共查询到20条相似文献,搜索用时 0 毫秒
1.
Frank van Langevelde Marijke Braamburg‐Annegarn Martinus E. Huigens Rob Groendijk Olivier Poitevin Jurriën R. van Deijk Willem N. Ellis Roy H. A. van Grunsven Rob de Vos Rutger A. Vos Markus Franzén Michiel F. WallisDeVries 《Global Change Biology》2018,24(3):925-932
Given the global continuous rise, artificial light at night is often considered a driving force behind moth population declines. Although negative effects on individuals have been shown, there is no evidence for effects on population sizes to date. Therefore, we compared population trends of Dutch macromoth fauna over the period 1985–2015 between moth species that differ in phototaxis and adult circadian rhythm. We found that moth species that show positive phototaxis or are nocturnally active have stronger negative population trends than species that are not attracted to light or are diurnal species. Our results indicate that artificial light at night is an important factor in explaining declines in moth populations in regions with high artificial night sky brightness. Our study supports efforts to reduce the impacts of artificial light at night by promoting lamps that do not attract insects and reduce overall levels of illumination in rural areas to reverse declines of moth populations. 相似文献
2.
Jessica L. Yorzinski Kimberly A. Ordonez Kailey T. Chema 《Ethology : formerly Zeitschrift fur Tierpsychologie》2017,123(11):854-860
Behavioral innovations allow animals to adjust their behavior to solve novel problems. While innovative behavior can be important for animals living in new environments, anthropogenic pollution may limit their ability to adapt by impairing cognition or motivation. In particular, exposure to light pollution at night can cause sleep deprivation and may, therefore, hinder innovative behavior. To test this hypothesis, we examined experimentally whether exposure to acute light pollution impacts problem‐solving success in peafowl (Pavo cristatus). After peafowl were exposed to artificial light pollution for one night, they were presented with a problem‐solving task in which they could extract food by piercing the lid of an unfamiliar food bowl. Their problem‐solving success was unrelated to short‐term light pollution exposure. Other factors, including persistence, sex of the bird, and moon illumination, influenced their success in solving the task. The results suggest that short‐term exposure to light pollution does not limit behavioral innovation, but long‐term studies are necessary to further probe this question. 相似文献
3.
Mounting evidence shows that artificial light at night (ALAN) alters biological processes across levels of organization, from cells to communities. Yet, the combined impacts of ALAN and natural sources of night-time illumination remain little explored. This is in part due the lack of accurate simulations of the complex changes moonlight intensity, timing and spectra throughout a single night and lunar cycles in laboratory experiments. We custom-built a novel system to simulate natural patterns of moonlight to test how different ALAN intensities affect predator–prey relationships over the full lunar cycle. Exposure to high intensity ALAN (10 and 50 lx) reversed the natural lunar-guided foraging pattern by the gastropod mesopredator Nucella lapillus on its prey Semibalanus balanoides. Foraging decreased during brighter moonlight in naturally lit conditions. When exposed to high intensity ALAN, foraging increased with brighter moonlight. Low intensity ALAN (0.1 and 0.5 lx) had no impact on foraging. Our results show that ALAN alters the foraging pattern guided by changes in moonlight brightness. ALAN impacts on ecosystems can depend on lunar light cycles. Accurate simulations of night-time light cycle will warrant more realistic insights into ALAN impacts and also facilitate advances in fundamental night-time ecology and chronobiology. 相似文献
4.
Elske K. Tielens Paula M. Cimprich Bonne A. Clark Alisha M. DiPilla Jeffrey F. Kelly Djordje Mirkovic Alva I. Strand Mengyuan Zhai Phillip M. Stepanian 《Biology letters》2021,17(3)
Anthropogenic environmental change affects organisms by exposing them to enhanced sensory stimuli that can elicit novel behavioural responses. A pervasive feature of the built environment is artificial nocturnal lighting, and brightly lit urban areas can influence organism abundance, distribution and community structure within proximate landscapes. In some cases, the attractive or disorienting effect of artificial light at night can draw animals into highly unfavourable habitats, acting as a macroscale attractive ecological sink. Despite their significance for animal ecology, identifying cases of these phenomena and determining their effective scales and the number of organisms impacted remains challenging. Using an integrated set of remote-sensing observations, we quantify the effect of a large-scale attractive sink on nocturnal flights of an outbreak insect population in Las Vegas, USA. At the peak of the outbreak, over 45 million grasshoppers took flight across the region, with the greatest numbers concentrating over high-intensity city lighting. Patterns of dusk ascent from vegetated habitat toward urban areas suggest a daily pull toward a time-varying nocturnal attractive sink. The strength of this attractor varies with grasshopper density. These observations provide the first macroscale characterization of the effects of nocturnal urban lighting on the behaviour of regional insect populations and demonstrate the link between insect perception of the built environment and resulting changes in spatial and movement ecology. As human-induced environmental change continues to affect insect populations, understanding the impacts of nocturnal light on insect behaviour and fitness will be vital to developing robust large-scale management and conservation strategies. 相似文献
5.
John Otuoma Jenesio Kinyamario Wellington Ekaya Mrigesh Kshatriya Meshak Nyabenge 《African Journal of Ecology》2009,47(4):567-573
Human–livestock–wildlife interactions have increased in Kenyan rangelands in recent years, but few attempts have been made to evaluate their impact on the rangeland habitat. This study identified drivers of increased human–livestock–wildlife interactions in the Meru Conservation Area between 1980 and 2000 and their effects on the vegetation community structure. The drivers were habitat fragmentation, decline in pastoral grazing range, loss of wildlife dispersal areas and increase in livestock population density. Agricultural encroachment increased by over 76% in the western zone adjoining Nyambene ranges and the southern Tharaka area, substantially reducing the pastoral grazing range and wildlife dispersal areas. Livestock population increased by 41%, subjecting areas left for pastoral grazing in the northern dispersal area to prolonged heavy grazing that gave woody plant species a competitive edge over herbaceous life‐forms. Consequently, open wooded grassland, which was the dominant vegetation community in 1980, decreased by c. 40% as bushland vegetation increased by 42%. A substantial proportion of agro pastoralists were encountered around Kinna and Rapsu, areas that were predominantly occupied by pastoralists three decades ago, indicating a possible shift in land use in order to spread risks associated with habitat alterations. 相似文献
6.
7.
M. Grubisic R.H.A. van Grunsven C.C.M. Kyba A. Manfrin F. Hölker 《The Annals of applied biology》2018,173(2):180-189
Drastic declines in insect populations, ‘Ecological Armageddon’, have recently gained increased attention in the scientific community, and are commonly considered to be the consequence of large‐scale factors such as land‐use changes, use of pesticides, climate change and habitat fragmentation. Artificial light at night (ALAN), a pervasive global change that strongly impacts insects, remains, however, infrequently recognised as a potential contributor to the observed declines. Here, we provide a summary of recent evidence of impacts of ALAN on insects and discuss how these impacts can drive declines in insect populations in light‐polluted areas. ALAN can increase overall environmental pressure on insect populations, and this is particularly important in agroecosystems where insect communities provide important ecosystem services (such as natural pest control, pollination, conservation of soil structure and fertility and nutrient cycling), and are already under considerable environmental pressure. We discuss how changes in insect populations driven by ALAN and ALAN itself may hinder these services to influence crop production and biodiversity in agricultural landscapes. Understanding the contribution of ALAN and other factors to the decline of insects is an important step towards mitigation and the recovery of the insect fauna in our landscapes. In future studies, the role of increased nocturnal illumination also needs to be examined as a possible causal factor of insect declines in the ongoing ‘Ecological Armageddon’, along with the more commonly examined factors. Given the large scale of agricultural land use and the potential of ALAN to indirectly and directly impact crop production and biodiversity, a better understanding of effects of ALAN in agroecosystems is urgently needed. 相似文献
8.
Davide M. Dominoni Jesko Partecke 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2015,370(1667)
Artificial light at night is one of the most apparent environmental changes accompanying anthropogenic habitat change. The global increase in light pollution poses new challenges to wild species, but we still have limited understanding of the temporal and spatial pattern of exposure to light at night. In particular, it has been suggested by several studies that animals exposed to light pollution, such as songbirds, perceive a longer daylength compared with conspecifics living in natural darker areas, but direct tests of such a hypothesis are still lacking. Here, we use a combination of light loggers deployed on individual European blackbirds, as well as automated radio-telemetry, to examine whether urban birds are exposed to a longer daylength than forest counterparts. We first used activity data from forest birds to determine the level of light intensity which defines the onset and offset of daily activity in rural areas. We then used this value as threshold to calculate the subjective perceived daylength of both forest and urban blackbirds. In March, when reproductive growth occurs, urban birds were exposed on average to a 49-min longer subjective perceived daylength than forest ones, which corresponds to a 19-day difference in photoperiod at this time of the year. In the field, urban blackbirds reached reproductive maturity 19 day earlier than rural birds, suggesting that light pollution could be responsible of most of the variation in reproductive timing found between urban and rural dwellers. We conclude that light at night is the most relevant change in ambient light affecting biological rhythms in avian urban-dwellers, most likely via a modification of the perceived photoperiod. 相似文献
9.
Artificial light at night (ALAN) is a rapidly intensifying form of environmental degradation that can impact wildlife by altering light‐mediated physiological processes that control a broad range of behaviors. Although nocturnal animals are most vulnerable, ALAN''s effects on North American bats have been surprisingly understudied. Most of what is known is based on decades‐old observations of bats around street lights with traditional lighting technologies that have been increasingly replaced by energy‐efficient broad‐spectrum lighting, rendering our understanding of the contemporary effects of ALAN on North American bats even less complete. We experimentally tested the effects of broad‐spectrum ALAN on presence/absence, foraging activity, and species composition in a Connecticut, USA bat community by illuminating foraging habitat with light‐emitting diode (LED) floodlights and comparing acoustic recordings between light and dark conditions. Lighting dramatically decreased presence and activity of little brown bats (Myotis lucifugus), which we detected on only 14% of light nights compared with 65% of dark (lights off) and 69% of control (lights removed) nights. Big brown bat (Eptesicus fuscus) activity on light nights averaged only half that of dark and control nights. Lighting did not affect presence/absence of silver‐haired bats (Lasionycteris noctivagans), but decreased their activity. There were no effects on eastern red bats (Lasiurus borealis) or hoary bats (L. cinereus), which have been described previously as light‐tolerant. Aversion to lighting by some species but not others caused a significant shift in community composition, thereby potentially altering competitive balances from natural conditions. Our results demonstrate that only a small degree of ALAN can represent a significant form of habitat degradation for some North American bats, including the endangered little brown bat. Research on the extent to which different lighting technologies, colors, and intensities affect these species is urgently needed and should be a priority in conservation planning for North America''s bats. 相似文献
10.
Joanna K. Haddock Caragh G. Threlfall Bradley Law Dieter F. Hochuli 《Austral ecology》2019,44(6):1052-1064
Artificial light at night is a pervasive anthropogenic stressor for biodiversity. Many fast‐flying insectivorous bat species feed on insects that are attracted to light‐emitting ultraviolet radiation (10–400 nm). Several countries are currently focused on replacing mercury vapour lamps, which emit ultraviolet light, with more cost‐efficient light‐emitting diode (LED) lights, which emit less ultraviolet radiation. This reduction in ultraviolet light may cause declines in insect densities in cities, predatory fast‐flying bats, and some edge‐foraging and slow‐flying bats. Capitalising on a scheme to update streetlights from high ultraviolet mercury vapour to low ultraviolet LED in Sydney, Australia, we measured the activity of individual bat species, the activity of different functional groups and the bat and insect communities, before and after the change in technology. We also surveyed sites with already LED lights, sites with mercury vapour lights and unlit bushland remnants. Species adapted to foraging in cluttered vegetation, and some edge‐space foraging species, were more active in unlit bushland sites than in all lit sites and decreased in activity at lit sites after the change to LED lights. The change to LED streetlights caused a decrease in the fast‐flying Chalinolobus gouldii but not Miniopterus schreibersii oceanensis, the latter being more influenced by seasonal and environmental variables. Insect biomass was not affected by changing light types, but instead was negatively correlated with the moon's percentage illuminance. Changing streetlights to LEDs could result in a decline in some insectivorous bats in cities. This study confirms that unlit urban bushland remnants are important refuges for high bat diversity, particularly for more clutter‐adapted species and some edge‐space foraging species. Preventing light penetration into unlit bushland patches and corridors remains essential to protect the urban bat community. 相似文献
11.
Jean‐Louis Martin Simon Chamaill‐Jammes Donald M. Waller 《Biological reviews of the Cambridge Philosophical Society》2020,95(3):782-801
Human‐driven species annihilations loom as a major crisis. However the recovery of deer and wolf populations in many parts of the northern hemisphere has resulted in conflicts and controversies rather than in relief. Both species interact in complex ways with their environment, each other, and humans. We review these interactions in the context of the ecological and human costs and benefits associated with these species. We integrate scattered information to widen our perspective on the nature and perception of these costs and benefits and how they link to each other and ongoing controversies regarding how we manage deer and wolf populations. After revisiting the ecological roles deer and wolves play in contemporary ecosystems, we explore how they interact, directly and indirectly, with human groups including farmers, foresters, shepherds, and hunters. Interactions with deer and wolves generate various axes of tension, posing both ecological and sociological challenges. Resolving these tensions and conflicts requires that we address key questions using integrative approaches: what are the ecological consequences of deer and wolf recovery? How do they influence each other? What are the social and socio‐ecological consequences of large deer populations and wolf presence? Finally, what key obstacles must be overcome to allow deer, wolves and people to coexist? Reviewing contemporary ecological and sociological results suggests insights and ways to improve our understanding and resolve long‐standing challenges to coexistence. We should begin by agreeing to enhance aggregate benefits while minimizing the collective costs we incur by interacting with deer and wolves. We should also view these species, and ourselves, as parts of integrated ecosystems subject to long‐term dynamics. If co‐existence is our goal, we need deer and wolves to persevere in ways that are compatible with human interests. Our human interests, however, should be inclusive and fairly value all the costs and benefits deer and wolves entail including their intrinsic value. Shifts in human attitudes and cultural learning that are already occurring will reshape our ecological interactions with deer and wolves. 相似文献
12.
Chul-Hyun Cho Ho-Kyoung Yoon Seung-Gul Kang Ki-Nam Bok Ki-Young Jung 《Chronobiology international》2016,33(1):117-123
Exposure to artificial light at night (ALAN) has become increasing common, especially in developed countries. We investigated the effect of dALAN exposure during sleep in healthy young male subjects. A total of 30 healthy young male volunteers from 21 to 29 years old were recruited for the study. They were randomly divided into two groups depending on light intensity (Group A: 5 lux and Group B: 10 lux). After a quality control process, 23 healthy subjects were included in the study (Group A: 11 subjects, Group B: 12 subjects). Subjects underwent an NPSG session with no light (Night 1) followed by an NPSG session randomly assigned to two different dim light conditions (5 or 10 lux, dom λ: 501.4 nm) for a whole night (Night 2). We found significant sleep structural differences between Nights 1 and 2, but no difference between Groups A and B. Exposure to dALAN during sleep was significantly associated with increased wake time after sleep onset (WASO; F = 7.273, p = 0.014), increased Stage N1 (F = 4.524, p = 0.045), decreased Stage N2 (F = 9.49, p = 0.006), increased Stage R (F = 6.698, p = 0.017) and non-significantly decreased REM density (F = 4.102, p = 0.056). We found that dALAN during sleep affects sleep structure. Exposure to dALAN during sleep increases the frequency of arousals, amount of shallow sleep and amount of REM sleep. This suggests adverse effects of dALAN during sleep on sleep quality and suggests the need to avoid exposure to dALAN during sleep. 相似文献
13.
14.
Jonathan Bennie Thomas W. Davies David Cruse Richard Inger Kevin J. Gaston 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2015,370(1667)
Artificial light at night has a wide range of biological effects on both plants and animals. Here, we review mechanisms by which artificial light at night may restructure ecological communities by modifying the interactions between species. Such mechanisms may be top-down (predator, parasite or grazer controlled), bottom-up (resource-controlled) or involve non-trophic processes, such as pollination, seed dispersal or competition. We present results from an experiment investigating both top-down and bottom-up effects of artificial light at night on the population density of pea aphids Acyrthosiphon pisum in a diverse artificial grassland community in the presence and absence of predators and under low-level light of different spectral composition. We found no evidence for top-down control of A. pisum in this system, but did find evidence for bottom-up effects mediated through the impact of light on flower head density in a leguminous food plant. These results suggest that physiological effects of light on a plant species within a diverse plant community can have detectable demographic effects on a specialist herbivore. 相似文献
15.
Nocturnal insects like moths are essential for pollination, providing resilience to the diurnal pollination networks. Moths use both vision and mechanosensation to locate the nectary opening in the flowers with their proboscis. However, increased light levels due to artificial light at night (ALAN) pose a serious threat to nocturnal insects. Here, we examined how light levels influence the efficacy by which the crepuscular hawkmoth Manduca sexta locates the nectary. We used three-dimensional-printed artificial flowers fitted with motion sensors in the nectary and machine vision to track the motion of hovering moths under two light levels: 0.1 lux (moonlight) and 50 lux (dawn/dusk). We found that moths in higher light conditions took significantly longer to find the nectary, even with repeated visits to the same flower. In addition to taking longer, moths in higher light conditions hovered further from the flower during feeding. Increased light levels adversely affect learning and motor control in these animals. 相似文献
16.
Margaret W. Wilson April D. Ridlon Kaitlyn M. Gaynor Steven D. Gaines Adrian C. Stier Benjamin S. Halpern 《Ecology letters》2020,23(10):1522-1536
A growing body of literature has documented myriad effects of human activities on animal behaviour, yet the ultimate ecological consequences of these behavioural shifts remain largely uninvestigated. While it is understood that, in the absence of humans, variation in animal behaviour can have cascading effects on species interactions, community structure and ecosystem function, we know little about whether the type or magnitude of human‐induced behavioural shifts translate into detectable ecological change. Here we synthesise empirical literature and theory to create a novel framework for examining the range of behaviourally mediated pathways through which human activities may affect different ecosystem functions. We highlight the few empirical studies that show the potential realisation of some of these pathways, but also identify numerous factors that can dampen or prevent ultimate ecosystem consequences. Without a deeper understanding of these pathways, we risk wasting valuable resources on mitigating behavioural effects with little ecological relevance, or conversely mismanaging situations in which behavioural effects do drive ecosystem change. The framework presented here can be used to anticipate the nature and likelihood of ecological outcomes and prioritise management among widespread human‐induced behavioural shifts, while also suggesting key priorities for future research linking humans, animal behaviour and ecology. 相似文献
17.
18.
Christopher I. Roos David M. J. S. Bowman Jennifer K. Balch Paulo Artaxo William J. Bond Mark Cochrane Carla M. D'Antonio Ruth DeFries Michelle Mack Fay H. Johnston Meg A. Krawchuk Christian A. Kull Max A. Moritz Stephen Pyne Andrew C. Scott Thomas W. Swetnam 《Journal of Biogeography》2014,41(4):833-836
In our 2011 synthesis (Bowman et al., Journal of Biogeography, 2011, 38 , 2223–2236), we argued for a holistic approach to human issues in fire science that we term ‘pyrogeography’. Coughlan & Petty (Journal of Biogeography, 2013, 40 , 1010–1012) critiqued our paper on the grounds that our ‘pyric phase’ model was built on outdated views of cultural development, claiming we developed it to be the unifying explanatory framework for all human–fire sciences. Rather, they suggest that ‘historical ecology’ could provide such a framework. We used the ‘pyric transition’ for multiple purposes but did not offer it as an exclusive explanatory framework for pyrogeography. Although ‘historical ecology’ is one of many useful approaches to studying human–fire relationships, scholars should also look to political and evolutionary ecology, ecosystems and complexity theories, as well as empirical generalizations to build an interdisciplinary fire science that incorporates human, ecological and biophysical dimensions of fire regimes. 相似文献
19.
《Chronobiology international》2013,30(1):144-150
Light-at-night (LAN) is a worldwide problem co-distributed with breast cancer prevalence. We hypothesized that exposure to LAN is coincided with a decreased melatonin (MLT) secretion level, followed by epigenetic modifications and resulted in higher breast cancer tumors growth-rate. Accordingly, we studied the effect of LAN exposure and exogenous MLT on breast cancer tumors growth-rate. 4T1 cells were inoculated into BALB/c short day-acclimated mice, resulting in tumors growth. Growth rates were followed under various light exposures and global DNA methylations were measured. Results demonstrated the positive effect of LAN on tumors growth-rate, reversed by MLT through global DNA methylation. 相似文献
20.
Thomas W. Davies Jonathan Bennie Dave Cruse Dan Blumgart Richard Inger Kevin J. Gaston 《Global Change Biology》2017,23(7):2641-2648
White light‐emitting diodes (LEDs) are rapidly replacing conventional outdoor lighting technologies around the world. Despite rising concerns over their impact on the environment and human health, the flexibility of LEDs has been advocated as a means of mitigating the ecological impacts of globally widespread outdoor night‐time lighting through spectral manipulation, dimming and switching lights off during periods of low demand. We conducted a three‐year field experiment in which each of these lighting strategies was simulated in a previously artificial light naïve grassland ecosystem. White LEDs both increased the total abundance and changed the assemblage composition of adult spiders and beetles. Dimming LEDs by 50% or manipulating their spectra to reduce ecologically damaging wavelengths partially reduced the number of commoner species affected from seven to four. A combination of dimming by 50% and switching lights off between midnight and 04:00 am showed the most promise for reducing the ecological costs of LEDs, but the abundances of two otherwise common species were still affected. The environmental consequences of using alternative lighting technologies are increasingly well established. These results suggest that while management strategies using LEDs can be an effective means of reducing the number of taxa affected, averting the ecological impacts of night‐time lighting may ultimately require avoiding its use altogether. 相似文献