首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Aim Habitat loss and climate change are two major drivers of biological diversity. Here we quantify how deforestation has already changed, and how future climate scenarios may change, environmental conditions within the highly disturbed Atlantic forests of Brazil. We also examine how environmental conditions have been altered within the range of selected bird species. Location Atlantic forests of south‐eastern Brazil. Methods The historical distribution of 21 bird species was estimated using Maxent . After superimposing the present‐day forest cover, we examined the environmental niches hypothesized to be occupied by these birds pre‐ and post‐deforestation using environmental niche factor analysis (ENFA). ENFA was also used to compare conditions in the entire Atlantic forest ecosystem pre‐ and post‐deforestation. The relative influence of land use and climate change on environmental conditions was examined using analysis of similarity and principal components analysis. Results Deforestation in the region has resulted in a decrease in suitable habitat of between 78% and 93% for the Atlantic forest birds included here. Further, Atlantic forest birds today experience generally wetter and less seasonal forest environments than they did historically. Models of future environmental conditions within forest remnants suggest generally warmer conditions and lower annual variation in rainfall due to greater precipitation in the driest quarter of the year. We found that deforestation resulted in a greater divergence of environmental conditions within Atlantic forests than that predicted by climate change. Main conclusions The changes in environmental conditions that have occurred with large‐scale deforestation suggest that selective regimes may have shifted and, as a consequence, spatial patterns of intra‐specific variation in morphology, behaviour and genes have probably been altered. Although the observed shifts in available environmental conditions resulting from deforestation are greater than those predicted by climate change, the latter will result in novel environments that exceed temperatures in any present‐day climates and may lead to biotic attrition unless organisms can adapt to these warmer conditions. Conserving intra‐specific diversity over the long term will require considering both how changes in the recent past have influenced contemporary populations and the impact of future environmental change.  相似文献   

5.
The objectives of this work were to examine the past, current and potential influence of global climate change on the spatial distribution of some commercially exploited fish and to evaluate a recently proposed new ecological niche model (ENM) called nonparametric probabilistic ecological niche model (NPPEN). This new technique is based on a modified version of the test called Multiple Response Permutation Procedure (MRPP) using the generalized Mahalanobis distance. The technique was applied in the extratropical regions of the North Atlantic Ocean on eight commercially exploited fish species using three environmental parameters (sea surface temperature, bathymetry and sea surface salinity). The numerical procedure and the model allowed a better characterization of the niche (sensu Hutchinson) and an improved modelling of the spatial distribution of the species. Furthermore, the technique appeared to be robust to incomplete or bimodal training sets. Despite some potential limitations related to the choice of the climatic scenarios (A2 and B2), the type of physical model (ECHAM 4) and the absence of consideration of biotic interactions, modelled changes in species distribution explained some current observed shifts in dominance that occurred in the North Atlantic sector, and particularly in the North Sea. Although projected changes suggest a poleward movement of species, our results indicate that some species may not be able to track their climatic envelope and that climate change may have a prominent influence on fish distribution during this century. The phenomenon is likely to trigger locally major changes in the dominance of species with likely implications for socio‐economical systems. In this way, ENMs might provide a new management tool against which changes in the resource might be better anticipated.  相似文献   

6.
Pleistocene climate changes have imposed extreme conditions to intertidal rocky marine communities, forcing many species to significant range shifts in their geographical distributions. Phylogeographic analyses based on both mitochondrial and nuclear genetic markers provide a useful approach to unravel phylogeographic patterns and processes of species after this time period, to gain general knowledge of how climatic changes affect shifts in species distributions. We analyzed these patterns on the corkwing wrasse (Symphodus melops, Labridae), a rocky shore species inhabiting North Sea waters and temperate northeastern Atlantic Ocean from Norway to Morocco including the Azores, using a fragment of the mitochondrial control region and the first intron of the nuclear S7 ribosomal protein gene. We found that S. melops shows a clear differentiation between the Atlantic and the Scandinavian populations and a sharp contrast in the genetic diversity, high in the south and low in the north. Within each of these main geographic areas there is little or no genetic differentiation. The species may have persisted throughout the last glacial maximum in the southern areas as paleotemperatures were not lower than they are today in North Scandinavia. The North Sea recolonization most likely took place during the current interglacial and is dominated by a haplotype absent from the south of the study area, but present in Plymouth and Belfast. The possibility of a glacial refugium in or near the English Channel is discussed.  相似文献   

7.
The effects of global glaciations on the distribution of organisms is an essential element of many diversification models. However, the empirical evidence supporting this idea is mixed, in particular with respect to explaining tropical forest evolution. In the present study, we evaluated the impacts of range shifts associated with Pleistocene global glacial cycles on the evolution of tropical forests. In particular, we tested the predictions: (1) that population genetic structure increases with fragmentation variation between the present and the Last Glacial Maximum (LGM) and also (2) with geographical range instability; and (3) that genetic diversity increases with range stability and (4) decreases with fragmentation variation between periods. To address our predictions, we studied population genetic structures and modelled present and past distributions of 15 Atlantic Forest (AF) endemic birds. Afterwards, we evaluated the relationship of population genetic parameters with metrics of species range shifts between the present and the LGM. We found that geographical ranges of AF birds changed in concert with Pleistocene glacial cycles but, unexpectedly, our findings suggest the novel idea that ranges during glacial maxima were slightly larger on average, as well as equally fragmented and displaced from the interglacial ranges. Our findings suggest that range shifts over the late Pleistocene impacted on the diversification of forest organisms, although they did not show that those range shifts had a strong effect. We found that a combination of fragmentation variation across time, small current range size, and range stability increased population genetic structure. However, neither fragmentation, nor range stability affected genetic diversity. Our study showed that evolutionary responses to range shifts across AF birds have a high variance, which could explain the mixed support given by single‐species studies to the action of Pleistocene range shifts on population evolution.  相似文献   

8.
Populations occurring in areas of overlap between the current and future distribution of a species are particularly important because they can represent “refugia from climate change”. We coupled ecological and range‐wide genetic variation data to detect such areas and to evaluate the impacts of habitat suitability changes on the genetic diversity of the transitional Mediterranean‐temperate tree Fraxinus angustifolia. We sampled and genotyped 38 natural populations comprising 1006 individuals from across Europe. We found the highest genetic diversity in western and northern Mediterranean populations, as well as a significant west to east decline in genetic diversity. Areas of potential refugia that correspond to approximately 70% of the suitable habitat may support the persistence of more than 90% of the total number of alleles in the future. Moreover, based on correlations between Bayesian genetic assignment and climate, climate change may favour the westward spread of the Black Sea gene pool in the long term. Overall, our results suggest that the northerly core areas of the current distribution contain the most important part of the genetic variation for this species and may serve as in situ macrorefugia from ongoing climate change. However, rear‐edge populations of the southern Mediterranean may be exposed to a potential loss of unique genetic diversity owing to habitat suitability changes unless populations can persist in microrefugia that have facilitated such persistence in the past.  相似文献   

9.
Climate change is affecting marine ecosystems in many ways, including raising temperatures and leading to ocean acidification. From 2014 to 2016, an extensive marine heat wave extended along the west coast of North America and had devastating effects on numerous species, including bull kelp (Nereocystis luetkeana). Bull kelp is an important foundation species in coastal ecosystems and can be affected by marine heat waves and ocean acidification; however, the impacts have not been investigated on sensitive early life stages. To determine the effects of changing temperatures and carbonate levels on Northern California's bull kelp populations, we collected sporophylls from mature bull kelp individuals in Point Arena, CA. At the Bodega Marine Laboratory, we released spores from field-collected bull kelp, and cultured microscopic gametophytes in a common garden experiment with a fully factorial design crossing modern conditions (11.63 ± 0.54°C and pH 7.93 ± 0.26) with observed extreme climate conditions (15.56 ± 0.83°C and 7.64 ± 0.32 pH). Our results indicated that both increased temperature and decreased pH influenced growth and egg production of bull kelp microscopic stages. Increased temperature resulted in decreased gametophyte survival and offspring production. In contrast, decreased pH had less of an effect but resulted in increased gametophyte survival and offspring production. Additionally, increased temperature significantly impacted reproductive timing by causing female gametophytes to produce offspring earlier than under ambient temperature conditions. Our findings can inform better predictions of the impacts of climate change on coastal ecosystems and provide key insights into environmental dynamics regulating the bull kelp lifecycle.  相似文献   

10.
The spatial distribution of genetic diversity is a product of recent and historical ecological processes, as well as anthropogenic activities. A current challenge in population and conservation genetics is to disentangle the relative effects of these processes, as a first step in predicting population response to future environmental change. In this investigation, we compare the influence of contemporary population decline, contemporary ecological marginality and postglacial range shifts. Using classical model comparison procedures and Bayesian methods, we have identified postglacial range shift as the clear determinant of genetic diversity, differentiation and bottlenecks in 29 populations of butternut, Juglans cinerea L., a North American outcrossing forest tree. Although butternut has experienced dramatic 20th century decline because of an introduced fungal pathogen, our analysis indicates that recent population decline has had less genetic impact than postglacial recolonization history. Location within the range edge vs. the range core also failed to account for the observed patterns of diversity and differentiation. Our results suggest that the genetic impact of large-scale recent population losses in forest trees should be considered in the light of Pleistocene-era large-scale range shifts that may have had long-term genetic consequences. The data also suggest that the population dynamics and life history of wind-pollinated forest trees may provide a buffer against steep population declines of short duration, a result having important implications for habitat management efforts, ex situ conservation sampling and population viability analysis.  相似文献   

11.
Assuming that co‐distributed species are exposed to similar environmental conditions, ecological niche models (ENMs) of bird and plant species inhabiting tropical dry forests (TDFs) in Mexico were developed to evaluate future projections of their distribution for the years 2050 and 2070. We used ENM‐based predictions and climatic data for two Global Climate Models, considering two Representative Concentration Pathway scenarios (RCP4.5/RCP8.5). We also evaluated the effects of habitat loss and the importance of the Mexican system of protected areas (PAs) on the projected models for a more detailed prediction of TDFs and to identify hot spots that require conservation actions. We identified four major distributional areas: the main one located along the Pacific Coast (from Sonora to Chiapas, including the Cape and Bajío regions, and the Balsas river basin), and three isolated areas: the Yucatán peninsula, central Veracruz, and southern Tamaulipas. When considering the effect of habitat loss, a significant reduction (~61%) of the TDFs predicted area occurred, whereas climate‐change models suggested (in comparison with the present distribution model) an increase in area of 3.0–10.0% and 3.0–9.0% for 2050 and 2070, respectively. In future scenarios, TDFs will occupy areas above its current average elevational distribution that are outside of its present geographical range. Our findings show that TDFs may persist in Mexican territory until the middle of the XXI century; however, the challenges about long‐term conservation are partially addressed (only 7% unaffected within the Mexican network of PAs) with the current Mexican PAs network. Based on our ENM approach, we suggest that a combination of models of species inhabiting present TDFs and taking into account change scenarios represent an invaluable tool to create new PAs and ecological corridors, as a response to the increasing levels of habitat destruction and the effects of climate change on this ecosystem.  相似文献   

12.
Global climate and land-use changes are the most significant causes of the current habitat loss and biodiversity crisis. Although there is information measuring these global changes, we lack a full understanding of how they impact community assemblies and species interactions across ecosystems. Herein, we assessed the potential distribution of eight key woody plant species associated with the habitat of the endangered Lilac-crowned Amazon (Amazon finschi) under global changes scenarios (2050′s and 2070′s), to answer the following questions: (1) how do predicted climate and land-use changes impact these species’ individual distributions and co-distribution patterns?; and (2) how effective is the existing Protected Area network for safeguarding the parrot species, the plant species, and their biological interactions? Our projections were consistent identifying the species that are most vulnerable to climate change. The distribution ranges of most of the species tended to decrease under future climates. These effects were strongly exacerbated when incorporating land-use changes into models. Even within existing protected areas, >50 % of the species’ remaining distribution and sites with the highest plant richness were predicted to be lost in the future under these combined scenarios. Currently, both individual species ranges and sites of highest richness of plants, shelter a high proportion (ca. 40 %) of the Lilac-crowned Amazon distribution. However, this spatial congruence could be reduced in the future, potentially disrupting the ecological associations among these taxa. We provide novel evidence for decision-makers to enhance conservation efforts to attain the long-term protection of this endangered Mexican endemic parrot and its habitat.  相似文献   

13.
Rising global temperatures are suggested to be drivers of shifts in tree species ranges. The resulting changes in community composition may negatively impact forest ecosystem function. However, long‐term shifts in tree species ranges remain poorly documented. We test for shifts in the northern range limits of 16 temperate tree species in Quebec, Canada, using forest inventory data spanning three decades, 15° of longitude and 7° of latitude. Range shifts were correlated with climate warming and dispersal traits to understand potential mechanisms underlying changes. Shifts were calculated as the change in the 95th percentile of latitudinal occurrence between two inventory periods (1970–1978, 2000–2012) and for two life stages: saplings and adults. We also examined sapling and adult range offsets within each inventory, and changes in the offset through time. Tree species ranges shifted predominantly northward, although species responses varied. As expected shifts were greater for tree saplings, 0.34 km yr?1, than for adults, 0.13 km yr?1. Range limits were generally further north for adults compared to saplings, but the difference diminished through time, consistent with patterns observed for range shifts within each life stage. This suggests caution should be exercised when interpreting geographic range offsets between life stages as evidence of range shifts in the absence of temporal data. Species latitudinal velocities were on average <50% of the velocity required to equal the spatial velocity of climate change and were mostly unrelated to dispersal traits. Finally, our results add to the body of evidence suggesting tree species are mostly limited in their capacity to track climate warming, supporting concerns that warming will negatively impact the functioning of forest ecosystems.  相似文献   

14.
15.
The Atlantic Forest (AF) harbours one of the most diverse vertebrate faunas of the world, including 199 endemic species of birds. Understanding the evolutionary processes behind such diversity has become the focus of many recent, primarily single locus, phylogeographic studies. These studies suggest that isolation in forest refugia may have been a major mechanism promoting diversification, although there is also support for a role of riverine and geotectonic barriers, two sets of hypotheses that can best be tested with multilocus data. Here we combined multilocus data (one mtDNA marker and eight anonymous nuclear loci) from two species of parapatric antbirds, Myrmeciza loricata and M. squamosa, and Approximate Bayesian Computation to determine whether isolation in refugia explains current patterns of genetic variation and their status as independent evolutionary units. Patterns of population structure, differences in intraspecific levels of divergence and coalescent estimates of historical demography fit the predictions of a recently proposed model of refuge isolation in which climatic stability in the northern AF sustains higher diversity and demographic stability than in the southern AF. However, a pre‐Pleistocene divergence associated with their abutting range limits in a region of past tectonic activity also suggests a role for rivers or geotectonic barriers. Little or no gene flow between these species suggests the development of reproductive barriers or competitive exclusion. Our results suggests that limited marker sampling in recent AF studies may compromise estimates of divergence times and historical demography, and we discuss the effects of such sampling on this and other studies.  相似文献   

16.
17.
Recently, large‐scale changes in the biogeography of calanoid copepod crustaceans have been detected in the northeastern North Atlantic Ocean and adjacent seas. Strong biogeographical shifts in all copepod assemblages were found with a northward extension of more than ° in latitude of warm‐water species associated with a decrease in the number of colder‐water species. These changes were attributed to regional increase in sea surface temperature. Here, we have extended these studies to examine long‐term changes in phytoplankton, zooplankton and salmon in relation to hydro‐meteorological forcing in the northeast Atlantic Ocean and adjacent seas. We found highly significant relationships between (1) long‐term changes in all three trophic levels, (2) sea surface temperature in the northeastern Atlantic, (3) Northern Hemisphere temperature and (4) the North Atlantic Oscillation. The similarities detected between plankton, salmon, temperature and hydro‐climatic parameters are also seen in their cyclical variability and in a stepwise shift that started after a pronounced increase in Northern Hemisphere Temperature anomalies at the end of the 1970s. All biological variables show a pronounced change which started after circa 1982 for euphausiids (decline), 1984 for the total abundance of small copepods (increase), 1986 for phytoplankton biomass (increase) and Calanus finmarchicus (decrease) and 1988 for salmon (decrease). This cascade of biological events led to an exceptional period, which is identified after 1986 to present and followed another shift in large‐scale hydro‐climatic variables and sea surface temperature. This regional temperature increase therefore appears to be an important parameter that is at present governing the dynamic equilibrium of northeast Atlantic pelagic ecosystems with possible consequences for biogeochemical processes and fisheries.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号