首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
学习记忆是大脑的重要功能.记忆的形成涉及基因转录、新蛋白质合成和突触可塑性改变等一系列分子和细胞乃至神经环路的变化.近些年研究者逐渐发现各种表观遗传修饰,包括DNA甲基化、组蛋白修饰及RNA修饰在各种学习记忆类型、记忆阶段和突触可塑性中发挥了不同程度的作用.本文阐述了参与学习记忆的不同表观遗传调控因子,为进一步理解学习...  相似文献   

2.
Cover Caption     
《Insect Science》2014,21(5):i-i
The power of the small honeybee brain carrying out learning and memory tasks has been shown to be highly impressive. In this study, the authors analyzed the changes in microRNA and mRNA following maze‐based visual learning using next‐generation small RNA sequencing and Digital Gene Expression tag profiling. The results suggest that both microRNA and mRNA may play a pivotal role in the process of visual learning (see pages 619–636). Photo by Yun‐Bo Xue.  相似文献   

3.
The ability to associate some stimuli while differentiating between others is an essential characteristic of biological memory. Theoretical models identify memories as attractors of neural network activity, with learning based on Hebb-like synaptic modifications. Our analysis shows that when network inputs are correlated, this mechanism results in overassociations, even up to several memories "merging" into one. To counteract this tendency, we introduce a learning mechanism that involves novelty-facilitated modifications, accentuating synaptic changes proportionally to the difference between network input and stored memories. This mechanism introduces a dependency of synaptic modifications on previously acquired memories, enabling a wide spectrum of memory associations, ranging from absolute discrimination to complete merging. The model predicts that memory representations should be sensitive to learning order, consistent with recent psychophysical studies of face recognition and electrophysiological experiments on hippocampal place cells. The proposed mechanism is compatible with a recent biological model of novelty-facilitated learning in hippocampal circuitry.  相似文献   

4.
Chronic stressors, during developmental sensitive periods and beyond, contribute to the risk of developing psychiatric conditions, including major depressive disorder (MDD). Epigenetic mechanisms including DNA methylation and histone modifications, at key stress response and neurotrophin genes, are increasingly implicated in mediating this risk. Although the exact mechanisms through which stressful environmental stimuli alter the epigenome are still unclear, research from the learning and memory fields indicates that epigenomic marks can be altered, at least in part, through calcium‐dependent signaling cascades in direct response to neuronal activity. In this review, we highlight key findings from the stress, MDD, and learning and memory fields to propose a model where stress regulates downstream cellular functioning through activity‐dependent epigenetic changes. Furthermore, we suggest that both typical and novel antidepressant treatments may exert positive influence through similar, activity‐dependent pathways.  相似文献   

5.
In the present study we will try to single out several principles of the nervous system functioning essential for describing mechanisms of learning and memory basing on our own experimental investigation of cellular mechanisms of memory in the nervous system of gastropod molluscs and literature data: main changes in functioning due to learning occur in effectivity of synaptic inputs and in the intrinsic properties of postsynaptic neurons; due to learning some synaptic inputs of neurons selectively change its effectivity due to pre- and postsynaptic changes, but the induction of plasticity always starts in postsynapse, maintaining of long-term memory in postsynapse is also shown; reinforcement is not related to activity of the neural chain receptor-sensory neuron-interneuron-motoneuron-effector; reinforcement is mediated via activity of modulatory neurons, and in some cases can be exerted by a single neuron; activity of modulatory neurons is necessary for development of plastic modifications of behavior (including associative), but is not needed for recall of conditioned responses. At the same time, the modulatory neurons (in fact they constitute a neural reinforcement system) are necessary for recall of context associative memory; changes due to learning occur at least in two independent loci in the nervous system. A possibility for erasure of memory with participation of nitroxide is experimentally and theoretically based.  相似文献   

6.
7.
Arabidopsis thaliana accessions have shown genetic diversity and type of stressor to be important determinants of transgenerational stress memory. Alvarez et al. found that certain accessions showed reversible phenotypic plasticity, supporting a model of transgenerational stress memory based upon epigenetic changes. The main proposed epigenetic regulators include DNA methylation, histone modifications, and RNA silencing via small noncoding RNA.  相似文献   

8.
9.
表观遗传修饰在学习和记忆中的调节作用   总被引:1,自引:0,他引:1  
学习和记忆行为是大脑的基本功能,它使得生物个体能够更好地适应环境的变化。揭示学习和记忆的分子生物学机制是现代神经生物学发展的目标之一。经过近40年的研究现已初步证实了突触可塑性在学习和记忆中所起的关键作用。而近年来的研究发现,表观遗传修饰对学习和记忆过程具有重要的调控作用。这一发现将有利于进一步揭示学习和记忆的复杂机制,并将为某些认知障碍性疾病的治疗提供新的思路。  相似文献   

10.
Our current understanding of the mechanisms of information processing and storage in the brain, based on the concept proposed more than fifty years ago by D. Hebb, is that a key role is played by changes in synaptic efficacy induced by coincident pre- and postsynaptic activity. Decades of studies of the properties of long-term potentiation (LTP) have shown that this form of plasticity adequately fulfills these requirements and is likely to contribute to several models of learning and memory. Recent analyses of the molecular events implicated in LTP are consistent with the view that modifications of receptor properties or insertion of new receptors account for the potentiation of synaptic transmission. These experiments, however, have also uncovered an unexpected structural plasticity of synapses. Dendritic spines appear to be dynamic structures that can be formed, modified in their shape or eliminated under the influence of activity. Furthermore, recent studies suggest that LTP, in addition to changes in synaptic function, is also associated with mechanisms of synaptogenesis. We review here the evidence pointing to this activity-dependent remodeling and discuss the possible role of this structural plasticity for synaptic potentiation, learning and memory.  相似文献   

11.
12.
The importance of histone acetylation for certain types of memory is now well established. However, the specific contributions of the various histone acetyltransferases to distinct memory functions remain to be determined; therefore, we employed selective histone acetyltransferase protein inhibitors and short‐interference RNAs to evaluate the roles of CREB‐binding protein (CBP), E1A‐binding protein (p300) and p300/CBP‐associated factor (PCAF) in hippocampus and perirhinal cortex (PRh)‐mediated object memory. Rats were tested for short‐ (STM) and long‐term memory (LTM) in the object‐in‐place task, which relies on the hippocampus and PRh for spatial memory and object identity processing, respectively. Selective inhibition of these histone acetyltransferases by small‐interfering RNA and pharmacological inhibitors targeting the HAT domain produced dissociable effects. In the hippocampus, CBP or p300 inhibition impaired long‐term but not short‐term object memory, while inhibition of PCAF impaired memory at both delays. In PRh, HAT inhibition did not impair STM, and only CBP and PCAF inhibition disrupted LTM; p300 inhibition had no effects. Messenger RNA analyses revealed findings consistent with the pattern of behavioral effects, as all three enzymes were upregulated in the hippocampus (dentate gyrus) following learning, whereas only CBP and PCAF were upregulated in PRh. These results demonstrate, for the first time, the necessity of histone acetyltransferase activity for PRh‐mediated object memory and indicate that the specific mnemonic roles of distinctive histone acetyltransferases can be dissociated according to specific brain regions and memory timeframe.  相似文献   

13.
In the presented review given literature and results of own studies of dynamics of electrical characteristics of neurons, which change are included in processes both an elaboration of learning, and retention of the long-term memory. Literary datas and our results allow to conclusion, that long-term retention of behavioural reactions during learning is accompanied not only by changing efficiency of synaptic transmission, as well as increasing of excitability of command neurons of the defensive reflex. This means, that in the process of learning are involved long-term changes of the characteristics a membrane of certain elements of neuronal network, dependent from the metabolism of the cells. see text). Thou phenomena possible mark as cellular (electrophysiological) correlates of long-term plastic modifications of the behaviour. The analyses of having results demonstrates an important role of membrane characteristics of neurons (their excitability) and parameters an synaptic transmission not only in initial stage of learning, as well as in long-term modifications of the behaviour (long-term memory).  相似文献   

14.
Caenorhabditis elegans is an exceptionally valuable model for aging research because of many advantages, including its genetic tractability, short lifespan, and clear age‐dependent physiological changes. Aged C. elegans display a decline in their anatomical and functional features, including tissue integrity, motility, learning and memory, and immunity. Caenorhabditis elegans also exhibit many age‐associated changes in the expression of microRNAs and stress‐responsive genes and in RNA and protein quality control systems. Many of these age‐associated changes provide information on the health of the animals and serve as valuable biomarkers for aging research. Here, we review the age‐dependent changes in C. elegans and their utility as aging biomarkers indicative of the physiological status of aging.  相似文献   

15.
Studies in a variety of organisms as diverse as molluscs, insects, birds and mammals have shown that memories can exist in a variety of temporal domains ranging from short-term memories in the range of minutes to long-term memories lasting a lifetime. While transient covalent modifications of proteins underlie short-term memory, the formation of long-term memory requires gene expression and protein synthesis. Different intracellular signalling cascades have been implicated in distinct aspects of learning and memory formation. Little is known however, about how learning in intact animals is related to the modulation of these signalling cascades and how this contributes to distinct neuronal and behavioural changes in vivo. Associative learning in the honeybee provides the opportunity to study processes of memory formation by analysing its progression through different phases, across levels of behaviour, neural circuits, and cellular signalling pathways. The findings reveal evidence that various cellular signalling pathways in the neuronal circuit of distinct brain areas play a role in different processes during learning and memory formation.  相似文献   

16.
17.
To investigate the pathophysiology of cancer‐induced depression (CID), we have recently developed a validated CID mouse model. Given that the efficacy of antidepressants in cancer patients is controversial, it remains unclear whether CID is a biologically distinct form of depression. We used RNA‐sequencing (RNA‐seq) to investigate differentially expressed genes (DEGs) in hippocampi of animals from our CID model relative a positive control model of depressive‐like behavior induced with chronic corticosterone (CORT). To validate RNA‐seq results, we performed quantitative real‐time RT‐PCR (qRT‐PCR) on a subset of DEGs. Enrichment analysis using DAVID was performed on DEGs to identify enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways and biological process gene ontologies (GO:BP). qRT‐PCR results significantly predicted RNA‐seq results. RNA‐seq revealed that most DEGs identified in the CORT model overlapped with the CID model. Enrichment analyses identified KEGG pathways and GO:BP terms associated with ion homeostasis and neuronal communication for both the CORT and CID model. In addition, CID DEGs were enriched in pathways and terms relating to neuronal development, intracellular signaling, learning and memory. This study is the first to investigate CID at the mRNA level. We have shown that most hippocampal mRNA changes that are associated with a depressive‐like state are also associated with cancer. Several other changes occur at the mRNA level in cancer, suggesting that the CID model may represent a biologically distinct form of a depressive‐like state.  相似文献   

18.
Epigenetic regulation of cellular identity and function is at least partly achieved through changes in covalent modifications on DNA and histones. Much progress has been made in recent years to understand how these covalent modifications affect cell identity and function. Despite the advances, whether and how epigenetic factors contribute to memory formation is still poorly understood. In this review, we discuss recent progress in elucidating epigenetic mechanisms of learning and memory, primarily at the DNA level, and look ahead to discuss their potential implications in reward memory and development of drug addiction.  相似文献   

19.
Day JJ  Sweatt JD 《Neuron》2011,70(5):813-829
Although the critical role for epigenetic mechanisms in development and cell differentiation has long been appreciated, recent evidence reveals that these mechanisms are also employed in postmitotic neurons as a means of consolidating and stabilizing cognitive-behavioral memories. In this review, we discuss evidence for an "epigenetic code" in the central nervous system that mediates synaptic plasticity, learning, and memory. We consider how specific epigenetic changes are regulated and may interact with each other during memory formation and how these changes manifest functionally at the cellular and circuit levels. We also describe a central role for mitogen-activated protein kinases in controlling chromatin signaling in plasticity and memory. Finally, we consider how aberrant epigenetic modifications may lead to cognitive disorders that affect learning and memory, and we review the therapeutic potential of epigenetic treatments for the amelioration of these conditions.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号