首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The main objective of this study was to determine changes in microbial response in natural soil aggregates for soil characterization in different fluvial land shapes. This study was carried out in fluvial lands formed on accumulated sediment depositions carried by K?z?l?rmak River. The majority soils of the study area were classified as Typic Ustifluvent and Typic Haplustept in Soil Taxonomy. It was found that macroaggregates (especially >6300 μm and 2000–4750 μm diameters) of all soil samples were higher than microaggregate of soils. In addition, it was determined that the Corg content varies between 0.41–0.91% in soil samples. Cmic content was also found higher level in aggregates involved <250 and 250–425 μm diameters as compared to other aggregate size classes. Moreover, we detected that Corg:Cmic ratio was much higher in macroaggregates than in microaggregate fractions. BR levels were also greater in macroaggregates of >6,300, 4,750–6,300 and 2,000–4,750 μm than in the other macroaggregates sizes and microaggregates. Consequently, macroaggregates have relatively more Corg level than the Corg level in microaggregates, even if the absolute values of Cmic were the lower. This study thus evidenced contrasting microbial habitats and their response in different soil aggregate size formed in various developed soils.  相似文献   

2.
周正虎  王传宽 《生态学报》2017,37(7):2428-2436
土地利用方式的变化导致土壤碳氮含量及其化学计量关系的变化,然而土壤微生物化学计量及其驱动的碳氮矿化过程如何响应这种变化仍不明确。以帽儿山地区天然落叶阔叶林、人工红松林、草地和农田4种不同土地利用类型为对象,测定其土壤有机碳(C_(soil))、全氮(N_(soil))、微生物生物量碳和氮(C_(mic)和N_(mic))、土壤碳和氮矿化速率(C_(min)和N_(min)),旨在比较不同土地利用方式对土壤、微生物碳氮化学计量特征及矿化速率的影响,探索土壤-微生物-矿化之间碳氮化学计量特征的相关性,揭示微生物对土壤碳氮化学计量变化的响应和调控机制。结果显示:C_(soil)、N_(soil)、C_(mic)、N_(mic)和C_(min)均呈现天然落叶阔叶林人工红松林草地农田,而天然落叶阔叶林和草地的N_(min)显著高于人工红松林和农田。土地利用方式显著影响土壤和微生物碳氮比(C∶N_(soil)和C∶N_(mic)),均呈现农田最高。不同土地利用方式的数据综合分析发现:碳氮矿化速率比与C∶N_(mic)呈负相关,而和微生物与土壤碳氮化学计量不平衡性(C∶N_(imb))显著正相关。单位微生物生物量的碳矿化速率(qCO_2)随着C∶N_(mic)的增加而降低,而单位微生物生物量的氮矿化速率(qAN)随着C∶N_(mic)的增加而增加。C∶N_(imb)与qCO_2正相关,与qAN负相关。以上结果表明,微生物会通过改变自身碳氮化学计量、调整碳氮之间相对矿化速率,以适应土地利用变化导致的土壤碳氮及其化学计量的变异性,以满足自身生长和代谢的碳氮需求平衡。  相似文献   

3.
Bioenergy has to meet increasing sustainability criteria in the EU putting conventional bioenergy crops under pressure. Alternatively, perennial bioenergy crops, such as Miscanthus, show higher greenhouse gas savings with similarly high energy yields. In addition, Miscanthus plantations may sequester additional soil organic carbon (SOC) to mitigate climate change. As the land‐use change in cropland to Miscanthus involves a C3‐C4 vegetation change (VC), it is possible to determine the dynamic of Miscanthus‐derived SOC (C4 carbon) and of the old SOC (C3 carbon) by the isotopic ratio of 13C to 12C. We sampled six croplands and adjacent Miscanthus plantations exceeding the age of 10 years across Europe. We found a mean C4 carbon sequestration rate of 0.78 ± 0.19 Mg ha?1 yr?1, which increased with mean annual temperature. At three of six sites, we found a significant increase in C3 carbon due to the application of organic fertilizers or difference in baseline SOC, which we define as non‐VC‐induced SOC changes. The Rothamsted Carbon Model was used to disentangle the decomposition of old C3 carbon and the non‐VC‐induced C3 carbon changes. Subsequently, this method was applied to eight more sites from the literature, resulting in a climate‐dependent VC‐induced SOC sequestration rate (0.40 ± 0.20 Mg ha?1 yr?1), as a step toward a default SOC change function for Miscanthus plantations on former croplands in Europe. Furthermore, we conducted a SOC fractionation to assess qualitative SOC changes and the incorporation of C4 carbon into the soil. Sixteen years after Miscanthus establishment, 68% of the particulate organic matter (POM) was Miscanthus‐derived in 0–10 cm depth. POM was thus the fastest cycling SOC fraction with a C4 carbon accumulation rate of 0.33 ± 0.05 Mg ha?1 yr?1. Miscanthus‐derived SOC also entered the NaOCl‐resistant fraction, comprising 12% in 0–10 cm, which indicates that this fraction was not an inert SOC pool.  相似文献   

4.
Over a period of three years (1990–1992) microbial biomass-C (Cmic), CO2 evolution, the Cmic:Corg ratio and the metabolic quotient for CO2 (qCO2) were determined in a Norway spruce stand (Höglwald) with experimentally acid-irrigated and limed plots since 1984. A clear relationship between soil pH and the level of microbial biomass-(Cmic) was noted, Cmic increasing with increasing soil pH in Oh or Ah horizons. More microbial biomass-C per unit C{org} (Cmic:Corg ratio) was detected in limed plots with elevated pH of Oh or Ah horizons as compared to unlimed plots with almost 3 times more Cmic per unit Corg in the limed Oh horizon. Differences here are significant at least at the p=0.05 level. The positive effects of liming (higher pH) on the Cmic:Corg ratio was more pronounced in the upper horizon (Oh)). The total CO2 evolution rate of unlimed plots was only half of that noted for limed plots which corresponded to the low microbial biomass levels of unlimed plots. The specific respiratory activity, qCO2, was similar and not significantly different between the unlimed control plot and the limed plot.Acid irrigation of plots with already low pH did not significantly affect the level of microbial biomass, the Cmic:Corg ratio or qCO2. An elevated qCO2 could be seen, however, for the limed + acid irrigated plot. The biomass seemed extremely stressed, showing with 3.8 g CO2-C mg-1 Cmic h-1 (Oh) the highest qCO2 value of all treatments. This was interpreted as a reflection of the continuous adaptation processes to the H+ ions by the microflora. The negative effect of acid irrigation of limed plots was also manifested in a decreased Cmic:Corg ratio.  相似文献   

5.
Nontidal wetlands are estimated to contribute significantly to the soil carbon pool across the globe. However, our understanding of the occurrence and variability of carbon storage between wetland types and across regions represents a major impediment to the ability of nations to include wetlands in greenhouse gas inventories and carbon offset initiatives. We performed a large‐scale survey of nontidal wetland soil carbon stocks and accretion rates from the state of Victoria in south‐eastern Australia—a region spanning 237,000 km2 and containing >35,000 temperate, alpine, and semi‐arid wetlands. From an analysis of >1,600 samples across 103 wetlands, we found that alpine wetlands had the highest carbon stocks (290 ± 180 Mg Corg ha?1), while permanent open freshwater wetlands and saline wetlands had the lowest carbon stocks (110 ± 120 and 60 ± 50 Mg Corg ha?1, respectively). Permanent open freshwater sites sequestered on average three times more carbon per year over the last century than shallow freshwater marshes (2.50 ± 0.44 and 0.79 ± 0.45 Mg Corg ha?1 year?1, respectively). Using this data, we estimate that wetlands in Victoria have a soil carbon stock in the upper 1 m of 68 million tons of Corg, with an annual soil carbon sequestration rate of 3 million tons of CO2 eq. year?1—equivalent to the annual emissions of about 3% of the state's population. Since European settlement (~1834), drainage and loss of 260,530 ha of wetlands may have released between 20 and 75 million tons CO2 equivalents (based on 27%–90% of soil carbon converted to CO2). Overall, we show that despite substantial spatial variability within wetland types, some wetland types differ in their carbon stocks and sequestration rates. The duration of water inundation, plant community composition, and allochthonous carbon inputs likely play an important role in influencing variation in carbon storage.  相似文献   

6.
We compared soil moisture content, pH, total organic carbon (C org), total nitrogen (TN), total phosphorus (TP) and inorganic N (NH4 +–N, NO3 ?–N) concentrations, soil potential C and N mineralization rates, soil microbial biomass C (C mic), soil metabolic quotient (qCO2), soil microbial quotient (C mic/C org) and soil enzyme (urease and invertase) activities in semiarid sandy soils under three types of land cover: grassland, Mongolian pine (Pinus sylvestris var. mongolica) plantation, and elm (Ulmus punila)–grass savanna in southeastern Keerqin, in northeast China. Soil C org, TN and TP concentrations (0–10, 10–20, 20–40 and 40–60 cm) were lower while soil C/N and C/P ratios were higher in the plantation than in grassland and savanna. The effects of land cover change on NH4 +–N and NO3 ?–N concentrations, soil potential nitrification and C mineralization rates in the surface soil (0–10 cm) were dependent on sampling season; but soil potential N mineralization rates were not affected by land cover type and sampling season. The effects of land cover change on C mic and qCO2 of surface soil were not significant; but C mic/C org were significantly affected by land cover change and sampling season. We also found that land cover change, sampling season and land cover type?×?sampling season interaction significantly influenced soil enzyme (urease and invertase) activities. Usually soil enzyme activities were lower in the pine plantations than in grassland and savanna. Our results suggest that land cover change markedly influenced soil chemical and biological properties in sandy soils in the semiarid region, and these effects vary with sampling season.  相似文献   

7.
Phytoremediation was used to regenerate a limestone quarry area. Plant growth mixed medium added over the quarry surface, consisting of a mixture of pyrolusite byproducts, natural soil, sand, and rice husk. Three different plant species: pine, cypress, and broom were planted at 9 randomized plots in order to assess the effects of vegetation on the microbial development, which was measured for the following 3 years. Substrate samples were analyzed for organic carbon content (Corg), microbial biomass (Cmic), basal CO2 respiration activity (BR), alkaline phosphatase (ALP), and acid phosphatase activities at each plant specie and year. Furthermore, the ratio Cmic/Corg, the metabolic quotient (qCO2), and the C mineralization quotient (qM) were determined. The highest survival rates occurred for broom (93.52%), followed by cypress and pine (82.41%) at the final year, while the content of Cmic, BR, and ALP was increased significantly under plants (pine, cypress, and broom) compared with control. Cmic content and BR was plant dependent. Cypress sites had the highest values of Cmic (214.9 μgCg?1) and BR (112.8 μgCO2-Cg?1d?1) at the 3rd year. The plant root environment clearly enhances and regulates the microbial community, in correspondence to the species used. Below ground enhanced activity could fulfill the scope of phytoremediation strategies.  相似文献   

8.
By using multivariate statistical analysis, the influence of Scots pine climatypes on a set of chemical and microbiological properties of soil, i.e., soil C/N, Cmic/Corg, and Cmic/Nmic, was revealed in a series of long-term (ca. 30 years) field experiments, which were carried out according to the same scheme under contrasting environmental and soil conditions of Siberian forestries.  相似文献   

9.
Planting the perennial biomass crop Miscanthus in the UK could offset 2–13 Mt oil eq. yr?1, contributing up to 10% of current energy use. Policymakers need assurance that upscaling Miscanthus production can be performed sustainably without negatively impacting essential food production or the wider environment. This study reviews a large body of Miscanthus relevant literature into concise summary statements. Perennial Miscanthus has energy output/input ratios 10 times higher (47.3 ± 2.2) than annual crops used for energy (4.7 ± 0.2 to 5.5 ± 0.2), and the total carbon cost of energy production (1.12 g CO2‐C eq. MJ?1) is 20–30 times lower than fossil fuels. Planting on former arable land generally increases soil organic carbon (SOC) with Miscanthus sequestering 0.7–2.2 Mg C4‐C ha?1 yr?1. Cultivation on grassland can cause a disturbance loss of SOC which is likely to be recovered during the lifetime of the crop and is potentially mitigated by fossil fuel offset. N2O emissions can be five times lower under unfertilized Miscanthus than annual crops and up to 100 times lower than intensive pasture. Nitrogen fertilizer is generally unnecessary except in low fertility soils. Herbicide is essential during the establishment years after which natural weed suppression by shading is sufficient. Pesticides are unnecessary. Water‐use efficiency is high (e.g. 5.5–9.2 g aerial DM (kg H2O)?1, but high biomass productivity means increased water demand compared to cereal crops. The perennial nature and belowground biomass improves soil structure, increases water‐holding capacity (up by 100–150 mm), and reduces run‐off and erosion. Overwinter ripening increases landscape structural resources for wildlife. Reduced management intensity promotes earthworm diversity and abundance although poor litter palatability may reduce individual biomass. Chemical leaching into field boundaries is lower than comparable agriculture, improving soil and water habitat quality.  相似文献   

10.
木论喀斯特自然保护区土壤微生物生物量的空间格局   总被引:4,自引:0,他引:4  
土壤微生物是森林生态系统中的重要分解者,在森林生态系统物质循环和能量转换中占有特别重要的地位。以典型喀斯特峰丛洼地为试验对象,利用经典统计学和地统计方法分析了土壤微生物量的空间变异特征。结果表明:土壤微生物量的变异程度均很大,土壤微生物量碳(Cmic)、土壤微生物量氮(Nmic)、土壤微生物量磷(Pmic)的变化范围依次为:44.29—5209.63,20.91—1894.37,0.34—77.06 mg/kg。Cmic、Nmic呈极显著的相关关系,Cmic/Nmic为4.78,明显低于其它生态系统。半变异函数分析表明,Cmic和Nmic的最佳拟合模型为高斯模型,Pmic的最佳拟合模型为球状模型,Cmic/Nmic的最佳拟合模型为指数模型。土壤微生物量的块金值/基台值均介于25%—75%之间,表现为中等空间相关性,说明其受随机因素和结构因素的综合影响。Cmic、Nmic的自相关距离约为50 m,随着滞后距离的增大,自相关函数逐渐向负方向增长,达到显著的负相关。Pmic的Moran’s I在滞后距大于70 m后反而增大,表现为正相关。Cmic/Nmic的Moran’s I较小,在-0.2—0.2之间波动。Cmic、Nmic的空间分布具有很高的相似性,呈凸型片状分布,坡中含量高且向两边递减。Pmic表现为明显不同的分布格局,其在坡中上位和洼地含量较高。Cmic/Nmic呈相反的凹形零星斑块状分布。土壤微生物存在着一定的空间格局,受干扰后其含量急剧降低,因此应加强喀斯特原生生态系统的保护。  相似文献   

11.
Soil microbial biomass C (Cmic) is a sensitive indicator of trends in organic matter dynamics in terrestrial ecosystems. This study was conducted to determine the effects of tropospheric CO2 or O3 enrichments and moisture variations on total soil organic C (Corg), mineralizable C fraction (CMin), Cmic, maintenance respiratory (qCO2) or Cmic death (qD) quotients, and their relationship with basal respiration (BR) rates and field respiration (FR) fluxes in wheat‐soybean agroecosystems. Wheat (Triticum aestivum L.) and soybean (Glycine max. L. Merr) plants were grown to maturity in 3‐m dia open‐top field chambers and exposed to charcoal‐filtered (CF) air at 350 μL CO2 L?1; CF air + 150 μL CO2 L?1; nonfiltered (NF) air + 35 nL O3 L?1; and NF air + 35 nL O3 L?1 + 150 μL CO2 L?1 at optimum (? 0.05 MPa) and restricted soil moisture (? 1.0 ± 0.05 MPa) regimes. The + 150 μL CO2 L?1 additions were 18 h d?1 and the + 35 nL O3 L?1 treatments were 7 h d?1 from April until late October. While Corg did not vary consistently, CMin, Cmic and Cmic fractions increased in soils under tropospheric CO2 enrichment (500 μL CO2 L?1) and decreased under high O3 exposures (55 ± 6 nL O3 L?1 for wheat; 60 ± 5 nL O3 L?1 for soybean) compared to the CF treatments (25 ± 5 nL O3 L?1). The qCO2 or qD quotients of Cmic were also significantly decreased in soils under high CO2 but increased under high O3 exposures compared to the CF control. The BR rates did not vary consistently but they were higher in well‐watered soils. The FR fluxes were lower under high O3 exposures compared to soils under the CF control. An increase in Cmic or Cmic fractions and decrease in qCO2 or qD observed under high CO2 treatment suggest that these soils were acting as C sinks whereas, reductions in Cmic or Cmic fractions and increase in qCO2 or qD in soils under elevated tropospheric O3 exposures suggest the soils were serving as a source of CO2.  相似文献   

12.
云贵高原喀斯特坡耕地土壤微生物量 C、N、P空间分布   总被引:3,自引:0,他引:3  
土壤微生物是地球生物演化进程中的先锋种类,具有重要的生态修复功能,但空间分布格局是否存在的争议很大。以云贵高原典型喀斯特坡耕地为对象,基于网格法取样,用经典统计学和地统计学综合分析了土壤微生物生物量的空间变异特征。结果表明,云贵高原喀斯特坡耕地土壤微生物生物量碳(Cmic)、磷(Pmic)以及碳氮比(Cmic/Nmic)适宜,氮(Nmic)的含量较低,变异均很大,空间自相关性明显,最佳拟合模型均为指数模型。块金值C0较小(0.0016-0.0087),C0/(C0+C)均<25%(2.6%-10.2%),变程a较短(22.2-51.0 m),其强烈的空间变异主要由结构性变异引起。Kriging等值线图表明,Cmic、Nmic和Cmic/Nmic的高值区分布在坡的中上部,Pmic的高值区则在坡的中下部和坡脚。云贵高原喀斯特坡耕地土壤微生物不仅存在着小尺度的空间分布格局,而且不同土壤微生物属性的空间分布不同。  相似文献   

13.
Plant functional traits built the relationships between plant diversity, species composition, and physiology along with the environmental changes, thus influencing soil microbial community. As the sensitivity indicators, soil microbial biomass and plant functional traits responses soil micro-organism and plant characteristics in direct way. Ten plant functional traits of 149 species and soil microbial biomass (carbon, nitrogen, and phosphorus) were analyzed across the different vegetation types (forest, forest-steppe, and steppe) that are divided by environmental gradient (temperature and precipitation), aimed to find the correlations among them. Our results confirmed the greatest values of plant functional traits (except the leaf density and the fine root density) that were distributed in the steppe zone, mainly due to the different mean annual temperature and mean annual precipitation conditions. For different plant growth forms, the plant functional traits were significant differences among the vegetation zones. The advantages of higher rate nutrient cycling, plentiful biomass supplements, and favorite habit conditions lead to the forest-steppe zone with the highest Cmic and Nmic concentrations. The canonical correlation analysis indicated that leaf nitrogen, root nitrogen, and fine root densities were correlated with root exudate and tissue which affected the concentrations of soil organic carbon (SOC) and total nitrogen (N), consequently impacting soil microbial biomass carbon (Cmic) and soil microbial biomass nitrogen (Nmic). Soil is the medium that connects micro-organism and plant root system that influenced leaf nitrogen, root nitrogen, and fine root density of plant functional traits, the concentrations of SOC and total N that plant feedback are consequently influencing Cmic and Nmic.  相似文献   

14.
The recovery of ecosystem processes in severely disturbed systems is often limited by biological resources in the soil. The objective of this study was to direct soil microbial biomass (SMB) size and activity with organic amendments. These amendments were applied to the soil at different amendment locations (incorporated versus surface‐applied) and amounts (none, light, and heavy) in a 2 × 3 factorial design. The size and activity of SMB, soil nutrients, and aboveground biomass were monitored over 3 years to determine the rate and direction of change. Contrary to expectations that SMB and carbon mineralization potential (C‐MIN) would be larger with amendment incorporation, SMB‐carbon was greatest in the surface‐heavy treatment and lowest in the incorporated‐control treatment. SMB‐nitrogen, C‐MIN, and organic carbon were greater in the surface than in the incorporated treatments and in amended plots compared to controls. This departure from expectations suggests that other factors, such as microclimate or vegetation, are interacting with the amendment to affect SMB. The degree of contribution, however, is unclear. The treatments only affected planted aboveground biomass early in the experiment, with greater total biomass in the surface‐light treatment in fall 2003. There was also a significant positive relationship between aboveground biomass and SMB in fall 2004. Inorganic nitrogen, total nitrogen, and the soil quality indicators qCO2 and Cmic/Corg did not vary systematically with amendment treatment. In general, amendment addition did enhance soil biotic properties and supported increased vegetation, but the complication of incorporating the amendment was not necessary for promoting biological development in disturbed soils.  相似文献   

15.
To evaluate the microbial diversity of Fushan forest soils, the variation of soil properties, microbial populations, and soil DNA with soil depth in three sites of different altitude were analyzed. Microbial population, moisture content, total organic carbon (Corg), and total nitrogen (Ntot) decreased with increasing soil depth. The valley site had the lowest microbial populations among the three tested sites due to the low organic matter content. Bacterial population was the highest among the microbial populations. The ratios of cellulolytic microbes to the total bacteria in organic layers were high, implying their roles in the carbon cycle. The microbial biomass carbon (Cmic) and nitrogen (Nmic) contents ranged from 130.5 to 564.1 μg g−1 and from 16.7 to 95.4 μg g−1, respectively. The valley had the lowest Cmic and Nmic. The organic layer had the highest Cmic and Nmic and decreased with soil depth. Analysis using denaturing gradient gel electrophoresis (DGGE) of polymerase chain reaction (PCR) amplicons of 16S rDNA showed that the bacterial diversity of the three sites were very similar to each other in the major bands, and the variation was in the minor bands. However, the patterns in PCR-DGGE profile through gradient horizons were different, indicating the prevalence of specific microbes at different horizons. These results suggest that the microbial diversity in the deeper horizons is not simply the diluted analogs of the surface soils and that some microbes dominate only in the deeper horizons. Topography influenced the quantity and diversity of microbial populations.  相似文献   

16.
Thermal adaptations of soil microorganisms could mitigate or facilitate global warming effects on soil organic matter (SOM) decomposition and soil CO2 efflux. We incubated soil from warmed and control subplots of a forest soil warming experiment to assess whether 9 years of soil warming affected the rates and the temperature sensitivity of the soil CO2 efflux, extracellular enzyme activities, microbial efficiency, and gross N mineralization. Mineral soil (0–10 cm depth) was incubated at temperatures ranging from 3 to 23 °C. No adaptations to long‐term warming were observed regarding the heterotrophic soil CO2 efflux (R10 warmed: 2.31 ± 0.15 μmol m?2 s?1, control: 2.34 ± 0.29 μmol m?2 s?1; Q10 warmed: 2.45 ± 0.06, control: 2.45 ± 0.04). Potential enzyme activities increased with incubation temperature, but the temperature sensitivity of the enzymes did not differ between the warmed and the control soils. The ratio of C : N acquiring enzyme activities was significantly higher in the warmed soil. Microbial biomass‐specific respiration rates increased with incubation temperature, but the rates and the temperature sensitivity (Q10 warmed: 2.54 ± 0.23, control 2.75 ± 0.17) did not differ between warmed and control soils. Microbial substrate use efficiency (SUE) declined with increasing incubation temperature in both, warmed and control, soils. SUE and its temperature sensitivity (Q10 warmed: 0.84 ± 0.03, control: 0.88 ± 0.01) did not differ between warmed and control soils either. Gross N mineralization was invariant to incubation temperature and was not affected by long‐term soil warming. Our results indicate that thermal adaptations of the microbial decomposer community are unlikely to occur in C‐rich calcareous temperate forest soils.  相似文献   

17.
Seagrass meadows store globally significant organic carbon (Corg) stocks which, if disturbed, can lead to CO2 emissions, contributing to climate change. Eutrophication and thermal stress continue to be a major cause of seagrass decline worldwide, but the associated CO2 emissions remain poorly understood. This study presents comprehensive estimates of seagrass soil Corg erosion following eutrophication‐driven seagrass loss in Cockburn Sound (23 km2 between 1960s and 1990s) and identifies the main drivers. We estimate that shallow seagrass meadows (<5 m depth) had significantly higher Corg stocks in 50 cm thick soils (4.5 ± 0.7 kg Corg/m2) than previously vegetated counterparts (0.5 ± 0.1 kg Corg/m2). In deeper areas (>5 m), however, soil Corg stocks in seagrass and bare but previously vegetated areas were not significantly different (2.6 ± 0.3 and 3.0 ± 0.6 kg Corg/m2, respectively). The soil Corg sequestration capacity prevailed in shallow and deep vegetated areas (55 ± 11 and 21 ± 7 g Corg m?2 year?1, respectively), but was lost in bare areas. We identified that seagrass canopy loss alone does not necessarily drive changes in soil Corg but, when combined with high hydrodynamic energy, significant erosion occurred. Our estimates point at ~0.20 m/s as the critical shear velocity threshold causing soil Corg erosion. We estimate, from field studies and satellite imagery, that soil Corg erosion (within the top 50 cm) following seagrass loss likely resulted in cumulative emissions of 0.06–0.14 Tg CO2‐eq over the last 40 years in Cockburn Sound. We estimated that indirect impacts (i.e. eutrophication, thermal stress and light stress) causing the loss of ~161,150 ha of seagrasses in Australia, likely resulted in the release of 11–21 Tg CO2‐eq since the 1950s, increasing cumulative CO2 emissions from land‐use change in Australia by 1.1%–2.3% per annum. The patterns described serve as a baseline to estimate potential CO2 emissions following disturbance of seagrass meadows.  相似文献   

18.
为了探讨林地覆盖雷竹林退化机理,给退化雷竹林恢复提供理论参考,对不同覆盖年限(CK、1、3 a 和6 a) 雷竹林土壤微生物区系组成和生物量碳(Cmic)、氮(Nmic)、磷(Pmic)等特征因子进行了测定,并分析了其与土壤养分的制约性关系。结果表明:(1) 雷竹林土壤微生物以细菌为主,真菌次之,放线菌最少,分别占土壤微生物总量的90.11%-98.03%、1.04%-9.22%和0.67%-1.37%。随覆盖年限增加,细菌、放线菌比率呈下降趋势,真菌比率呈上升趋势;土壤微生物总数、细菌和放线菌数量及Cmic、Nmic、Pmic均呈先升高后降低的变化趋势,试验雷竹林间差异极显著,真菌数量总体呈极显著升高趋势。(2)雷竹林土壤微生物特征因子与土壤有机质(SOM)、全氮(TN)、全磷(TP)、碱解氮(Available nitrogen, AN)和pH均呈显著或极显著相关,其中,CK和覆盖1 a、3 a雷竹林土壤微生物特征因子与土壤养分主要呈正相关,与pH呈负相关,而覆盖6 a雷竹林则相反。(3)不同覆盖年限雷竹林土壤养分与土壤微生物的制约性关系存在一定的差异,CK雷竹林土壤SOM、TN、AN、速效钾(AK)和pH主要影响土壤Cmic、Nmic和细菌,覆盖1 a雷竹林土壤SOM、TN、TP和AK主要影响土壤Pmic、放线菌和细菌,覆盖3 a雷竹林土壤SOM、TN、速效磷(AP)和AN主要影响土壤Nmic、放线菌和真菌,覆盖6 a雷竹林土壤SOM、TN和pH主要影响土壤Nmic、真菌。研究表明:长期覆盖雷竹林土壤细菌、放线菌数量与比例明显降低,真菌数量与比例明显提高,土壤养分与土壤微生物的制约性作用关系会发生较为明显变化,产生土壤障害,这是覆盖雷竹林退化的主要原因之一。  相似文献   

19.
Plant species richness (PSR) increases nutrient uptake which depletes bioavailable nutrient pools in soil. No such relationship between plant uptake and availability in soil was found for phosphorus (P). We explored PSR effects on P mobilisation [phosphatase activity (PA)] in soil. PA increased with PSR. The positive PSR effect was not solely due to an increase in Corg concentrations because PSR remained significant if related to PA:Corg. An increase in PA per unit Corg increases the probability of the temporal and spatial match between substrate, enzyme and microorganism potentially serving as an adaption to competition. Carbon use efficiency of microorganisms (Cmic:Corg) increased with increasing PSR while enzyme exudation efficiency (PA:Cmic) remained constant. These findings suggest the need for efficient C rather than P cycling underlying the relationship between PSR and PA. Our results indicate that the coupling between C and P cycling in soil becomes tighter with increasing PSR.  相似文献   

20.
Assessment of soil carbon (C) stock changes over time is typically based on the application of two methods, namely (i) repeated soil inventory and (ii) determination of the ecosystem C budget or net biome productivity (NBP) by continuous measurement of CO2 exchange in combination with quantification of other C imports and exports. Here, we applied both methods in parallel to determine C stock changes of two temperate grassland fields previously converted from long‐term cropland. The grasslands differed in management intensity with either intensive management (high fertilization, frequent cutting) or extensive management (no fertilization, less frequent cutting). Soil organic C stocks (0–45 cm depth) were quantified at the beginning (2001) and the end (2006) of a 5 year observational period using the equivalent soil mass approach. For the same period and in both fields, NBP was quantified from net CO2 fluxes monitored using eddy covariance systems, and measured C import by organic fertilizer and C export by harvest. Both NBP and repeated soil inventories revealed a consistent and significant difference between management systems of 170 ± 48 and 253 ± 182  g C m?2 a?1, respectively. For both fields, the inventory method showed a tendency towards higher C loss/smaller C gain than NBP. In the extensive field, a significant C loss was observed by the inventory but not by the NBP approach. Thus neither flux measurements nor repeated soil sampling may be suitable for tracking absolute changes in SOC, but both give similar answers with respect to relative changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号