首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 211 毫秒
1.
2.
Neuropeptide S (NPS) is a neuropeptide involved in the regulation of fear. Because safety learning is impaired in patients suffering from anxiety‐related psychiatric disorders, and polymorphisms of the human neuropeptide S receptor (NPSR) gene have also been associated with anxiety disorders, we wanted to investigate whether NPSR‐deficiency interferes with safety learning, and how prior stress would affect this type of learning. We first investigated the effect of pre‐exposure to two different types of stressors (electric stimuli or immobilization) on safety learning in female and male C57Bl/6 mice, and found that while stress induced by electric stimuli enhanced safety learning in males, there were no differences in safety learning following immobilization stress. To further investigate the role of the NPS system in stress‐induced modulation of safety learning, we exposed NPSR‐deficient mice to stress induced by electric stimuli 10 days before safety learning. In nonstressed male mice, NPSR‐deficiency enhanced safety learning. As in male C57Bl/6 mice, pre‐exposure to electric stimuli increased safety learning in male NPSR +/+ mice. This pre‐exposure effect was blocked in NPSR‐deficient male mice showing impaired, but still intact, safety learning in comparison to their NPSR +/+ and NPSR +/? littermates. There was neither a pre‐exposure nor a genotype effect in female mice. Our findings provide evidence that pre‐exposure to stress induced by electric stimuli enhances safety learning in male mice, and that NPSR‐deficiency prevents the beneficial effect of stress exposure on safety learning. We propose an inverted U‐shape relationship between stress and safety learning.  相似文献   

3.
4.
Although generally associated with cardiovascular regulation, angiotensin II receptor type 1a (AT1aR) blockade in mouse models and humans has also been associated with enhanced fear extinction and decreased post‐traumatic stress disorder (PTSD) symptom severity, respectively. The mechanisms mediating these effects remain unknown, but may involve alterations in the activities of corticotropin‐releasing factor (CRF)‐expressing cells, which are known to be involved in fear regulation. To test the hypothesis that AT1aR signaling in CRFergic neurons is involved in conditioned fear expression, we generated and characterized a conditional knockout mouse strain with a deletion of the AT1aR gene from its CRF‐releasing cells (CRF‐AT1aR(?/?)). These mice exhibit normal baseline heart rate, blood pressure, anxiety and locomotion, and freeze at normal levels during acquisition of auditory fear conditioning. However, CRF‐AT1aR(?/?) mice exhibit less freezing than wild‐type mice during tests of conditioned fear expression—an effect that may be caused by a decrease in the consolidation of fear memory. These results suggest that central AT1aR activity in CRF‐expressing cells plays a role in the expression of conditioned fear, and identify CRFergic cells as a population on which AT1R antagonists may act to modulate fear extinction.  相似文献   

5.
6.
The developing brain undergoes substantial maturation into adulthood and the development of specific neural structures occurs on differing timelines. Transient imbalances between developmental trajectories of corticolimbic structures, which are known to contribute to regulation over fear learning and anxiety, can leave an individual susceptible to mental illness, particularly anxiety disorders. There is a substantial body of literature indicating that the endocannabinoid (eCB) system critically regulates stress responsivity and emotional behavior throughout the life span, making this system a novel therapeutic target for stress‐ and anxiety‐related disorders. During early life and adolescence, corticolimbic eCB signaling changes dynamically and coincides with different sensitive periods of fear learning, suggesting that eCB signaling underlies age‐specific fear learning responses. Moreover, perturbations to these normative fluctuations in corticolimbic eCB signaling, such as stress or cannabinoid exposure, could serve as a neural substrate contributing to alterations to the normative developmental trajectory of neural structures governing emotional behavior and fear learning. In this review, we first introduce the components of the eCB system and discuss clinical and rodent models showing eCB regulation of fear learning and anxiety in adulthood. Next, we highlight distinct fear learning and regulation profiles throughout development and discuss the ontogeny of the eCB system in the central nervous system, and models of pharmacological augmentation of eCB signaling during development in the context of fear learning and anxiety.  相似文献   

7.
Anxiety disorders result from a complex interplay of genetic and environmental factors such as stress. On the level of cellular signaling, regulator of G protein signaling 2 (Rgs2) has been implicated in human and rodent anxiety. However, there is limited knowledge about the role of Rgs2 in fear learning and reactivity to stress. In this study, Rgs2?/? mice showed increased fear learning, male mice displayed increased contextual and cued fear learning, while females showed selectively enhanced cued fear learning. Male Rgs2?/? mice displayed increased long‐term‐contextual fear memory, but increased cued fear extinction. Learning in spatial non‐aversive paradigms was also increased in Rgs2?/? mice. Female, but not male mice show increased spatial learning in the Barnes maze, while male mice showed enhanced place preference in the IntelliCage, rendering enhanced cognitive function non‐specific for aversive stimuli. Consistent with the previous results, Rgs2 deletion resulted in increased innate anxiety, including neophobic behavior expressed as hypolocomotion, in three different tests based on the approach‐avoidance conflict. Acute electric foot shock stress provoked hypolocomotion in several exploration‐based tests, suggesting fear generalization in both genotypes. Rgs2 deletion was associated with reduced monoaminergic neurotransmitter levels in the hippocampus and prefrontal cortex and disturbed corresponding GPCR expression of the adrenergic, serotonergic, dopaminergic and neuropeptide Y system. Taken together, Rgs2 deletion promotes improved cognitive function as well as increased anxiety‐like behavior, but has no effect on acute stress reactivity. These effects may be related to the observed disruption of the monoaminergic systems.  相似文献   

8.
Chronic stress in rodents was shown to induce structural shrinkage and functional alterations in the hippocampus that were linked to spatial memory impairments. Effects of chronic stress on the amygdala have been linked to a facilitation of fear conditioning. Although the underlying molecular mechanisms are still poorly understood, increasing evidence highlights the neural cell adhesion molecule (NCAM) as an important molecular mediator of stress‐induced structural and functional alterations. In this study, we investigated whether altered NCAM expression levels in the amygdala might be related to stress‐induced enhancement of auditory fear conditioning and anxiety‐like behavior. In adult C57BL/6J wild‐type mice, chronic unpredictable stress resulted in an isoform‐specific increase of NCAM expression (NCAM‐140 and NCAM‐180) in the amygdala, as well as enhanced auditory fear conditioning and anxiety‐like behavior. Strikingly, forebrain‐specific conditional NCAM‐deficient mice (NCAM‐floxed mice that express the cre‐recombinase under the control of the promoter of the α‐subunit of the calcium‐calmodulin‐dependent protein kinase II), whose amygdala NCAM expression levels are reduced, displayed impaired auditory fear conditioning which was not altered following chronic stress exposure. Likewise, chronic stress in these conditional NCAM‐deficient mice did not modify NCAM expression levels in the amygdala or hippocampus, while they showed enhanced anxiety‐like behavior, questioning the involvement of NCAM in this type of behavior. Together, our results strongly support the involvement of NCAM in the amygdala in the consolidation of auditory fear conditioning and highlight increased NCAM expression in the amygdala among the mechanisms whereby stress facilitates fear conditioning processes.  相似文献   

9.
10.
Synapsin III is a neuron‐specific phosphoprotein that plays an important role in synaptic transmission and neural development. While synapsin III is abundant in embryonic brain, expression of the protein in adults is reduced and limited primarily to the hippocampus, olfactory bulb and cerebral cortex. Given the specificity of synapsin III to these brain areas and because it plays a role in neurogenesis in the dentate gyrus, we investigated whether it may affect learning and memory processes in mice. To address this point, synapsin III knockout mice were examined in a general behavioral screen, several tests to assess learning and memory function, and conditioned fear. Mutant animals displayed no anomalies in sensory and motor function or in anxiety‐ and depressive‐like behaviors. Although mutants showed minor alterations in the Morris water maze, they were deficient in object recognition 24 h and 10 days after training and in social transmission of food preference at 20 min and 24 h. In addition, mutants displayed abnormal responses in contextual and cued fear conditioning when tested 1 or 24 h after conditioning. The synapsin III knockout mice also showed aberrant responses in fear‐potentiated startle. As synapsin III protein is decreased in schizophrenic brain and because the mutant mice do not harbor obvious anatomical deficits or neurological disorders, these mutants may represent a unique neurodevelopmental model for dissecting the molecular pathways that are related to certain aspects of schizophrenia and related disorders.  相似文献   

11.
Genes and neurons: molecular insights to fear and anxiety   总被引:1,自引:0,他引:1  
Experimental animal models provide an important tool for the identification of inheritable components of fear and anxiety. 'Pavlovian' fear conditioning has been tremendously successful to characterize the neuronal circuitry and cellular mechanisms of the formation, consolidation and extinction of fear memories. Here we summarize recent progress that has led to the identification of gene products contributing to such experience-dependent changes in fear and anxiety and may guide the search for genetic factors involved in the development and treatment of human anxiety disorders.  相似文献   

12.
The long allele variant of the serotonin transporter (SERT, 5‐HTT) gene‐linked polymorphic region (5‐HTTLPR) is associated with higher levels of 5‐HTT expression and reduced risk of developing affective disorders. However, little is known about the mechanisms underlying this protective effect. One hypothesis is that 5‐HTT expression influences aversive information processing, with reduced negative cognitive bias present in those with higher 5‐HTT expression. Here we investigated this hypothesis using genetically‐modified mice and a novel aversive learning paradigm. Mice with high levels of 5‐HTT expression (5‐HTT over‐expressing, 5‐HTTOE mice) and wild‐type mice were trained to discriminate between three distinct auditory cues: one cue predicted footshock on all trials (CS+); a second cue predicted the absence of footshock (CS?); and a third cue predicted footshock on 20% of trials (CS20%), and was therefore ambiguous. Wild‐type mice exhibited equivalently high levels of fear to the CS+ and CS20% and minimal fear to the CS?. In contrast, 5‐HTTOE mice exhibited high levels of fear to the CS+ but minimal fear to the CS? and the CS20%. This selective reduction in fear to ambiguous aversive cues suggests that increased 5‐HTT expression reduces negative cognitive bias for stimuli with uncertain outcomes.  相似文献   

13.
14.
Understanding of the molecular basis of long‐term fear memory (fear LTM) formation provides targets in the treatment of emotional disorders. Ca2+/calmodulin‐dependent protein kinase II (CaMKII) is one of the key synaptic molecules involved in fear LTM formation. There are two endogenous inhibitor proteins of CaMKII, CaMKII Nα and Nβ, which can regulate CaMKII activity in vitro. However, the physiological role of these endogenous inhibitors is not known. Here, we have investigated whether CaMKII Nβ protein expression is regulated after contextual fear conditioning or exposure to a novel context. Using a novel CaMKII Nβ‐specific antibody, CaMKII Nβ expression was analysed in the naïve mouse brain as well as in the amygdala and hippocampus after conditioning and context exposure. We show that in naïve mouse forebrain CaMKII Nβ protein is expressed at its highest levels in olfactory bulb, prefrontal and piriform cortices, amygdala and thalamus. The protein is expressed both in dendrites and cell bodies. CaMKII Nβ expression is rapidly and transiently up‐regulated in the hippocampus after context exposure. In the amygdala, its expression is regulated only by contextual fear conditioning and not by exposure to a novel context. In conclusion, we show that CaMKII Nβ expression is differentially regulated by novelty and contextual fear conditioning, providing further insight into molecular basis of fear LTM.  相似文献   

15.
Johansen JP  Cain CK  Ostroff LE  LeDoux JE 《Cell》2011,147(3):509-524
Pavlovian fear conditioning is a particularly useful behavioral paradigm for exploring the molecular mechanisms of learning and memory because a well-defined response to a specific environmental stimulus is produced through associative learning processes. Synaptic plasticity in the lateral nucleus of the amygdala (LA) underlies this form of associative learning. Here, we summarize the molecular mechanisms that contribute to this synaptic plasticity in the context of auditory fear conditioning, the form of fear conditioning best understood at the molecular level. We discuss the neurotransmitter systems and signaling cascades that contribute to three phases of auditory fear conditioning: acquisition, consolidation, and reconsolidation. These studies suggest that multiple intracellular signaling pathways, including those triggered by activation of Hebbian processes and neuromodulatory receptors, interact to produce neural plasticity in the LA and behavioral fear conditioning. Collectively, this body of research illustrates the power of fear conditioning as a model system for characterizing the mechanisms of learning and memory in mammals and potentially for understanding fear-related disorders, such as PTSD and phobias.  相似文献   

16.
DNA methylation is one of the essential factors in the control of gene expression. Alteration of the DNA methylation pattern has been linked to various neurological, behavioral and neurocognitive dysfunctions. Recent studies have pointed out the importance of epigenetics in brain development and functions including learning and memory. Nutrients related to one‐carbon metabolism are known to play important roles in the maintenance of genomic DNA methylation. Previous studies have shown that the long‐term administration of a diet lacking essential one‐carbon nutrients such as methionine, choline and folic acid (methyl donors) caused global DNA hypermethylation in the brain. Therefore, the long‐term feeding of a methyl‐donor‐deficient diet may cause abnormal brain development including learning and memory. To confirm this hypothesis, 3‐week‐old mice were maintained on a folate‐, methionine‐ and choline‐deficient (FMCD) or control (CON) diet for 3 weeks. We found that the methyl‐donor deficiency impaired both novel object recognition and fear extinction after 3 weeks of treatment. The FMCD group showed spontaneous recovery of fear that differed from that in CON. In addition, we found decreased Gria1 gene expression and specific CpG hypermethylation of the Gria1 promoter region in the FMCD hippocampus. Our data suggest that a chronic dietary lack of methyl donors in the developmental period affects learning, memory and gene expressions in the hippocampus.  相似文献   

17.
Understanding the interaction between fear and reward at the circuit and molecular levels has implications for basic scientific approaches to memory and for understanding the etiology of psychiatric disorders. Both stress and exposure to drugs of abuse induce epigenetic changes that result in persistent behavioral changes, some of which may contribute to the formation of a drug addiction or a stress‐related psychiatric disorder. Converging evidence suggests that similar behavioral, neurobiological and molecular mechanisms control the extinction of learned fear and drug‐seeking responses. This may, in part, account for the fact that individuals with post‐traumatic stress disorder have a significantly elevated risk of developing a substance use disorder and have high rates of relapse to drugs of abuse, even after long periods of abstinence. At the behavioral level, a major challenge in treatments is that extinguished behavior is often not persistent, returning with changes in context, the passage of time or exposure to mild stressors. A common goal of treatments is therefore to weaken the ability of stressors to induce relapse. With the discovery of epigenetic mechanisms that create persistent molecular signals, recent work on extinction has focused on how modulating these epigenetic targets can create lasting extinction of fear or drug‐seeking behavior. Here, we review recent evidence pointing to common behavioral, systems and epigenetic mechanisms in the regulation of fear and drug seeking. We suggest that targeting these mechanisms in combination with behavioral therapy may promote treatment and weaken stress‐induced relapse.  相似文献   

18.
Williams Syndrome results in distinct behavioral phenotypes, which include learning deficits, anxiety, increased phobias and hypersociability. While the underlying mechanisms driving this subset of phenotypes is unknown, oxytocin (OT) dysregulation is hypothesized to be involved as some studies have shown elevated blood OT and altered OT receptor expression in patients. A “Complete Deletion” (CD) mouse, modeling the hemizygous deletion in Williams Syndrome, recapitulates many of the phenotypes present in humans. These CD mice also exhibit impaired fear responses in the conditioned fear task. Here, we address whether OT dysregulation is responsible for this impaired associative fear memory response. We show direct delivery of an OT receptor antagonist to the central nervous system did not rescue the attenuated contextual or cued fear memory responses in CD mice. Thus, increased OT signaling is not acutely responsible for this phenotype. We also evaluated OT receptor and serotonin transporter availability in regions related to fear learning, memory and sociability using autoradiography in wild type and CD mice. While no differences withstood correction, we identified regions that may warrant further investigation. There was a nonsignificant decrease in OT receptor expression in the lateral septal nucleus and nonsignificant lowered serotonin transporter availability in the striatum and orbitofrontal cortex. Together, these data suggest the fear conditioning anomalies in the Williams Syndrome mouse model are independent of any alterations in the oxytocinergic system caused by deletion of the Williams locus.  相似文献   

19.
20.
RNA silencing is a complex of mechanisms that regulate gene expression through small RNA molecules. The microRNA (miRNA) pathway is the most common of these in mammals. Genome‐encoded miRNAs suppress translation in a sequence‐specific manner and facilitate shifts in gene expression during developmental transitions. Here, we discuss the role of miRNAs in oocyte‐to‐zygote transition and in the control of pluripotency. Existing data suggest a common principle involving miRNAs in defining pluripotent and differentiated cells. RNA silencing pathways also rapidly evolve, resulting in many unique features of RNA silencing in different taxonomic groups. This is exemplified in the mouse model of oocyte‐to‐zygote transition, in which the endogenous RNA interference pathway has acquired a novel role in regulating protein‐coding genes, while the miRNA pathway has become transiently suppressed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号