal accuracy is yearly in most cases, but studies with higher temporal resolution (season, month) are also present.

Major taxa and level of measurement

Amphibians in terrestrial phase, reptiles, birds and mammals. Estimates derive from multiple methods, reflecting the study taxon, location and techniques available at the time of density estimation.  相似文献   

14.

Background  

The neural crest is a group of multipotent cells that emerges after an epithelial-to-mesenchymal transition from the dorsal neural tube early during development. These cells then migrate throughout the embryo, giving rise to a wide variety derivatives including the peripheral nervous system, craniofacial skeleton, pigment cells, and endocrine organs. While much is known about neural crest cells in mammals, birds, amphibians and fish, relatively little is known about their development in non-avian reptiles like snakes and lizards.  相似文献   

15.

Background  

Vertebrate SWS1 visual pigments mediate visual transduction in response to light at short wavelengths. Due to their importance in vision, SWS1 genes have been isolated from a surprisingly wide range of vertebrates, including lampreys, teleosts, amphibians, reptiles, birds, and mammals. The SWS1 genes exhibit many of the characteristics of genes typically targeted for phylogenetic analyses. This study investigates both the utility of SWS1 as a marker for inferring vertebrate phylogenetic relationships, and the characteristics of the gene that contribute to its phylogenetic utility.  相似文献   

16.

Background  

Recent models suggest that escalating reciprocal selection among antagonistically interacting species is predicted to occur in areas of higher resource productivity. In a putatively coevolved interaction between a freshwater snail (Mexipyrgus churinceanus) and a molluscivorous cichlid (Herichthys minckleyi), we examined three components of this interaction: 1) spatial variation in two putative defensive traits, crushing resistance and shell pigmentation; 2) whether abiotic variables or frequency of molariform cichlids are associated with spatial patterns of crushing resistance and shell pigmentation and 3) whether variation in primary productivity accounted for small-scale variation in these defensive traits.  相似文献   

17.
The extension of road networks is considered one of the major factors affecting fauna survival. Roadkill has been documented widely and affects all taxonomic groups. Although roadkill is associated mainly with traffic density, some life-history traits of species and the area surrounding roads are expected to modify number of roadkills both taxonomically and geographically. Here we studied the number of roadkills of vertebrates in an extensive region in the northeastern Iberian Peninsula. We surveyed 820?km of 41 roads in two different seasons (spring and autumn), that differ in traffic intensity. In addition, we covered zones with distinct climatic characteristics and levels of protection of the surrounding habitats. Amphibians showed the highest number of roadkills whereas reptiles, birds and mammals had similar rates. General Linear Model tests showed no differences in roadkills by climatic region; however, differences in number of roadkills were linked to protection status, with the highest number of casualties in highly protected areas. Redundancy Analysis demonstrated that the number of amphibians and reptiles killed was associated with roads in highly protected areas whereas that of mammals and birds was linked to unprotected areas. Protected areas often receive many visitors, which in turn may increase wildlife casualties as a result of greater traffic density. We recommend that correction measures be taken to reduce the high number of vertebrate fauna killed along roads that cross protected areas.  相似文献   

18.
Surprisingly, several studies over large scales have reported a positive spatial correlation of people and biodiversity. This pattern has important implications for conservation and has been documented for well studied taxa such as plants, amphibians, reptiles, birds and mammals. However, it is unknown whether the pattern applies also to invertebrates other than butterflies and more work is needed to establish whether the species–people relationship is explained by both variables correlating with other environmental factors. We studied whether grasshopper species richness (Orthoptera, suborder Caelifera) is related to human population size in European countries. As expected, the number of Caelifera species increases significantly with increasing human population size. But this is not the case when controlling for country area, latitude and number of plant species. Variations in Caelifera species richness are primarily associated with variations in plant species richness. Caelifera species richness also increases with decreasing mean annual precipitation, Gross Domestic Product per capita (used as an indicator for economic development) and net fertility rate of the human population. Our analysis confirms the hypothesis that the broad-scale human population–biodiversity correlations can be explained by concurrent variations in factors other than human population size such as plant species richness, environmental productivity, or habitat heterogeneity. Nonetheless, more populated countries in Europe still have more Caelifera species than less populated countries and this poses a particular challenge for conservation.  相似文献   

19.
During a 6-year field study on the game farm ‘Benfontein’ in the central Republic of South Africa 1725 prey items were observed consumed by 17 free-ranging habituated black-footed catsFelis nigripes Burchell, 1824. Average prey size was 24.1 g. Eight males fed on significantly larger prey (27.9 g) than 9 females (20.8 g). Fifty-four prey species were classified by their average mass into 8 different size classes, 3 for mammals, 3 for birds, 1 for amphibians/reptiles, and 1 for invertebrates. Small mammals (5–40 g) constituted the most important prey class (39%) of total prey biomass followed by larger mammals (>100 g; 17%) and small birds (<40 g; 16%). Mammals and birds pooled comprised 72% and 26% of total prey biomass, respectively, whereas invertebrates and amphibians/reptiles combined constituted just 2% of total prey mass consumed. Three seasons of 4-months duration were recognized. Heterotherm prey items were unavailable during winter, when larger birds and mammals (> 100 g) were mainly consumed. Small rodents like the large-eared mouseMalacothrix typica, captured 595 times by both sexes, were particularly important during the reproductive season for females with kittens. Male black-footed cats showed less variation between prey size classes consumed among climatic seasons. This sex-specific difference in prey size consumption may help to reduce intra-specific competition.  相似文献   

20.
中国大陆鸟类和兽类物种多样性的空间变异   总被引:1,自引:0,他引:1  
生物多样性科学的研究重心之一是大尺度生物多样性空间分布规律及其形成机制。中国是世界上物种特丰富国家之一,了解我国物种多样性在空间上的变异情况,对于进一步认识大尺度上的生物多样性有重要意义。我们收集了全国205个自然保护区的鸟类和兽类物种分布信息,以G-F指数作为物种多样性的测度指标,利用地统计学方法分析了大陆鸟类和兽类物种多样性的空间变异特征。G-F指数是一种基于香农-威纳指数的信息测度,测度了研究地区环境分化程度和实际利用这种生态环境分化的生物类群多样性, 是一种对共同起源,相似生境需求的物种类群多样性的标准化多样性测度。结果发现,在东部季风区、西北干旱区和青藏高寒区内我国大陆鸟类多样性变异大部分都是由随机因素所引起的。兽类多样性的分布,在东部季风区和西北干旱区内是由随机因素所产生的,而在青藏高寒区,兽类多样性的总变异中99.9%是由空间依赖性所引起的,主要表现在71,492~1,020,000m空间尺度上,其分布表现出了强空间相关性。据此,大尺度上的物种多样性空间分布具有特定的规律,在生物多样性的保护行动中应加以考虑。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号