首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nickel and zinc are both bio-essential micronutrients with a nutrient-like distribution in the modern ocean, but show key differences in their biological functions and geochemical behavior. Eukaryotic phytoplankton, and especially diatoms, have high Zn quotas, whereas cyanobacteria generally require relatively more Ni. Secular changes in the relative availability of these micronutrients may, therefore, have affected the evolution and diversification of phytoplankton. In this study, we use a large compilation of Ni and Zn concentration data for Phanerozoic sediments to evaluate long-term changes in Ni and Zn availability and possible links to phytoplankton evolution. Modern data suggest that organic-rich sediments capture the dissolved deep ocean Ni/Zn ratio, regardless of local depositional conditions. We use this observation to constrain Ni/Zn ratios for past oceans, based on data from the sedimentary record. This record highlights long-term changes in the relative availability of these micronutrients that can be linked to the (bio)geochemical conditions on the Earth's surface. Early Palaeozoic oceans were likely relatively Ni rich, with sedimentary Ni/Zn ratios for this interval mostly being around ~1 or higher. A comparison with Phanerozoic strontium-, carbon-, and sulfur-isotopic records suggests that the late Palaeozoic decrease in sulfidic conditions and increase in hydrothermal inputs and organic-carbon burial rates caused a shift towards more Zn-rich conditions. Mesozoic and Cenozoic sediments show relatively Zn-rich oceans for these time intervals, with sedimentary Ni/Zn ratios mostly being around ~1 or lower. These observations imply that the diversification of the dominant groups of modern eukaryotic phytoplankton occurred in relatively Zn-rich oceans and that these organisms still carry this signature in their stoichiometries. However, the Phanerozoic transition to a more Zn-rich ocean pre-dates the origin and diversification of modern eukaryotes and, therefore, this transition was likely not the main direct cause for eukaryotic diversification in the Mesozoic and Cenozoic Eras.  相似文献   

2.
Shifts in global climate resonate in plankton dynamics, biogeochemical cycles, and marine food webs. We studied these linkages in the North Atlantic subpolar gyre (NASG), which hosts extensive phytoplankton blooms. We show that phytoplankton abundance increased since the 1960s in parallel to a deepening of the mixed layer and a strengthening of winds and heat losses from the ocean, as driven by the low frequency of the North Atlantic Oscillation (NAO). In parallel to these bottom‐up processes, the top‐down control of phytoplankton by copepods decreased over the same time period in the western NASG, following sea surface temperature changes typical of the Atlantic Multi‐decadal Oscillation (AMO). While previous studies have hypothesized that climate‐driven warming would facilitate seasonal stratification of surface waters and long‐term phytoplankton increase in subpolar regions, here we show that deeper mixed layers in the NASG can be warmer and host a higher phytoplankton biomass. These results emphasize that different modes of climate variability regulate bottom‐up (NAO control) and top‐down (AMO control) forcing on phytoplankton at decadal timescales. As a consequence, different relationships between phytoplankton, zooplankton, and their physical environment appear subject to the disparate temporal scale of the observations (seasonal, interannual, or decadal). The prediction of phytoplankton response to climate change should be built upon what is learnt from observations at the longest timescales.  相似文献   

3.
孙军  薛冰 《生物多样性》2016,24(7):739-222
理解全球气候变化对地球生态系统的影响是全世界广泛关注的问题, 而相比于陆地生态系统, 海洋生态系统对全球气候变化更为敏感。全球气候变化对海洋的影响主要表现在海洋暖化、海洋酸化、大洋环流系统的改变、海平面上升、紫外线辐射增强等方面。浮游植物是海洋生态系统最重要的初级生产者, 同时对海洋碳循环起到举足轻重的作用, 其对全球气候变化的响应主要体现在物种分布、初级生产力、群落演替、生物气候学等方面。具体表现在以下方面: 暖水种的分布范围在扩大, 冷水种分布范围在缩小; 浮游植物全球初级生产力降低; 浮游植物群落会向细胞体积更小的物种占优势的方向转变; 浮游植物水华发生的时间提前、强度增强; 一些有害物种水华的发生频率也会增加; 海洋表层海水的酸化会影响浮游植物特别是钙化类群的生长和群落多样性; 紫外辐射增强对浮游植物的生长起到抑制作用; 厄尔尼诺、拉尼娜、降水量的增加通常抑制浮游植物生长。浮游植物生长和分布的变化会体现在多样性的各个层面上。对于浮游植物在全球变化各种驱动因子下的生理生态学和长周期变动观测等是今后研究的重要方向, 也将为理解全球变化下的浮游植物-多样性-生态系统响应与反馈机制提供基本信息。  相似文献   

4.
It is widely believed that inorganic C does not limit the rate of short-term photosynthesis, the net productivity, or the maximum biomass, of marine phytoplankton. This lack of inorganic C restriction is less widely believed to hold for phytoplankton in many low alkalinity freshwaters or for seaweed in nutrient-enriched rock pools. These views are examined in the context of the physical chemistry of the inorganic C system in natural waters and of the ways in which various taxa of phytoplankton deal with inorganic C and discriminate between 12C and 13C. Using this information to interpret data obtained in the ocean or in freshwater suggests that short-term photosynthesis, production rate, and achieved biomass, of phytoplankton are rarely limited by inorganic C supply but, rather, that the widely suggested factors of limited light, nitrogen or phosphorus supply are the resource inputs which restrict productivity. Global change, by increasing atmospheric CO2 partial pressure and global mean temperatures, is likely to increase the mean CO2 concentration in the atmosphere, but the corresponding change in the oceans will be much less. There are, however, genotypic differences in the handling of inorganic C among the diversity of marine phytoplankton, and in impact on use of limiting nutrients, so increases in the mean CO2 and HCO3 - concentrations in surface ocean waters could cause changes in species composition. However, the rarity of inorganic C limitation of marine phytoplankton short-term photosynthesis, net productivity, or the maximum biomass, in today's ocean means that global change is unlikely to increase these three values in the ocean.  相似文献   

5.
Both ocean acidification and viral infection bring about changes in marine phytoplankton physiological activities and community composition. However, little information is available on how the relationship between phytoplankton and viruses may be affected by ocean acidification and what impacts this might have on photosynthesis‐driven marine biological CO2 pump. Here, we show that when the harmful bloom alga Phaeocystis globosa is infected with viruses under future ocean conditions, its photosynthetic performance further decreased and cells became more susceptible to stressful light levels, showing enhanced photoinhibition and reduced carbon fixation, up‐regulation of mitochondrial respiration and decreased virus burst size. Our results indicate that ocean acidification exacerbates the impacts of viral attack on P. globosa, which implies that, while ocean acidification directly influences marine primary producers, it may also affect them indirectly by altering their relationship with viruses. Therefore, viruses as a biotic stressor need to be invoked when considering the overall impacts of climate change on marine productivity and carbon sequestration.  相似文献   

6.
The impact of climate change on the marine food web is highly uncertain. Nonetheless, there is growing consensus that global marine primary production will decline in response to future climate change, largely due to increased stratification reducing the supply of nutrients to the upper ocean. Evidence to date suggests a potential amplification of this response throughout the trophic food web, with more dramatic responses at higher trophic levels. Here we show that trophic amplification of marine biomass declines is a consistent feature of the Coupled Model Intercomparison Project Phase 5 (CMIP5) Earth System Models, across different scenarios of future climate change. Under the business‐as‐usual Representative Concentration Pathway 8.5 (RCP8.5) global mean phytoplankton biomass is projected to decline by 6.1% ± 2.5% over the twenty‐first century, while zooplankton biomass declines by 13.6% ± 3.0%. All models project greater relative declines in zooplankton than phytoplankton, with annual zooplankton biomass anomalies 2.24 ± 1.03 times those of phytoplankton. The low latitude oceans drive the projected trophic amplification of biomass declines, with models exhibiting variable trophic interactions in the mid‐to‐high latitudes and similar relative changes in phytoplankton and zooplankton biomass. Under the assumption that zooplankton biomass is prey limited, an analytical explanation of the trophic amplification that occurs in the low latitudes can be derived from generic plankton differential equations. Using an ocean biogeochemical model, we show that the inclusion of variable C:N:P phytoplankton stoichiometry can substantially increase the trophic amplification of biomass declines in low latitude regions. This additional trophic amplification is driven by enhanced nutrient limitation decreasing phytoplankton N and P content relative to C, hence reducing zooplankton growth efficiency. Given that most current Earth System Models assume that phytoplankton C:N:P stoichiometry is constant, such models are likely to underestimate the extent of negative trophic amplification under projected climate change.  相似文献   

7.
The fossil record of the Palaeozoic documents one of the most dramatic changes in Phanerozoic marine primary production, although causes and effects of these changes have been the subject of rather controversial discussions. During the early Palaeozoic the marine phytoplankton experienced an enormous radiation and diversification of taxa especially among acritarchs, which was punctuated by a few extinction events possibly associated with climate changes. Phytoplankton diversity was drastically reduced at the Devonian/Carboniferous boundary, a phenomenon here designated as the “Phytoplankton Blackout”.After a lapse of about 130 million years phytoplankton diversity was gradually restored during the Late Triassic with the appearance of dinoflagellates and somewhat later of coccolithophorids and diatoms. Evidence from recent phytoplankton suggests that the dominant groups of phytoplankton differ from those of the Palaeozoic in their nutritional requirements and that fundamental changes in ocean chemistry have played an important role.The remarkable temporal coincidence of the Phytoplankton Blackout with plate tectonic processes during the assembly and breakup of Pangaea and the concomitant rise of land plants towards the end of the Devonian provide arguments that nutrient depletion in the ocean may have played a decisive role in controlling the phytoplankton blackout. Contrary arguments in favour of oceanic eutrophication, changes in life cycles of dominant phytoplankton groups or selective preservation are discussed and weighed against the scenario presented here. Metazoan evolution seems only loosely linked with the phytoplankton blackout. However, there is good agreement between phytoplankton and reef evolution throughout the Phanerozoic.  相似文献   

8.
Cenozoic greenhouse gases (GHG) variations and warming periods underscore the extreme rates of current climate change, with major implications for the adaptability and survivability of terrestrial and marine habitats. Current rise rate of greenhouse gases, reaching 3.3 ppm CO2 per year during March 2015–2016, is the fastest recorded since the Paleocene‐Eocene Thermal Event (PETM) when carbon release to the atmosphere was about an order of magnitude less than at present. The ice core evidence of concentration of (GHG) and temperatures in the atmosphere/ocean/cryosphere system over the last 740 kyr suggests that the rate of rise in GHG over the last ~260 years, CO2 rates rising from 0.94 ppm yr?1 in 1959 (315.97 ppm) to 1.62 ppm yr?1 in 2000 (369.52 ppm) to 3.05 ppm yr?1 in 2015 (400.83 ppm), constitutes a unique spike in the history of the atmosphere. The reliance of pre‐740 kyr paleoclimate estimates on multiple proxies, including benthic and plankton fossils, fossil plants, residual organic matter, major and trace elements in fossils, sediments and soils, place limits on the resolution of pre‐upper Pleistocene paleoclimate estimates, rendering it likely recorded mean Cenozoic paleoclimate trends may conceal abrupt short‐term climate fluctuations. However, as exemplified by the Paleocene–Eocene thermal maximum (PETM) and earlier GHG and temperature spikes associated with major volcanic and asteroid impact events, the long‐term residence time of CO2 in the atmosphere extends the signatures of abrupt warming events to within detection limits of multiple paleoproxies. The mean post‐1750 temperature rise rate (approximately ~0.0034 °C per yr, or ~0.008 °C per yr where temperature is not masked by sulfur aerosols) exceeds those of the PETM (approximately ~0.0008–0.0015 °C per yr) by an order of magnitude and mean glacial termination warming rates (last glacial termination [LGT] ~ 0.00039; Eemian ~0.0004 °C per yr) by near to an order of magnitude. Consistent with previous interglacial peaks an increasing likelihood of collapse of the Atlantic Meridional Ocean Circulation is threatening a severe stadial event.  相似文献   

9.
Considerable uncertainty remains over how increasing atmospheric CO2 and anthropogenic climate changes are affecting open‐ocean marine ecosystems from phytoplankton to top predators. Biological time series data are thus urgently needed for the world's oceans. Here, we use the carbon stable isotope composition of tuna to provide a first insight into the existence of global trends in complex ecosystem dynamics and changes in the oceanic carbon cycle. From 2000 to 2015, considerable declines in δ13C values of 0.8‰–2.5‰ were observed across three tuna species sampled globally, with more substantial changes in the Pacific Ocean compared to the Atlantic and Indian Oceans. Tuna recorded not only the Suess effect, that is, fossil fuel‐derived and isotopically light carbon being incorporated into marine ecosystems, but also recorded profound changes at the base of marine food webs. We suggest a global shift in phytoplankton community structure, for example, a reduction in 13C‐rich phytoplankton such as diatoms, and/or a change in phytoplankton physiology during this period, although this does not rule out other concomitant changes at higher levels in the food webs. Our study establishes tuna δ13C values as a candidate essential ocean variable to assess complex ecosystem responses to climate change at regional to global scales and over decadal timescales. Finally, this time series will be invaluable in calibrating and validating global earth system models to project changes in marine biota.  相似文献   

10.
Early life stages of marine organisms are predicted to be vulnerable to ocean acidification. For macroalgae, reproduction and population persistence rely on spores to settle, adhere and continue the algal life cycle, yet the effect of ocean acidification on this critical life stage has been largely overlooked. We explicitly tested the biomechanical impact of reduced pH on early spore adhesion. We developed a shear flume to examine the effect of reduced pH on spore attachment time and strength in two intertidal rhodophyte macroalgae, one calcified (Corallina vancouveriensis) and one noncalcified (Polyostea robusta). Reduced pH delayed spore attachment of both species by 40%–52% and weakened attachment strength in C. vancouveriensis, causing spores to dislodge at lower flow‐induced shear forces, but had no effect on the attachment strength of P. robusta. Results are consistent with our prediction that reduced pH disrupts proper curing and gel formation of spore adhesives (anionic polysaccharides and glycoproteins) via protonation and cation displacement, although experimental verification is needed. Our results demonstrate that ocean acidification negatively, and differentially, impacts spore adhesion in two macroalgae. If results hold in field conditions, reduced ocean pH has the potential to impact macroalgal communities via spore dysfunction, regardless of the physiological tolerance of mature thalli.  相似文献   

11.
Ocean warming can modify the ecophysiology and distribution of marine organisms, and relationships between species, with nonlinear interactions between ecosystem components potentially resulting in trophic amplification. Trophic amplification (or attenuation) describe the propagation of a hydroclimatic signal up the food web, causing magnification (or depression) of biomass values along one or more trophic pathways. We have employed 3‐D coupled physical‐biogeochemical models to explore ecosystem responses to climate change with a focus on trophic amplification. The response of phytoplankton and zooplankton to global climate‐change projections, carried out with the IPSL Earth System Model by the end of the century, is analysed at global and regional basis, including European seas (NE Atlantic, Barents Sea, Baltic Sea, Black Sea, Bay of Biscay, Adriatic Sea, Aegean Sea) and the Eastern Boundary Upwelling System (Benguela). Results indicate that globally and in Atlantic Margin and North Sea, increased ocean stratification causes primary production and zooplankton biomass to decrease in response to a warming climate, whilst in the Barents, Baltic and Black Seas, primary production and zooplankton biomass increase. Projected warming characterized by an increase in sea surface temperature of 2.29 ± 0.05 °C leads to a reduction in zooplankton and phytoplankton biomasses of 11% and 6%, respectively. This suggests negative amplification of climate driven modifications of trophic level biomass through bottom‐up control, leading to a reduced capacity of oceans to regulate climate through the biological carbon pump. Simulations suggest negative amplification is the dominant response across 47% of the ocean surface and prevails in the tropical oceans; whilst positive trophic amplification prevails in the Arctic and Antarctic oceans. Trophic attenuation is projected in temperate seas. Uncertainties in ocean plankton projections, associated to the use of single global and regional models, imply the need for caution when extending these considerations into higher trophic levels.  相似文献   

12.
We discuss the possible links between the fossil record of marine biodiversity, nutrient availability and primary productivity. The parallelism of the fossil records of marine phytoplankton and faunal biodiversity implicates the quantity (primary productivity) and quality (stoichiometry) of phytoplankton as being critical to the diversification of the marine biosphere through the Phanerozoic. The relatively subdued marine biodiversity of the Palaeozoic corresponds to a time of relatively low macronutrient availability and poor food quality of the phytoplankton as opposed to the diversification of the Modern Fauna through the Mesozoic–Cenozoic. Increasing nutrient runoff to the oceans through the Phanerozoic resulted from orogeny, the emplacement of Large Igneous Provinces (LIPs), the evolution of deep-rooting forests and the appearance of more easily decomposable terrestrial organic matter that enhanced weathering. Positive feedback by bioturbation of an expanding benthos played a critical role in evolving biogeochemical cycles by linking the oxidation of dead organic matter and the recycling of nutrients back to the water column where they could be re-utilized. We assess our conclusions against a recently published biogeochemical model for geological time-scales. Major peaks of marine diversity often occur near rising or peak fluxes of silica, phosphorus and dissolved reactive oceanic phosphorus; either major or minor 87Sr/86Sr peaks; and frequently in the vicinity of major (Circum-Atlantic Magmatic Province) and minor volcanic events, some of which are associated with Oceanic Anoxic Events. These processes appear to be scale-dependent in that they lie on a continuum between biodiversification on macroevolutionary scales of geological time and mass extinction.  相似文献   

13.
The Arctic Ocean and its surrounding shelf seas are warming much faster than the global average, which potentially opens up new distribution areas for temperate‐origin marine phytoplankton. Using over three decades of continuous satellite observations, we show that increased inflow and temperature of Atlantic waters in the Barents Sea resulted in a striking poleward shift in the distribution of blooms of Emiliania huxleyi, a marine calcifying phytoplankton species. This species' blooms are typically associated with temperate waters and have expanded north to 76°N, five degrees further north of its first bloom occurrence in 1989. E. huxleyi's blooms keep pace with the changing climate of the Barents Sea, namely ocean warming and shifts in the position of the Polar Front, resulting in an exceptionally rapid range shift compared to what is generally detected in the marine realm. We propose that as the Eurasian Basin of the Arctic Ocean further atlantifies and ocean temperatures continue to rise, E. huxleyi and other temperate‐origin phytoplankton could well become resident bloom formers in the Arctic Ocean.  相似文献   

14.
15.
16.
Although all chloroplasts appear to have been derived from a common ancestor, a major schism occurred early in the evolution of eukaryotic algae that gave rise to red and green photoautotrophic lineages. In Paleozoic and earlier times, the fossil record suggests that oceanic eukaryotic phytoplankton were dominated by the green (chl b‐containing) algal line. However, following the end‐Permian extinction, a diverse group of eukaryotic phytoplankton evolved from secondary symbiotic associations in the red (chl c‐containing) line and subsequently rose to ecological prominence. In the contemporary oceans, red eukaryotic phytoplankton taxa continue to dominate marine pelagic food webs, whereas the green line is relegated to comparatively minor ecological and biogeochemical roles. To help elucidate why the oceans are not dominated by green taxa, we analyzed and compared whole plastid genomes in both the red and green lineages. Our results suggest that whereas all algal plastids retain a core set of genes, red plastids retain a complementary set of genes that potentially confer more capacity to autonomously express proteins regulating oxygenic photosynthetic and energy transduction pathways. We hypothesize that specific gene losses in the primary endosymbiotic green plastid reduced its portability for subsequent symbiotic associations. This corollary of the plastid “enslavement” hypothesis may have limited subsequent evolutionary advances in the green lineage while simultaneously providing a competitive advantage to the red lineage.  相似文献   

17.
Algal wrack subsidies underpin most of the food web structure of exposed sandy beaches and are responsible of important biogeochemical processes that link marine and terrestrial ecosystems. The response in decomposition of algal wrack deposits to global warming has not been studied in ocean‐exposed sandy beaches to date. With this aim, passive open top chambers (OTCs) were used to increase soil temperature within the range predicted by the IPCC for western Europe (between 0.5 and 1.5°C), following the hypothesis that the biogeochemical processing of macroalgal wrack subsidies would accelerate in response to temperature increase. The effect of temperature manipulation on three target substrates: fresh and aged macroalgae, and bare sand, was tested. Results indicated that a small warming (<0.5°C) affected the wrack decomposition process through traceable increases in soil respiration through CO2 flux, inorganic nutrients within the interstitial environment (N and P), sediment organic contents measured through the amount of proteins and microbial pool through the total soil DNA. The different responses of soil variables in the studied substrates indicated that the decomposition stage of stranded macroalgae influences the biogeochemical processing of organic matter in sandy beaches. Thus, CO2 fluxes, releases of organic and inorganic nutrients and microbial activity intensify in aged wrack deposits. Our results predict that expected global warming will increase the release of inorganic nutrients to the coastal ocean by 30% for the N (21 Gg/year) and 5.9% for P (14 Gg/year); that increase for the flow of C to the atmosphere as CO2 was estimated in 8.2% (523 Gg/year). This study confirms the key role of sandy beaches in recycling ocean‐derived organic matter, highlighting their sensitivity to a changing scenario of global warming that predicts significant increases in temperature over the next few decades.  相似文献   

18.
To improve our mechanistic understanding and predictive capacities with respect to climate change effects on the spring phytoplankton bloom in temperate marine systems, we used a process‐driven dynamical model to disentangle the impact of potentially relevant factors which are often correlated in the field. The model was based on comprehensive indoor mesocosm experiments run at four temperature and three light regimes. It was driven by time‐series of water temperature and irradiance, considered edible and less edible phytoplankton separately, and accounted for density‐dependent grazing losses. It successfully reproduced the observed dynamics of well edible phytoplankton in the different temperature and light treatments. Four major factors influenced spring phytoplankton dynamics: temperature, light (cloudiness), grazing, and the success of overwintering phyto‐ and zooplankton providing the starting biomasses for spring growth. Our study predicts that increasing cloudiness as anticipated for warmer winters for the Baltic Sea region will retard phytoplankton net growth and reduce peak heights. Light had a strong direct effect in contrast to temperature. However, edible phytoplankton was indirectly strongly temperature‐sensitive via grazing which was already important in early spring at moderately high algal biomasses and counter‐intuitively provoked lower and later algal peaks at higher temperatures. Initial phyto‐ and zooplankton composition and biomass also had a strong effect on spring algal dynamics indicating a memory effect via the broadly under‐sampled overwintering plankton community. Unexpectedly, increased initial phytoplankton biomass did not necessarily lead to earlier or higher spring blooms since the effect was counteracted by subsequently enhanced grazing. Increasing temperature will likely exhibit complex indirect effects via changes in overwintering phytoplankton and grazer biomasses and current grazing pressure. Additionally, effects on the phytoplankton composition due to the species‐specific susceptibility to grazing are expected. Hence, we need to consider not only direct but also indirect effects, e.g. biotic interactions, when addressing climate change impacts.  相似文献   

19.
Cyanobacterial blooms are an increasing threat to water quality and global water security caused by the nutrient enrichment of freshwaters. There is also a broad consensus that blooms are increasing with global warming, but the impacts of other concomitant environmental changes, such as an increase in extreme rainfall events, may affect this response. One of the potential effects of high rainfall events on phytoplankton communities is greater loss of biomass through hydraulic flushing. Here we used a shallow lake mesocosm experiment to test the combined effects of: warming (ambient vs. +4°C increase), high rainfall (flushing) events (no events vs. seasonal events) and nutrient loading (eutrophic vs. hypertrophic) on total phytoplankton chlorophyll‐a and cyanobacterial abundance and composition. Our hypotheses were that: (a) total phytoplankton and cyanobacterial abundance would be higher in heated mesocosms; (b) the stimulatory effects of warming on cyanobacterial abundance would be enhanced in higher nutrient mesocosms, resulting in a synergistic interaction; (c) the recovery of biomass from flushing induced losses would be quicker in heated and nutrient‐enriched treatments, and during the growing season. The results supported the first and, in part, the third hypotheses: total phytoplankton and cyanobacterial abundance increased in heated mesocosms with an increase in common bloom‐forming taxa—Microcystis spp. and Dolichospermum spp. Recovery from flushing was slowest in the winter, but unaffected by warming or higher nutrient loading. Contrary to the second hypothesis, an antagonistic interaction between warming and nutrient enrichment was detected for both cyanobacteria and chlorophyll‐a demonstrating that ecological surprises can occur, dependent on the environmental context. While this study highlights the clear need to mitigate against global warming, oversimplification of global change effects on cyanobacteria should be avoided; stressor gradients and seasonal effects should be considered as important factors shaping the response.  相似文献   

20.
Climate change effects on marine ecosystems include impacts on primary production, ocean temperature, species distributions, and abundance at local to global scales. These changes will significantly alter marine ecosystem structure and function with associated socio‐economic impacts on ecosystem services, marine fisheries, and fishery‐dependent societies. Yet how these changes may play out among ocean basins over the 21st century remains unclear, with most projections coming from single ecosystem models that do not adequately capture the range of model uncertainty. We address this by using six marine ecosystem models within the Fisheries and Marine Ecosystem Model Intercomparison Project (Fish‐MIP) to analyze responses of marine animal biomass in all major ocean basins to contrasting climate change scenarios. Under a high emissions scenario (RCP8.5), total marine animal biomass declined by an ensemble mean of 15%–30% (±12%–17%) in the North and South Atlantic and Pacific, and the Indian Ocean by 2100, whereas polar ocean basins experienced a 20%–80% (±35%–200%) increase. Uncertainty and model disagreement were greatest in the Arctic and smallest in the South Pacific Ocean. Projected changes were reduced under a low (RCP2.6) emissions scenario. Under RCP2.6 and RCP8.5, biomass projections were highly correlated with changes in net primary production and negatively correlated with projected sea surface temperature increases across all ocean basins except the polar oceans. Ecosystem structure was projected to shift as animal biomass concentrated in different size‐classes across ocean basins and emissions scenarios. We highlight that climate change mitigation measures could moderate the impacts on marine animal biomass by reducing biomass declines in the Pacific, Atlantic, and Indian Ocean basins. The range of individual model projections emphasizes the importance of using an ensemble approach in assessing uncertainty of future change.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号