首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ongoing climate change is predicted to induce more weather extremes such as frequent drought and high-intensity precipitation events, causing more severe drying-rewetting cycles in soil. However, it remains largely unknown how these changes will affect soil nitrogen (N)-cycling microbes and the emissions of potent greenhouse gas nitrous oxide (N2O). Utilizing a field precipitation manipulation in a semi-arid grassland on the Loess Plateau, we examined how precipitation reduction (ca. −30%) influenced soil N2O and carbon dioxide (CO2) emissions in field, and in a complementary lab-incubation with simulated drying-rewetting cycles. Results obtained showed that precipitation reduction stimulated plant root turnover and N-cycling processes, enhancing soil N2O and CO2 emissions in field, particularly after each rainfall event. Also, high-resolution isotopic analyses revealed that field soil N2O emissions primarily originated from nitrification process. The incubation experiment further showed that in field soils under precipitation reduction, drying-rewetting stimulated N mineralization and ammonia-oxidizing bacteria in favor of genera Nitrosospira and Nitrosovibrio, increasing nitrification and N2O emissions. These findings suggest that moderate precipitation reduction, accompanied with changes in drying-rewetting cycles under future precipitation scenarios, may enhance N cycling processes and soil N2O emissions in semi-arid ecosystems, feeding positively back to the ongoing climate change.  相似文献   

2.
N2O is a potent greenhouse gas involved in the destruction of the protective ozone layer in the stratosphere and contributing to global warming. The ecological processes regulating its emissions from soil are still poorly understood. Here, we show that the presence of arbuscular mycorrhizal fungi (AMF), a dominant group of soil fungi, which form symbiotic associations with the majority of land plants and which influence a range of important ecosystem functions, can induce a reduction in N2O emissions from soil. To test for a functional relationship between AMF and N2O emissions, we manipulated the abundance of AMF in two independent greenhouse experiments using two different approaches (sterilized and re-inoculated soil and non-mycorrhizal tomato mutants) and two different soils. N2O emissions were increased by 42 and 33% in microcosms with reduced AMF abundance compared to microcosms with a well-established AMF community, suggesting that AMF regulate N2O emissions. This could partly be explained by increased N immobilization into microbial or plant biomass, reduced concentrations of mineral soil N as a substrate for N2O emission and altered water relations. Moreover, the abundance of key genes responsible for N2O production (nirK) was negatively and for N2O consumption (nosZ) positively correlated to AMF abundance, indicating that the regulation of N2O emissions is transmitted by AMF-induced changes in the soil microbial community. Our results suggest that the disruption of the AMF symbiosis through intensification of agricultural practices may further contribute to increased N2O emissions.  相似文献   

3.
Earthworms can increase nitrous oxide (N2O) emissions, particularly in no‐tillage systems where earthworms are abundant. Here, we study the effect of residue incorporation depth on earthworm‐induced N2O emissions. We hypothesized that cumulative N2O emissions decrease with residue incorporation depth, because (i) increased water filled pore space (WFPS) in deeper soil layers leads to higher denitrification rates as well as more complete denitrification; and (ii) the longer upward diffusion path increases N2O reduction to N2. Two 84‐day laboratory mesocosm experiments were conducted. First, we manually incorporated maize (Zea mays L.) residue at different soil depths (incorporation experiment). Second, 13C‐enriched maize residue was applied to the soil surface and anecic species Lumbricus terrestris (L.) and epigeic species Lumbricus rubellus (Hoffmeister) were confined to different soil depths (earthworm experiment). Residue incorporation depth affected cumulative N2O emissions in both experiments (< 0.001). In the incorporation experiment, N2O emissions decreased from 4.91 mg N2O–N kg?1 soil (surface application) to 2.71 mg N2O–N kg?1 soil (40–50 cm incorporation). In the earthworm experiment, N2O emissions from L. terrestris decreased from 3.87 mg N2O–N kg?1 soil (confined to 0–10 cm) to 2.01 mg N2O–N kg?1 soil (confined to 0–30 cm). Both experimental setups resulted in dissimilar WFPS profiles that affected N2O dynamics. We also found significant differences in residue C recovery in soil organic matter between L. terrestris (28–41%) and L. rubellus (56%). We conclude that (i) N2O emissions decrease with residue incorporation depth, although this effect was complicated by dissimilar WFPS profiles; and (ii) larger residue C incorporation by L. rubellus than L. terrestris indicates that earthworm species differ in their C stabilization potential. Our findings underline the importance of studying earthworm diversity in the context of greenhouse gas emissions from agro‐ecosystems.  相似文献   

4.
This paper presents a new algorithm, Nitrous Oxide Emission (NOE) for simulating the emission of the greenhouse gas N2O from agricultural soils. N2O fluxes are calculated as the result of production through denitrification and nitrification and reduction through the last step of denitrification. Actual denitrification and nitrification rates are calculated from biological parameters and soil water‐filled pore space, temperature and mineral nitrogen contents. New suggestions in NOE consisted in introducing (1) biological site‐specific parameters of soil N2O reduction and (2) reduction of the N2O produced through nitrification to N2 through denitrification. This paper includes a database of 64 N2O fluxes measured on the field scale with corresponding environmental parameters collected from five agricultural situations in France. This database was used to test the validity of this algorithm. Site per site comparison of simulated N2O fluxes against observed data leads to mixed results. For 80% of the tested points, measured and simulated fluxes are in accordance whereas the others resulted in an important discrepancy. The origin of this discrepancy is discussed. On the other hand, mean annual fluxes measured on each site were strongly correlated to mean simulated annual fluxes. The biological site‐specific parameter of soil N2O reduction introduced into NOE appeared particularly useful to discriminate the general level of N2O emissions from site to site. Furthermore, the relevance of NOE was confirmed by comparing measured and simulated N2O fluxes using some data from the US TRAGNET database. We suggest the use of NOE on a regional scale in order to predict mean annual N2O emissions.  相似文献   

5.
6.
The first full greenhouse gas (GHG) flux budget of an intensively managed grassland in Switzerland (Chamau) is presented. The three major trace gases, carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) were measured with the eddy covariance (EC) technique. For CO2 concentrations, an open‐path infrared gas analyzer was used, while N2O and CH4 concentrations were measured with a recently developed continuous‐wave quantum cascade laser absorption spectrometer (QCLAS). We investigated the magnitude of these trace gas emissions after grassland restoration, including ploughing, harrowing, sowing, and fertilization with inorganic and organic fertilizers in 2012. Large peaks of N2O fluxes (20–50 nmol m?2 s?1 compared with a <5 nmol m?2 s?1 background) were observed during thawing of the soil after the winter period and after mineral fertilizer application followed by re‐sowing in the beginning of the summer season. Nitrous oxide (N2O) fluxes were controlled by nitrogen input, plant productivity, soil water content and temperature. Management activities led to increased variations of N2O fluxes up to 14 days after the management event as compared with background fluxes measured during periods without management (<5 nmol m?2 s?1). Fluxes of CO2 remained small until full plant development in early summer 2012. In contrast, methane emissions showed only minor variations over time. The annual GHG flux budget was dominated by N2O (48% contribution) and CO2 emissions (44%). CH4 flux contribution to the annual budget was only minor (8%). We conclude that recently developed multi‐species QCLAS in an EC system open new opportunities to determine the temporal variation of N2O and CH4 fluxes, which further allow to quantify annual emissions. With respect to grassland restoration, our study emphasizes the key role of N2O and CO2 losses after ploughing, changing a permanent grassland from a carbon sink to a significant carbon source.  相似文献   

7.
Plant species exert a dominant control over the nitrogen (N) cycle of natural and managed grasslands. Although in intensively managed systems that receive large external N inputs the emission of the potent greenhouse gas nitrous oxide (N2O) is a crucial component of this cycle, a mechanistic relationship between plant species and N2O emissions has not yet been established. Here we use a plant functional trait approach to study the relation between plant species strategies and N2O emissions from soils. Compared to species with conservative strategies, species with acquisitive strategies have higher N uptake when there is ample N in the soil, but also trigger N mineralization when soil N is limiting. Therefore, we hypothesized that (1) compared to conservative species, species with acquisitive traits reduce N2O emissions after a high N addition; and (2) species with conservative traits have lower N2O emissions than acquisitive plants if there is no high N addition. This was tested in a greenhouse experiment using monocultures of six grass species with differing above‐ and below‐ground traits, growing across a gradient of soil N availability. We found that acquisitive species reduced N2O emissions at all levels of N availability, produced higher biomass and showed larger N uptake. As such, acquisitive species had 87% lower N2O emissions per unit of N uptake than conservative species (< .05). Structural equation modelling revealed that specific leaf area and root length density were key traits regulating the effects of plants on N2O emission and biomass productivity. These results provide the first framework to understand the mechanisms through which plants modulate N2O emissions, pointing the way to develop productive grasslands that contribute optimally to climate change mitigation.  相似文献   

8.
Emissions of N2O were measured during the growth season over a year from grass swards under ambient (360 μL L?1) and elevated (600 μL L?1) CO2 partial pressures at the Free Air Carbon dioxide Enrichment (FACE) experiment, Eschikon, Switzerland. Measurements were made following high (56 g N m?2 yr?1) and low (14 g N m?2 yr?1) rates of fertilizer application, split over 5 re‐growth periods, to Lolium perenne, Trifolium repens and mixed Lolium/Trifolium swards. Elevated pCO2 increased annual emissions of N2O from the high fertilized Lolium and mixed Lolium/Trifolium swards resulting in increases in GWP (N2O emissions) of 179 and 111 g CO2 equivalents m?2, respectively, compared with the GWP of ambient pCO2 swards, but had no significant effect on annual emissions from Trifolium monoculture swards. The greater emissions from the high fertilized elevated pCO2Lolium swards were attributed to greater below‐ground C allocation under elevated pCO2 providing the energy for denitrification in the presence of excess mineral N. An annual emission of 959 mg N2O‐N m?2 yr?1 (1.7% of fertilizer N applied) was measured from the high fertilized Lolium sward under elevated pCO2. The magnitude of emissions varied throughout the year with 84% of the total emission from the elevated pCO2Lolium swards measured during the first two re‐growths (April–June 2001). This was associated with higher rainfall and soil water contents at this time of year. Trends in emissions varied between the first two re‐growths (April–June 2001) and the third, fourth and fifth re‐growths (late June–October 2000), with available soil NO3? and rainfall explaining 70%, and soil water content explaining 72% of the variability in N2O in these periods, respectively. Caution is therefore required when extrapolating from short‐term measurements to predict long‐term responses to global climate change. Our findings are of global significance as increases in atmospheric concentrations of CO2 may, depending on sward composition and fertilizer management, increase greenhouse gas emissions of N2O, thereby exacerbating the forcing effect of elevated CO2 on global climate. Our results suggest that when applying high rates of N fertilizer to grassland systems, Trifolium repens swards, or a greater component of Trifolium in mixed swards, may minimize the negative effect of continued increasing atmospheric CO2 concentrations on global warming.  相似文献   

9.
Spatial variability in hydrological flowpaths and nitrate-removal processes complicates the overall assessment of riparian buffer zone functioning in terms of water quality improvement as well as enhancement of the greenhouse effect by N2O emissions. In this study, we evaluated denitrification and nitrous oxide emission in winter and summer along two groundwater flowpaths in a nitrate-loaded forested riparian buffer zone and related the variability in these processes to controlling soil factors. Denitrification and emissions of N2O were measured using flux chambers and incubation experiments. In winter, N2O emissions were significantly higher (12.4 mg N m−2 d−1) along the flowpath with high nitrate removal compared with the flowpath with low nitrate removal (2.58 mg N m−2 d−1). In summer a reverse pattern was observed, with higher N2O emissions (13.6 mg N m−2 d−1) from the flowpath with low nitrate-removal efficiencies. Distinct spatial patterns of denitrification and N2O emission were observed along the high nitrate-removal transect compared to no clear pattern along the low nitrate-removal transect, where denitrification activity was very low. Results from this study indicate that spots with high nitrate-removal efficiency also contribute significantly to an increased N2O emission from riparian zones. Furthermore, we conclude that high variability in N2O:N2 ratio and weak relationships with environmental conditions limit the value of this ratio as a proxy to evaluate the environmental consequences of riparian buffer zones.  相似文献   

10.
京郊典型设施蔬菜地土壤N_2O排放特征   总被引:10,自引:0,他引:10  
张婧  李虎  王立刚  邱建军 《生态学报》2014,34(14):4088-4098
利用静态暗箱-气相色谱法对北京郊区设施蔬菜地典型种植模式(番茄-白菜-生菜)下土壤N2O排放特征进行了周年(2012年2月22日—2013年2月23日)观测,探讨了不同处理下(即不施氮肥处理(CK)、农民习惯施肥处理(FP)、减氮优化施肥处理(OPT)和减氮优化施肥+硝化抑制剂处理(OPT+DCD))N2O排放特征及土壤温度、土壤湿度、土壤无机氮含量对土壤N2O排放的影响。结果表明:每次施肥+灌溉之后设施蔬菜地会出现明显的N2O排放高峰,持续时间一般为3—5 d。不同处理N2O排放通量变化范围在-0.21—14.26 mg N2O m-2h-1,平均排放通量0.03—0.36 mg N2O m-2h-1。整个蔬菜生长季各处理N2O排放与土壤孔隙含水率(WFPS)均表现出极显著的正相关关系(P0.01);不施氮处理5 cm深度土壤温度与N2O排放通量呈现显著的正相关关系(P0.05);各处理N2O排放与土壤表层硝态氮含量具有较一致变化趋势。不同处理下N2O年度排放总量差异显著,依次顺序为FP((20.66±0.91)kg N/hm2)OPT((12.79±1.33)kg N/hm2)OPT+DCD((8.03±0.37)kg N/hm2)。与FP处理相比,OPT处理和OPT+DCD处理N2O年排放总量分别减少了38.09%和61.13%。各处理N2O排放系数介于0.36%—0.77%,低于IPCC 1.0%的推荐值。在目前的管理措施下,合理减少施氮量和添加硝化抑制剂是减少设施蔬菜地N2O排放量的有效途径。  相似文献   

11.
No‐tillage (NT), a practice that has been shown to increase carbon sequestration in soils, has resulted in contradictory effects on nitrous oxide (N2O) emissions. Moreover, it is not clear how mitigation practices for N2O emission reduction, such as applying nitrogen (N) fertilizer according to soil N reserves and matching the time of application to crop uptake, interact with NT practices. N2O fluxes from two management systems [conventional (CP), and best management practices: NT + reduced fertilizer (BMP)] applied to a corn (Zea mays L.), soybean (Glycine max L.), winter‐wheat (Triticum aestivum L.) rotation in Ontario, Canada, were measured from January 2000 to April 2005, using a micrometeorological method. The superimposition of interannual variability of weather and management resulted in mean monthly N2O fluxes ranging from − 1.9 to 61.3 g N ha−1 day−1. Mean annual N2O emissions over the 5‐year period decreased significantly by 0.79 from 2.19 kg N ha−1 for CP to 1.41 kg N ha−1 for BMP. Growing season (May–October) N2O emissions were reduced on average by 0.16 kg N ha−1 (20% of total reduction), and this decrease only occurred in the corn year of the rotation. Nongrowing season (November–April) emissions, comprised between 30% and 90% of the annual emissions, mostly due to increased N2O fluxes during soil thawing. These emissions were well correlated (r2= 0.90) to the accumulated degree‐hours below 0 °C at 5 cm depth, a measure of duration and intensity of soil freezing. Soil management in BMP (NT) significantly reduced N2O emissions during thaw (80% of total reduction) by reducing soil freezing due to the insulating effects of the larger snow cover plus corn and wheat residue during winter. In conclusion, significant reductions in net greenhouse gas emissions can be obtained when NT is combined with a strategy that matches N application rate and timing to crop needs.  相似文献   

12.
Monoculture croplands are a major source of global anthropogenic emissions of nitrous oxide (N2O), a potent greenhouse gas that contributes to ozone depletion. Agroforestry has the potential to reduce N2O emissions. Presently, there is no systematic comparison of soil N2O emissions between cropland agroforestry and monoculture systems in Central Europe. We investigated the effects of converting the monoculture cropland system into the alley cropping agroforestry system on soil N2O fluxes at three sites (each site has paired agroforestry and monoculture) in Germany, where agroforestry combined crop rows and poplar short-rotation coppice (SRC). We measured soil N2O fluxes monthly over 2 years (March 2018–January 2020) using static vented chambers. Annual soil N2O emissions from agroforestry ranged from 0.21 to 2.73 kg N ha−1 year−1, whereas monoculture N2O emissions ranged from 0.34 to 3.00 kg N ha−1 year−1. During the rotation of corn crop, with high fertilization rates, agroforestry reduced soil N2O emissions by 9% to 56% compared to monocultures. This was mainly caused by low soil N2O emissions from the unfertilized agroforestry tree rows. Soil N2O fluxes were predominantly controlled by soil mineral N in both agroforestry and monoculture systems. Our findings suggest that optimized fertilizer input will further enhance the potential of agroforestry for mitigating N2O emissions.  相似文献   

13.
Both soil and biochar properties are known to influence greenhouse gas emissions from biochar‐amended soils, but poor understanding of underlying mechanisms challenges prediction and modeling. Here, we examine the effect of six lignocellulosic biochars produced from the pyrolysis of corn stover and wood feedstocks on CO2 and N2O emissions from soils collected from two bioenergy cropping systems. Effects of biochar on total accumulated CO2‐C emissions were minimal (<0.45 mg C g?1 soil; <10% of biochar C), consistent with mineralization and hydrolysis of small labile organic and inorganic C fractions in the studied biochars. Comparisons of soil CO2 emissions with emissions from microbially inoculated quartz–biochar mixtures (‘quartz controls’) provide evidence of soil and biochar‐specific negative priming. Five of six biochar amendments suppressed N2O emissions from at least one soil, and the magnitude of N2O emissions suppression varied with respect to both biochar and soil types. Biochar amendments consistently decreased final soil NO3? concentrations, while contrasting effects on pH, NH4+, and DOC highlighted the potential for formation of anaerobic microsites in biochar‐amended soils and consequential shifts in the soil redox environment. Thus, results implicated both reduced substrate availability and redox shifts as potential factors contributing to N2O emission suppression. More research is needed to confirm these mechanisms, but overall our results suggest that soil biochar amendments commonly reduce N2O emissions and have little effect on CO2 emissions beyond the mineralization and/or hydrolysis of labile biochar C fractions. Considering the large C credit for the biochar C, we conclude that biochar amendments can reduce greenhouse gas emissions and enhance the climate change mitigation potential of bioenergy cropping systems.  相似文献   

14.
UV-B增强下施硅对稻田CH4和N2O排放及其增温潜势的影响   总被引:3,自引:0,他引:3  
大气平流层臭氧损耗导致的地表紫外辐射增强作为全球变化重要问题之一,受到广泛关注。硅是水稻生长有益元素,但施硅是否影响稻田CH_4和 N_2O排放,迄今相关报道尚不多见。通过大田试验,研究UV-B增强下施硅对水稻生长、稻田甲烷(CH_4)和氧化亚氮( N_2O)排放及其增温潜势的影响。UV-B辐照设2水平,即对照(A,自然光)和增强20%(E);施硅量设2水平,即对照(Si0,0 kg SiO_2/hm2)和施硅(Si1,200 kg SiO_2/hm2)。结果表明,UV-B增强降低了成熟期水稻地上部和地下部生物量,而施硅能缓解UV-B增强对水稻生长的抑制作用,使水稻地上部和地下部生物量增加。UV-B增强可显著提高稻田CH_4和 N_2O排放通量和累积排放量,增加稻田CH_4和 N_2O排放的综合增温潜势。施硅能明显降低稻田CH_4排放,促进 N_2O排放,降低稻田CH_4和 N_2O排放的综合增温潜势。研究表明,施硅显著降低稻田CH_4和 N_2O的全球增温潜势,缓解UV-B增强对稻田CH_4和 N_2O的全球增温潜势的促进作用。  相似文献   

15.
Castaldi  Simona  Smith  Keith A. 《Plant and Soil》1998,199(2):229-238
N2O emissions from two slightly alkaline sandy soils, from arable land and a woodland, were determined in a laboratory experiment in which the soils were incubated with different sources of nitrogen, with or without glucose, and with 0, 1 and 100 mL C2H2 L-1. Large differences in the rate of N2O production were observed between the two soils and between the different N treatments. The arable soil showed very low N2O emissions derived from reduced forms of N as compared with the N2O which was produced when the soil was provided with NO 2 - or NO 3 - and a C source, suggesting a very active denitrifier population. In contrast, the woodland soil showed a very low denitrification activity and a much higher N2O production derived from the oxidation of NH 4 + and reduction of NO 2 - by some processes probably mediated by autotrophic or heterotrophic nitrifiers or dissimilatory NO 2 - reducers. In both soils, the highest N2O emissions were induced by NO 2 - addition. Those emissions were demonstrated to have a biological origin, as no significant N2O emissions were measured when the soil was autoclaved.  相似文献   

16.
Although the presence of nanoplastics in aquatic and terrestrial ecosystems has received increasing attention, little is known about its potential effect on ecosystem processes and functions. Here, we evaluated if differentially charged polystyrene (PS) nanoplastics (PS-NH2 and PS-SO3H) exhibit distinct influences on microbial community structure, nitrogen removal processes (denitrification and anammox), emissions of greenhouse gases (CO2, CH4, and N2O), and ecosystem multifunctionality in soils with and without earthworms through a 42-day microcosm experiment. Our results indicated that nanoplastics significantly altered soil microbial community structure and potential functions, with more pronounced effects for positively charged PS-NH2 than for negatively charged PS-SO3H. Ecologically relevant concentration (3 g kg−1) of nanoplastics inhibited both soil denitrification and anammox rates, while environmentally realistic concentration (0.3 g kg−1) of nanoplastics decreased the denitrification rate and enhanced the anammox rate. The soil N2O flux was always inhibited 6%–51% by both types of nanoplastics, whereas emissions of CO2 and CH4 were enhanced by nanoplastics in most cases. Significantly, although N2O emissions were decreased by nanoplastics, the global warming potential of total greenhouse gases was increased 21%–75% by nanoplastics in soils without earthworms. Moreover, ecosystem multifunctionality was increased 4%–12% by 0.3 g kg−1 of nanoplastics but decreased 4%–11% by 3 g kg−1 of nanoplastics. Our findings provide the only evidence to date that the rapid increase in nanoplastics is altering not only ecosystem structure and processes but also ecosystem multifunctionality, and it may increase the emission of CO2 and CH4 and their global warming potential to some extent.  相似文献   

17.
Soil CN ratio as a scalar parameter to predict nitrous oxide emissions   总被引:3,自引:0,他引:3  
Forested histosols have been found in some cases to be major, and in other cases minor, sources of the greenhouse gas nitrous oxide (N2O). In order to estimate the total national or global emissions of N2O from histosols, scaling or mapping parameters that can separate low‐ and high‐emitting sites are needed, and should be included in soil databases. Based on interannual measurements of N2O emissions from drained forested histosols in Sweden, we found a strong negative relationship between N2O emissions and soil CN ratios (r2adj=0.96, mean annual N2O emission=ae(?b CN ratio)). The same equation could be used to estimate the N2O emissions from Finnish and German sites based on CN ratios in published data. We envisage that the correlation between N2O emissions and CN ratios could be used to scale N2O emissions from histosols determined at sampled sites to national levels. However, at low CN ratios (i.e. below 15–20) other parameters such as climate, pH and groundwater tables increase in importance as regulating factors affecting N2O emissions.  相似文献   

18.

Background and aims

Roots and mycorrhizas play an important role in not only plant nutrient acquisition, but also ecosystem nutrient cycling.

Methods

A field experiment was undertaken in which the role of arbuscular mycorrhizas (AM) in the growth and nutrient acquisition of tomato plants was investigated. A mycorrhiza defective mutant of tomato (Solanum lycopersicum L.) (named rmc) and its mycorrhizal wild type progenitor (named 76R) were used to control for the formation of AM. The role of roots and AM in soil N cycling was studied by injecting a 15N-labelled nitrate solution into surface soil at different distances from the 76R and rmc genotypes of tomato, or in plant free soil. The impacts of mycorrhizal and non-mycorrhizal root systems on soil greenhouse gas (CO2 and 14+15N2O and 15N2O) emissions, relative to root free soils, were also studied.

Results

The formation of AM significantly enhanced plant growth and nutrient acquisition, including interception of recently applied NO 3 ? . Whereas roots caused a small but significant decrease in 15N2O emissions from soils at 23?h after labeling, compared to the root-free treatment, arbuscular mycorrhizal fungi (AMF) had little effect on N2O emissions. In contrast soil CO2 emissions were higher in plots containing mycorrhizal root systems, where root biomass was also greater.

Conclusions

Taken together, these data indicate that roots and AMF have an important role to play in plant nutrient acquisition and ecosystem N cycling.  相似文献   

19.
The application of inorganic nitrogen (N) fertilizers strongly influences the contribution of agriculture to the greenhouse effect, especially by potentially increasing emissions of nitrous oxide (N2O), carbon dioxide (CO2) and methane (CH4) from soils. The present microcosm-study investigates the effect of different forms of inorganic N fertilizers on greenhouse gas (GHG) emissions from two different agricultural soils. The relationship between greenhouse gas emissions and soil microbial communities, N transformation rates and plant (Hordeum vulgare L. cv. Morex) growth were investigated. Repeated N fertilization led to increased N2O emissions. In a parallel survey of functional microbial population dynamics we observed a stimulation of bacterial and archaeal ammonia oxidisers accompanied with these N2O emissions. The ratio of archaeal to bacterial ammonium monooxygenase subunit A (amoA) gene copies (data obtained from Inselsbacher et al., 2010) correlated positively with N2O fluxes, which suggests a direct or indirect involvement of archaea in N2O fluxes. Repeated N fertilization also stimulated methane oxidation, which may also be related to a stimulation of ammonia oxidizers. The fertilizer effects differed between soil types: In the more organic Niederschleinz soil N-turnover rates increased more strongly after fertilization, while in the sandy Purkersdorf soil plant growth and soil respiration were accelerated depending on fertilizer N type. Compared to addition of NH 4 + and NO 3 ? , addition of NH4NO3 fertilizer resulted in the largest increase in global warming potential as a summary indicator of all GHG related effects. This effect resulted from the strongest increase of both N2O and CO2 emission while plant growth was not equally stimulated, compared to e.g. KNO3 fertilization. In order to decrease N losses from agricultural ecosystems and in order to minimize soil derived global warming potential, this study points to the need for interdisciplinary investigations of the highly complex interactions within plant-soil-microbe-atmosphere systems. By understanding the microbial processes underlying fertilizer effects on GHG emissions the N use efficiency of crops could be refined.  相似文献   

20.
China is the world's largest producer and consumer of fertilizer N, and decades of overuse has caused nitrate leaching and possibly soil acidification. We hypothesized that this would enhance the soils' propensity to emit N2O from denitrification by reducing the expression of the enzyme N2O reductase. We investigated this by standardized oxic/anoxic incubations of soils from five long‐term fertilization experiments in different regions of China. After adjusting the nitrate concentration to 2 mM, we measured oxic respiration (R), potential denitrification (D), substrate‐induced denitrification, and the denitrification product stoichiometry (NO, N2O, N2). Soils with a history of high fertilizer N levels had high N2O/(N2O+N2) ratios, but only in those field experiments where soil pH had been lowered by N fertilization. By comparing all soils, we found a strong negative correlation between pH and the N2O/(N2O+N2) product ratio (r2 = 0.759, P < 0.001). In contrast, the potential denitrification (D) was found to be a linear function of oxic respiration (R), and the ratio D/R was largely unaffected by soil pH. The immediate effect of liming acidified soils was lowered N2O/(N2O+N2) ratios. The results provide evidence that soil pH has a marginal direct effect on potential denitrification, but that it is the master variable controlling the percentage of denitrified N emitted as N2O. It has been known for long that low pH may result in high N2O/(N2O+N2) product ratios of denitrification, but our documentation of a pervasive pH‐control of this ratio across soil types and management practices is new. The results are in good agreement with new understanding of how pH may interfere with the expression of N2O reductase. We argue that the management of soil pH should be high on the agenda for mitigating N2O emissions in the future, particularly for countries where ongoing intensification of plant production is likely to acidify the soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号