首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The boreal larch forest of Eurasia is a widespread forest ecosystem and plays an important role in the carbon budget of boreal forests. However, few carbon budgets exist for these forests, and the effects of wildfire, the dominant natural disturbance in this region, on carbon budgets are poorly understood. The objective of this study was to quantify the effects of wildfire on carbon distribution and net primary production (NPP) for three major Dahurian larch (Larix gmelinii Rupr.) forest ecosystems in Tahe, Daxing'anling, north‐eastern China: Larix gmelinii–Ledum palustre, Larix gmelinii–grass and Larix gmelinii–Rhododendron dahurica forests. The experimental design included mature forests (unburned), and lightly and heavily burned forests from the 1.3‐million‐ha 1987 wildfire. We measured carbon distribution and above‐ground NPP, and estimated fine root production from literature values. Total ecosystem carbon content for the mature forests was greatest for Larix–Ledum forests (251.4 t C ha?1) and smallest for Larix–grass forests (123.8 t C ha?1). Larix–Ledum forests contained the smallest vegetation carbon (13.5%), while Larix–Rhododendron contained the largest vegetation carbon (63.1%). Fires tended to transfer carbon from vegetation to detritus and soil. Total NPP did not differ significantly between the lightly burned and unburned stands, and averaged 1.58, 1.29 and 1.01 t C ha?1 year?1 for Larix–grass, Larix–Rhododendron and Larix–Ledum lightly burned stands, respectively. Above‐ground net primary production (ANPP) of heavily burned stands was 92–95% less than unburned and lightly burned stands. The estimated carbon loss during the 1987 fire showed substantial variability among forest types and fire severity levels. Depending upon the assumptions made about the fraction of the landscape occupied by the three larch forest types, the 1987 conflagration in north‐east China released 2.5 × 107?4.9 × 107 t C to the atmosphere. This study illustrates the need to distinguish between the different larch forests for developing general carbon budgets.  相似文献   

2.
Terrestrial net primary productivity (NPP) is an important metric of ecosystem functioning; however, there are little empirical data on the NPP of human‐modified ecosystems, particularly smallholder, perennial crops like cocoa (Theobroma cacao), which are extensive across the tropics. Human‐appropriated NPP (HANPP) is a measure of the proportion of a natural system's NPP that has either been reduced through land‐use change or harvested directly and, previously, has been calculated to estimate the scale of the human impact on the biosphere. Additionally, human modification can create shifts in NPP allocation and decomposition, with concomitant impacts on the carbon cycle. This study presents the results of 3 years of intensive monitoring of forest and smallholder cocoa farms across disturbance, management intensity, distance from forest and farm age gradients. We measured among the highest reported NPP values in tropical forest, 17.57 ± 2.1 and 17.7 ± 1.6 Mg C ha?1 year?1 for intact and logged forest, respectively; however, the average NPP of cocoa farms was still higher, 18.8 ± 2.5 Mg C ha?1 year?1, which we found was driven by cocoa pod production. We found a dramatic shift in litterfall residence times, where cocoa leaves decomposed more slowly than forest leaves and shade tree litterfall decomposed considerably faster, indicating significant changes in rates of nutrient cycling. The average HANPP value for all cocoa farms was 2.1 ± 1.1 Mg C ha?1 year?1; however, depending on the density of shade trees, it ranged from ?4.6 to 5.2 Mg C ha?1 year?1. Therefore, rather than being related to cocoa yield, HANPP was reduced by maintaining higher shade levels. Across our monitored farms, 18.9% of farm NPP was harvested (i.e., whole cocoa pods) and only 1.1% (i.e., cocoa beans) was removed from the system, suggesting that the scale of HANPP in smallholder cocoa agroforestry systems is relatively small.  相似文献   

3.
4.
红树林是滨海湿地“蓝碳”的主要类型之一.准确和定位评估不同植物群落的固碳能力,对于红树林保育管理和恢复造林具有指导作用.本研究对深圳福田红树林4种代表性群落(白骨壤群落、秋茄群落、海桑群落、无瓣海桑群落)的各个植被碳库组分(乔木植物生物量碳库、林下灌丛碳库、呼吸根碳库、枯立木碳库、枯倒木碳库和枯枝落叶层碳库等)进行调查,计算各群落的植被碳储量,并通过生长增量-凋落物产量法计算得到各群落的净初级生产力.结果表明: 白骨壤群落、秋茄群落、海桑群落和无瓣海桑群落的植被碳储量分别为28.7、127.6、100.1、73.6 t C·hm-2,各群落的净初级生产力分别为8.75、7.67、9.60、11.87 t C·hm-2·a-1.位于深圳市中心的福田红树林,每年固定大气CO2高达4000 t.本研究结果将为红树林“蓝碳”碳汇功能的评估提供理论指导,并为我国红树林碳汇林建设提供依据.  相似文献   

5.
Operational monitoring of global terrestrial gross primary production (GPP) and net primary production (NPP) is now underway using imagery from the satellite‐borne Moderate Resolution Imaging Spectroradiometer (MODIS) sensor. Evaluation of MODIS GPP and NPP products will require site‐level studies across a range of biomes, with close attention to numerous scaling issues that must be addressed to link ground measurements to the satellite‐based carbon flux estimates. Here, we report results of a study aimed at evaluating MODIS NPP/GPP products at six sites varying widely in climate, land use, and vegetation physiognomy. Comparisons were made for twenty‐five 1 km2 cells at each site, with 8‐day averages for GPP and an annual value for NPP. The validation data layers were made with a combination of ground measurements, relatively high resolution satellite data (Landsat Enhanced Thematic Mapper Plus at ~30 m resolution), and process‐based modeling. There was strong seasonality in the MODIS GPP at all sites, and mean NPP ranged from 80 g C m?2 yr?1 at an arctic tundra site to 550 g C m?2 yr?1 at a temperate deciduous forest site. There was not a consistent over‐ or underprediction of NPP across sites relative to the validation estimates. The closest agreements in NPP and GPP were at the temperate deciduous forest, arctic tundra, and boreal forest sites. There was moderate underestimation in the MODIS products at the agricultural field site, and strong overestimation at the desert grassland and at the dry coniferous forest sites. Analyses of specific inputs to the MODIS NPP/GPP algorithm – notably the fraction of photosynthetically active radiation absorbed by the vegetation canopy, the maximum light use efficiency (LUE), and the climate data – revealed the causes of the over‐ and underestimates. Suggestions for algorithm improvement include selectively altering values for maximum LUE (based on observations at eddy covariance flux towers) and parameters regulating autotrophic respiration.  相似文献   

6.
Determining the drivers of shifting forest disturbance rates remains a pressing global change issue. Large‐scale forest dynamics are commonly assumed to be climate driven, but appropriately scaled disturbance histories are rarely available to assess how disturbance legacies alter subsequent disturbance rates and the climate sensitivity of disturbance. We compiled multiple tree ring‐based disturbance histories from primary Picea abies forest fragments distributed throughout five European landscapes spanning the Bohemian Forest and the Carpathian Mountains. The regional chronology includes 11,595 tree cores, with ring dates spanning the years 1750–2000, collected from 560 inventory plots in 37 stands distributed across a 1,000 km geographic gradient, amounting to the largest disturbance chronology yet constructed in Europe. Decadal disturbance rates varied significantly through time and declined after 1920, resulting in widespread increases in canopy tree age. Approximately 75% of current canopy area recruited prior to 1900. Long‐term disturbance patterns were compared to an historical drought reconstruction, and further linked to spatial variation in stand structure and contemporary disturbance patterns derived from LANDSAT imagery. Historically, decadal Palmer drought severity index minima corresponded to higher rates of canopy removal. The severity of contemporary disturbances increased with each stand's estimated time since last major disturbance, increased with mean diameter, and declined with increasing within‐stand structural variability. Reconstructed spatial patterns suggest that high small‐scale structural variability has historically acted to reduce large‐scale susceptibility and climate sensitivity of disturbance. Reduced disturbance rates since 1920, a potential legacy of high 19th century disturbance rates, have contributed to a recent region‐wide increase in disturbance susceptibility. Increasingly common high‐severity disturbances throughout primary Picea forests of Central Europe should be reinterpreted in light of both legacy effects (resulting in increased susceptibility) and climate change (resulting in increased exposure to extreme events).  相似文献   

7.
Plants typically expend a significant portion of their available carbon (C) on nutrient acquisition – C that could otherwise support growth. However, given that most global terrestrial biosphere models (TBMs) do not include the C cost of nutrient acquisition, these models fail to represent current and future constraints to the land C sink. Here, we integrated a plant productivity‐optimized nutrient acquisition model – the Fixation and Uptake of Nitrogen Model – into one of the most widely used TBMs, the Community Land Model. Global plant nitrogen (N) uptake is dynamically simulated in the coupled model based on the C costs of N acquisition from mycorrhizal roots, nonmycorrhizal roots, N‐fixing microbes, and retranslocation (from senescing leaves). We find that at the global scale, plants spend 2.4 Pg C yr?1 to acquire 1.0 Pg N yr?1, and that the C cost of N acquisition leads to a downregulation of global net primary production (NPP) by 13%. Mycorrhizal uptake represented the dominant pathway by which N is acquired, accounting for ~66% of the N uptake by plants. Notably, roots associating with arbuscular mycorrhizal (AM) fungi – generally considered for their role in phosphorus (P) acquisition – are estimated to be the primary source of global plant N uptake owing to the dominance of AM‐associated plants in mid‐ and low‐latitude biomes. Overall, our coupled model improves the representations of NPP downregulation globally and generates spatially explicit patterns of belowground C allocation, soil N uptake, and N retranslocation at the global scale. Such model improvements are critical for predicting how plant responses to altered N availability (owing to N deposition, rising atmospheric CO2, and warming temperatures) may impact the land C sink.  相似文献   

8.
Aim We investigated how ozone pollution and climate change/variability have interactively affected net primary productivity (NPP) and net carbon exchange (NCE) across China's forest ecosystem in the past half century. Location Continental China. Methods Using the dynamic land ecosystem model (DLEM) in conjunction with 10‐km‐resolution gridded historical data sets (tropospheric O3 concentrations, climate variability/change, and other environmental factors such as land‐cover/land‐use change (LCLUC), increasing CO2 and nitrogen deposition), we conducted nine simulation experiments to: (1) investigate the temporo‐spatial patterns of NPP and NCE in China's forest ecosystems from 1961–2005; and (2) quantify the effects of tropospheric O3 pollution alone or in combination with climate variability and other environmental stresses on forests' NPP and NCE. Results China's forests acted as a carbon sink during 1961–2005 as a result of the combined effects of O3, climate, CO2, nitrogen deposition and LCLUC. However, simulated results indicated that elevated O3 caused a 7.7% decrease in national carbon storage, with O3‐induced reductions in NCE (Pg C year?1) ranging from 0.4–43.1% among different forest types. Sensitivity experiments showed that climate change was the dominant factor in controlling changes in temporo‐spatial patterns of annual NPP. The combined negative effects of O3 pollution and climate change on NPP and NCE could be largely offset by the positive fertilization effects of nitrogen deposition and CO2. Main conclusions In the future, tropospheric O3 should be taken into account in order to fully understand the variations of carbon sequestration capacity of forests and assess the vulnerability of forest ecosystems to climate change and air pollution. Reducing air pollution in China is likely to increase the resilience of forests to climate change. This paper offers the first estimate of how prevention of air pollution can help to increase forest productivity and carbon sequestration in China's forested ecosystems.  相似文献   

9.
 森林净初级生产力(NPP)是衡量陆地碳源/汇的重要参数, 准确地估算森林生态系统的NPP, 同时通过引入干扰因子以期更加完整地描述生态学过程及其响应是目前森林生态系统碳循环研究的重点。因此, 该研究基于北方生态系统生产力(BEPS)模型, 结合遥感数据和气象数据等模拟2003年东北林区NPP; 将BEPS模型模拟的结果作为整合陆地生态系统碳收支(InTEC)模型的参考年数据, 模拟东北林区1901–2008年的NPP, 并在InTEC模型中加入林火干扰数据, 模拟大兴安岭地区1966–2008年的森林NPP。结果显示: 在1901年, 东北林区NPP平均值仅为278.8 g C·m–2·a–1, 到了1950年, NPP平均值增加到338.5 g C·m–2·a–1, 2008年NPP平均值进一步增加到378.4 g C·m–2·a–1。其中长白山地区的NPP平均值始终最高, 大兴安岭次之, 小兴安岭始终最低。到了2008年, 大、小兴安岭和长白山地区的NPP平均值都有较大涨幅, 其中涨幅最高的是长白山地区, 达到200–300 g C·m–2·a–1; 东北三省中, 黑龙江和吉林的NPP平均值和总量都比较高, 辽宁相对较低, 但相比于1901年的涨幅最高, 达到70%; 重大火灾(100–1000 hm2)对NPP的影响不是很大, 而特大火灾(>1 000 hm2)的影响比较大, 使NPP下降幅度达到10%左右, 其他火灾年份, NPP增长迅速并保持在较高水平; 对火灾面积在100 000 hm2以上的4个年份的NPP进行分析, 发现NPP平均值都大幅度下降, 其中1987年下降幅度最大, 为11%以上。  相似文献   

10.
森林净初级生产力(NPP)是衡量陆地碳源/汇的重要参数, 准确地估算森林生态系统的NPP, 同时通过引入干扰因子以期更加完整地描述生态学过程及其响应是目前森林生态系统碳循环研究的重点。因此, 该研究基于北方生态系统生产力(BEPS)模型, 结合遥感数据和气象数据等模拟2003年东北林区NPP; 将BEPS模型模拟的结果作为整合陆地生态系统碳收支(InTEC)模型的参考年数据, 模拟东北林区1901-2008年的NPP, 并在InTEC模型中加入林火干扰数据, 模拟大兴安岭地区1966-2008年的森林NPP。结果显示: 在1901年, 东北林区NPP平均值仅为278.8 g C·m-2·a-1, 到了1950年, NPP平均值增加到338.5 g C·m-2·a-1, 2008年NPP平均值进一步增加到378.4 g C·m-2·a-1。其中长白山地区的NPP平均值始终最高, 大兴安岭次之, 小兴安岭始终最低。到了2008年, 大、小兴安岭和长白山地区的NPP平均值都有较大涨幅, 其中涨幅最高的是长白山地区, 达到200-300 g C·m-2·a-1; 东北三省中, 黑龙江和吉林的NPP平均值和总量都比较高, 辽宁相对较低, 但相比于1901年的涨幅最高, 达到70%; 重大火灾(100-1000 hm2)对NPP的影响不是很大, 而特大火灾(>1000 hm2)的影响比较大, 使NPP下降幅度达到10%左右, 其他火灾年份, NPP增长迅速并保持在较高水平; 对火灾面积在100000 hm2以上的4个年份的NPP进行分析, 发现NPP平均值都大幅度下降, 其中1987年下降幅度最大, 为11%以上。  相似文献   

11.
Net biome productivity (NBP) dominates the observed large variation of atmospheric CO2 annual increase over the last five decades. However, the dominant regions controlling inter‐annual to multi‐decadal variability of global NBP are still controversial (semi‐arid regions vs. temperate or tropical forests). By developing a theory for partitioning the variance of NBP into the contributions of net primary production (NPP) and heterotrophic respiration (Rh) at different timescales, and using both observation‐based atmospheric CO2 inversion product and the outputs of 10 process‐based terrestrial ecosystem models forced by 110‐year observational climate, we tried to reconcile the controversy by showing that semi‐arid lands dominate the variability of global NBP at inter‐annual (<10 years) and tropical forests dominate at multi‐decadal scales (>30 years). Results further indicate that global NBP variability is dominated by the NPP component at inter‐annual timescales, and is progressively controlled by Rh with increasing timescale. Multi‐decadal NBP variations of tropical rainforests are modulated by the Pacific Decadal Oscillation (PDO) through its significant influences on both temperature and precipitation. This study calls for long‐term observations for the decadal or longer fluctuations in carbon fluxes to gain insights on the future evolution of global NBP, particularly in the tropical forests that dominate the decadal variability of land carbon uptake and are more effective for climate mitigation.  相似文献   

12.
东北森林净第一性生产力与碳收支对气候变化的响应   总被引:9,自引:0,他引:9  
以东北地区(38.43'N~53.34'N,115.37'E~135.5'E)为研究对象,利用当前气候状况和不同气候情景下的气象数据驱动基于个体生长过程的中国森林生态系统碳收支模型FORCCHN,模拟了气候变化对东北森林生态系统净第一性生产力(NPP)和碳收支(NEP)的影响.结果表明:1981~2002年期间,东北森林NPP总量位于0.27~0.40 pgc·a-1之间,平均值为0.34 pgc·a-1;土壤呼吸总量在0.11~0.27 PgC·a-1,平均为0.19 PgC·a-1;NEP总量位于0.11~0.18 PgC·a-1之间,且近20多年来该区森林起着CO2汇的作用,平均每年吸收0.15 Pg C的CO2;该区森林NPP和NEP对温度升高比对降雨变化的反应更为敏感;综合降雨增加(20%)和气温增加(3℃)的情况,该区各点森林的NPP和NEP增加的幅度最大;温度不变、降水增加(不变)情景下最小.  相似文献   

13.
Measurement of net ecosystem exchange was made using the eddy covariance method above three forests along a north-south climatic gradient in Sweden: Flakaliden in the north, Knottåsen in central and Asa in south Sweden. Data were obtained for 2 years at Flakaliden and Knottåsen and for one year at Asa. The net fluxes (Nep) were separated into their main components, total ecosystem respiration (Rt) and gross primary productivity (Pg). The maximum half-hourly net uptake during the heart of the growing season was highest in the southernmost site with ?0.787 mg COm?2 s?1 followed by Knottåsen with ?0.631 mg COm?2 s?1 and Flakaliden with ?0.429 mg COm?2 s?1. The maximum respiration rates during the summer were highest in Knottåsen with 0.245 mg COm?2 s?1 while it was similar at the two other sites with 0.183 mg COm?2 s?1. The annual Nep ranged between uptake of ?304 g C m?2 year?1 (Asa) and emission of 84 g C m?2 year?1 (Knottåsen). The annual Rt and Pg ranged between 793 to 1253 g C m?2 year?1 and ?875 to ?1317 g C m?2 year?1, respectively. Biomass increment measurements in the footprint area of the towers in combination with the measured net ecosystem productivity were used to estimate the changes in soil carbon and it was found that the soils were losing on average 96–125 g C m?2 year?1. The most plausible explanation for these losses was that the studied years were much warmer than normal causing larger respiratory losses. The comparison of net primary productivity and Pg showed that ca 60% of Pg was utilized for autotrophic respiration.  相似文献   

14.
The dynamic global vegetation model (DGVM) MC2 was run over the conterminous USA at 30 arc sec (~800 m) to simulate the impacts of nine climate futures generated by 3GCMs (CSIRO, MIROC and CGCM3) using 3 emission scenarios (A2, A1B and B1) in the context of the LandCarbon national carbon sequestration assessment. It first simulated potential vegetation dynamics from coast to coast assuming no human impacts and naturally occurring wildfires. A moderate effect of increased atmospheric CO2 on water use efficiency and growth enhanced carbon sequestration but did not greatly influence woody encroachment. The wildfires maintained prairie‐forest ecotones in the Great Plains. With simulated fire suppression, the number and impacts of wildfires was reduced as only catastrophic fires were allowed to escape. This greatly increased the expansion of forests and woodlands across the western USA and some of the ecotones disappeared. However, when fires did occur, their impacts (both extent and biomass consumed) were very large. We also evaluated the relative influence of human land use including forest and crop harvest by running the DGVM with land use (and fire suppression) and simple land management rules. From 2041 through 2060, carbon stocks (live biomass, soil and dead biomass) of US terrestrial ecosystems varied between 155 and 162 Pg C across the three emission scenarios when potential natural vegetation was simulated. With land use, periodic harvest of croplands and timberlands as well as the prevention of woody expansion across the West reduced carbon stocks to a range of 122–126 Pg C, while effective fire suppression reduced fire emissions by about 50%. Despite the simplicity of our approach, the differences between the size of the carbon stocks confirm other reports of the importance of land use on the carbon cycle over climate change.  相似文献   

15.
Forest harvesting and wildfire were widespread in the upper Great Lakes region of North America during the early 20th century. We examined how long this legacy of disturbance constrains forest carbon (C) storage rates by quantifying C pools and fluxes after harvest and fire in a mixed deciduous forest chronosequence in northern lower Michigan, USA. Study plots ranged in age from 6 to 68 years and were created following experimental clear‐cut harvesting and fire disturbance. Annual C storage was estimated biometrically from measurements of wood, leaf, fine root, and woody debris mass, mass losses to herbivory, soil C content, and soil respiration. Maximum annual C storage in stands that were disturbed by harvest and fire twice was 26% less than a reference stand receiving the same disturbance only once. The mechanism for this reduction in annual C storage was a long‐lasting decrease in site quality that endured over the 62‐year timeframe examined. However, during regrowth the harvested and burned forest rapidly became a net C sink, storing 0.53 Mg C ha−1 yr−1 after 6 years. Maximum net ecosystem production (1.35 Mg C ha−1 yr−1) and annual C increment (0.95 Mg C ha−1 yr−1) were recorded in the 24‐ and 50‐year‐old stands, respectively. Net primary production averaged 5.19 Mg C ha−1 yr−1 in experimental stands, increasing by < 10% from 6 to 50 years. Soil heterotrophic respiration was more variable across stand ages, ranging from 3.85 Mg C ha−1 yr−1 in the 6‐year‐old stand to 4.56 Mg C ha−1 yr−1 in the 68‐year‐old stand. These results suggest that harvesting and fire disturbances broadly distributed across the region decades ago caused changes in site quality and successional status that continue to limit forest C storage rates.  相似文献   

16.
Land use has greatly transformed Earth's surface. While spatial reconstructions of how the extent of land cover and land-use types have changed during the last century are available, much less information exists about changes in land-use intensity. In particular, global reconstructions that consistently cover land-use intensity across land-use types and ecosystems are missing. We, therefore, lack understanding of how changes in land-use intensity interfere with the natural processes in land systems. To address this research gap, we map land-cover and land-use intensity changes between 1910 and 2010 for 9 points in time. We rely on the indicator framework of human appropriation of net primary production (HANPP) to quantify and map land-use-induced alterations of the carbon flows in ecosystems. We find that, while at the global aggregate level HANPP growth slowed down during the century, the spatial dynamics of changes in HANPP were increasing, with the highest change rates observed in the most recent past. Across all biomes, the importance of changes in land-use areas has declined, with the exception of the tropical biomes. In contrast, increases in land-use intensity became the most important driver of HANPP across all biomes and settings. We conducted uncertainty analyses by modulating input data and assumptions, which indicate that the spatial patterns of land use and potential net primary production are the most critical factors, while spatial allocation rules and uncertainties in overall harvest values play a smaller role. Highlighting the increasing role of land-use intensity compared to changes in the areal extent of land uses, our study supports calls for better integration of the intensity dimension into global analyses and models. On top of that, we provide important empirical input for further analyses of the sustainability of the global land system.  相似文献   

17.
湿地生态系统具有很强的储碳、固碳能力,在全球碳循环中占有重要地位.为了解盐沼的固碳能力,以崇明东滩南部典型盐沼潮沟体系为对象,结合实验观测与遥感影像解译,估算了盐沼湿地的净初级生产力,并探讨了环境变化下盐沼湿地固碳潜力的变化.结果 表明:盐沼植物净初级生产力表现出显著的时空差异,时间差异体现在年际和季节差异,即2013...  相似文献   

18.
利用年轮生态学方法和生物量经验方程,在宁夏六盘山研究了华山松天然林及华北落叶松和油松人工林等3种针叶林的年初级净生产力(NPP)及其与气象因子间的关系。研究表明:3种针叶林生物量的年际变化均符合逻辑斯蒂方程,林分的现存生物量(t/hm2)为华北落叶松林最大(141.96),华山松林(130.99)次之,油松林最小(123.29)。3种针叶林NPP存在显著的年际差异和种间差异,林分的NPP(t.hm-.2a-1)为华北落叶松林(6.72)>油松林(5.76)>华山松林(2.66);NPP年际变化在华山松林呈现"快速增加-缓慢增加-缓慢减小"的趋势,而华北落叶松林和油松林为快速上升的趋势。3种针叶林的NPP随年降水量的变化行为不同,华山松林极轻微地增大,华北落叶松林和油松林均是先增加后降低;然而在极端干旱年份或极端湿润年份,3种针叶林的NPP都趋向于相同的较低值,其原因可能分别是水分胁迫和低温胁迫。气象因子对林分NPP的影响具明显的"滞后效应"和种间差异。华山松林NPP与上年11月和当年9、11月的降水量显著负相关;油松林NPP与上年9月及当年4月的降水量显著相关;上年和当年9月的降水量均与华北落叶松林NPP显著正相关。上年6月的温度和当年3与6月的月均温及月均最高温能显著影响3种针叶林的NPP,但存在种间差异,其中华山松林NPP与当年与上年生长季各月的温度均呈不同程度的负相关,而油松林和华北落叶松林则多呈不同程度的正相关。  相似文献   

19.
黄兴召  许崇华  徐俊  陶晓  徐小牛 《生态学报》2017,37(7):2274-2281
通过收集155篇644条杉木林生产力数据,利用结构方程模型,分析杉木林净初级生产力与年均降雨量、年均温度、林分密度和林龄之间的关系。结果表明:杉木林净生产力与年均降水量和年均温度呈显著正相关,相关系数分别为0.63和0.378。杉木林净生产力与林龄和林分密度呈显著负相关,相关系数分别为-0.332和-0.408。结构方程模型较好的解析了杉木净初级生产力与环境因子和林分因子之间的关系。杉木林净生产力与年均降水量、年均温度、林龄、林分密度都有影响,其总通径系数分别为0.398(P0.01)、0.746(P0.01)、-0.321(P0.01)和-0.738(P0.01)。年均温度和林龄不仅直接影响杉木林净生产力,还通过影响年均降水量和林分密度间接影响林分净生产力。年均温度和林龄的直接通径系数分别为0.494(P0.01)和-0.700(P0.01);年均温度和林龄的间接通径系数分别为0.252(P0.05)和0.379(P0.05)。结构方程作为大尺度分析净初级生产力的方法,杉木林净初级生产力影响因素的62%来自年均降水量、年均温度、林龄和林分密度。  相似文献   

20.
2009—2011年,我国西南地区遭受了极端干旱气候影响。利用1980—2011年气象站点观测数据和基于光能利用率的植被净初级生产力估算模型Glo PEM,研究了2009—2011年西南地区干旱灾害过程和程度及其对植被净初级生产力的影响,结果显示:2009—2011年西南地区年均降水量和湿润指数明显低于1980—2008年均值。受干旱气候影响,研究区植被净初级生产力比2001—2011年均值低12.55 g C m-2a-1,总计低0.017 Pg C/a,造成的碳损失约占我国总碳汇的7.91%。2001—2011年西南地区植被净初级生产力与蒸散量变化显著相关(R2=0.44,P0.05),而降水量和湿润指数变化过程与植被净初级生产力和蒸散量不同步,可能是由于该地区森林覆盖率较高,具有较强的涵养水源功能,导致土壤湿度变化滞后于降水量和湿润指数变化,从而使降水量变化过程与植被净初级生产力变化不同步。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号