首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 640 毫秒
1.
Alvinella pompejana is a polychaetous annelid that inhabits high-temperature environments associated with active deep-sea hydrothermal vents along the East Pacific Rise. A unique and diverse epibiotic microflora with a prominent filamentous morphotype is found associated with the worm's dorsal integument. A previous study established the taxonomic positions of two epsilon proteobacterial phylotypes, 13B and 5A, which dominated a clone library of 16S rRNA genes amplified by PCR from the epibiotic microbial community of an A. pompejana specimen. In the present study deoxyoligonucleotide PCR primers specific for phylotypes 13B and 5A were used to demonstrate that these phylotypes are regular features of the bacterial community associated with A. pompejana. Assaying of other surfaces around colonies of A. pompejana revealed that phylotypes 13B and 5A are not restricted to A. pompejana. Phylotype 13B occurs on the exterior surfaces of other invertebrate genera and rock surfaces, and phylotype 5A occurs on a congener, Alvinella caudata. The 13B and 5A phylotypes were identified and localized on A. pompejana by in situ hybridization, demonstrating that these two phylotypes are, in fact, the prominent filamentous bacteria on the dorsal integument of A. pompejana. These findings indicate that the filamentous bacterial symbionts of A. pompejana are epsilon Proteobacteria which do not have an obligate requirement for A. pompejana.  相似文献   

2.
A unique community of bacteria colonizes the dorsal integument of the polychaete annelid Alvinella pompejana, which inhabits the high-temperature environments of active deep-sea hydrothermal vents along the East Pacific Rise. The composition of this bacterial community was characterized in previous studies by using a 16S rRNA gene clone library and in situ hybridization with oligonucleotide probes. In the present study, a pair of PCR primers (P94-F and P93-R) were used to amplify a segment of the dissimilatory bisulfite reductase gene from DNA isolated from the community of bacteria associated with A. pompejana. The goal was to assess the presence and diversity of bacteria with the capacity to use sulfate as a terminal electron acceptor. A clone library of bisulfite reductase gene PCR products was constructed and characterized by restriction fragment and sequence analysis. Eleven clone families were identified. Two of the 11 clone families, SR1 and SR6, contained 82% of the clones. DNA sequence analysis of a clone from each family indicated that they are dissimilatory bisulfite reductase genes most similar to the dissimilatory bisulfite reductase genes of Desulfovibrio vulgaris, Desulfovibrio gigas, Desulfobacterium autotrophicum, and Desulfobacter latus. Similarities to the dissimilatory bisulfite reductases of Thermodesulfovibrio yellowstonii, the sulfide oxidizer Chromatium vinosum, the sulfur reducer Pyrobaculum islandicum, and the archaeal sulfate reducer Archaeoglobus fulgidus were lower. Phylogenetic analysis separated the clone families into groups that probably represent two genera of previously uncharacterized sulfate-reducing bacteria. The presence of dissimilatory bisulfite reductase genes is consistent with recent temperature and chemical measurements that documented a lack of dissolved oxygen in dwelling tubes of the worm. The diversity of dissimilatory bisulfite reductase genes in the bacterial community on the back of the worm suggests a prominent role for anaerobic sulfate-reducing bacteria in the ecology of A. pompejana.  相似文献   

3.
We constructed a bacterial 16S rRNA gene clone library from the gut microbial community of O. formosanus and phylogenetically analyzed it in order to contribute to the evolutional study of digestive symbiosis and method development for termite control. After screening by restriction fragment length polymorphism (RFLP) analysis, 56 out of 280 clones with unique RFLP patterns were sequenced and phylogenetically analyzed. The representative phylotypes were affiliated to four phylogenetic groups, Firmicutes, the Bacteroidetes/Chlorobi group, Proteobacteria, and Actinobacteria of the domain Bacteira. No one clone affiliated with the phylum Spirochaetes was identified, in contrast to the case of wood-feeding termites. The phylogenetic analysis revealed that nearly half of the representative clones (25 phylotypes) formed monophyletic clusters with clones obtained from other termite species, especially with the sequences retrieved from fungus-growing termites. These results indicate that the presence of termite-specific bacterial lineages implies a coevolutional relationship of gut microbes and host termites.  相似文献   

4.
A highly integrated, morphologically diverse bacterial community is associated with the dorsal surface of Alvinella pompejana, a polychaetous annelid that inhabits active high-temperature deep-sea hydrothermal vent sites along the East Pacific Rise (EPR). Analysis of a previously prepared bacterial 16S ribosomal DNA (rDNA) library identified a spirochete most closely related to an endosymbiont of the oligochete Olavius loisae. This spirochete phylotype (spirochete A) comprised only 2.2% of the 16S rDNA clone library but appeared to be much more dominant when the same sample was analyzed by denaturing gradient gel electrophoresis (DGGE) and the terminal restriction fragment length polymorphism procedure (12 to 18%). PCR amplification of the community with spirochete-specific primers used in conjunction with DGGE analysis identified two spirochete phylotypes. The first spirochete was identical to spirochete A but was present in only one A. pompejana specimen. The second spirochete (spirochete B) was 84.5% similar to spirochete A and, more interestingly, was present in the epibiont communities of all of the A. pompejana specimens sampled throughout the geographic range of the worm (13 degrees N to 32 degrees S along the EPR). The sequence variation of the spirochete B phylotype was less than 3% for the range of A. pompejana specimens tested, suggesting that a single spirochete species was present in the A. pompejana epibiotic community. Additional analysis of the environments surrounding the worm revealed that spirochetes are a ubiquitous component of high-temperature vents and may play an important role in this unique ecosystem.  相似文献   

5.
A combination of culture-dependent and culture-independent methodologies (Bacteria and Archaea 16S rRNA gene clone library analyses) was used to determine the microbial diversity present within a geographically distinct high Arctic permafrost sample. Culturable Bacteria isolates, identified by 16S rRNA gene sequencing, belonged to the phyla Firmicutes, Actinobacteria and Proteobacteria with spore-forming Firmicutes being the most abundant; the majority of the isolates (19/23) were psychrotolerant, some (11/23) were halotolerant, and three isolates grew at -5 degrees C. A Bacteria 16S rRNA gene library containing 101 clones was composed of 42 phylotypes related to diverse phylogenetic groups including the Actinobacteria, Proteobacteria, Firmicutes, Cytophaga - Flavobacteria - Bacteroides, Planctomyces and Gemmatimonadetes; the bacterial 16S rRNA gene phylotypes were dominated by Actinobacteria- and Proteobacteria-related sequences. An Archaea 16S rRNA gene clone library containing 56 clones was made up of 11 phylotypes and contained sequences related to both of the major Archaea domains (Euryarchaeota and Crenarchaeota); the majority of sequences in the Archaea library were related to halophilic Archaea. Characterization of the microbial diversity existing within permafrost environments is important as it will lead to a better understanding of how microorganisms function and survive in such extreme cryoenvironments.  相似文献   

6.
The objective of this study was to analyze the phylogenetic composition of bacterial community in the soil of an earth-cave (Niu Cave) using a culture-independent molecular approach. 16S rRNA genes were amplified directly from soil DNA with universally conserved and Bacteria-specific rRNA gene primers and cloned. The clone library was screened by restriction fragment length polymorphism (RFLP), and representative rRNA gene sequences were determined. A total of 115 bacterial sequence types were found in 190 analyzed clones. Phylogenetic sequence analyses revealed novel 16S rRNA gene sequence types and a high diversity of putative bacterial community. Members of these bacteria included Proteobacteria (42.6%), Acidobacteria (18.6%), Planctomycetes (9.0%), Chloroflexi (Green nonsulfur bacteria, 7.5%), Bacteroidetes (2.1%), Gemmatimonadetes (2.7%), Nitrospirae (8.0%), Actinobacteria (High G+C Gram-positive bacteria, 6.4%) and candidate divisions (including the OP3, GN08, and SBR1093, 3.2%). Thirty-five clones were affiliated with bacteria that were related to nitrogen, sulfur, iron or manganese cycles. The comparison of the present data with the data obtained previously from caves based on 16S rRNA gene analysis revealed similarities in the bacterial community components, especially in the high abundance of Proteobacteria and Acidobacteria. Furthermore, this study provided the novel evidence for presence of Gemmatimonadetes, Nitrosomonadales, Oceanospirillales, and Rubrobacterales in a karstic hypogean environment.  相似文献   

7.
新疆沙湾冷泉沉积物的细菌系统发育多样性   总被引:1,自引:1,他引:0  
曾军  杨红梅  徐建华  吴江超  张涛  孙建  娄恺 《生态学报》2010,30(21):5728-5735
为了解新疆沙湾冷泉沉积物的细菌群落组成与类群多样性,利用免培养方法直接从沙湾冷泉沉积物中提取环境总DNA,构建细菌16S rRNA基因文库。对随机挑选的241个细菌阳性克隆子进行HaeIII酶切分型得到86个可操作分类单元(OTUs),系统发育分析将其归为11个门:放线菌门(Actinobacteria),酸杆菌门(Acidobacteria),拟杆菌门(Bacteroidetes),绿菌门(Chlorobi),蓝细菌门(Cyanobacteria),厚壁菌门(Firmicutes),芽单胞菌门(Gemmatimonadetes),硝化螺旋菌门(Nitrospirae),变形菌门(Proteobacteria),浮霉菌门(Planctomycetes),疣微菌门(Verrucomicrobia)。其中酸杆菌门和变型菌门为优势类群,分别占细菌克隆文库的48%和25%。超过1/3的OTUs序列与GenBank中已存序列具有较低相似性(相似性小于95%)。此外20%左右的克隆子与固氮细菌和硝酸盐氧化细菌相关。研究结果表明,新疆沙湾冷泉沉积物中细菌种类丰富,代谢类型多样而且存在大量未知类群。  相似文献   

8.
南海深海沉积物放线菌多样性分析   总被引:1,自引:0,他引:1  
【目的】免培养和纯培养相结合分析南海深海沉积物放线菌多样性。【方法】免培养方法通过提取沉积物宏基因组DNA,利用放线菌门特异性引物扩增放线菌16S r RNA基因序列,构建放线菌16S r RNA基因克隆文库,文库经RFLP(Restriction fragment length polymorphism)分析后挑选代表序列测序并进行多样性指数分析和系统发育分析。可培养方法利用8种培养基进行菌株分离,对排重后的菌株进行16S r RNA基因序列多样性分析。【结果】构建的两个深海位点的16S r RNA基因克隆文库在放线菌门的放线菌纲(Actinobacteria)、酸微菌纲(Acidimicrobiia)、腈基降解菌纲(Nitriliruptoria)和嗜热油菌纲(Thermoleophilia)4个纲中均有分布;两个位点中的种群结构有差异,N40-4位点的优势种群是放线菌纲的链霉菌目(Streptomycetales);N63-4位点的优势种群是腈基降解菌纲的腈基降解菌目(Nitriliruptorales)。8种培养基共分离出41株放线菌,根据形态特征排重后得到的19株菌分布于10个不同的属,12个不同的种,其中稀有放线菌属比例较高,菌株OAct400为潜在的微杆菌属(Microbacterium)新种。【结论】南海深海沉积物蕴含着丰富的放线菌物种资源及大量未知种群,具有进一步研究的价值。  相似文献   

9.
The bacterial diversity in fecal samples from the wild pygmy loris was examined with a 16S rDNA clone library and restriction fragment length polymorphism analysis. The clones were classified as Firmicutes (43.1%), Proteobacteria (34.5%), Actinobacteria (5.2%), and Bacteroidetes (17.2%). The 58 different kinds of 16S rDNA sequences were classified into 16 genera and 20 uncultured bacteria. According to phylogenetic analysis, the major genera within the Proteobacteria was Pseudomonas, comprising 13.79% of the analyzed clone sequences. Many of the isolated rDNA sequences did not correspond to known microorganisms, but had high homology to uncultured clones found in human feces. Am. J. Primatol. 72:699–706, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
Bacterial endophytes may be important for plant health and other ecologically relevant functions of poplar trees. The composition of endophytic bacteria colonizing the aerial parts of poplar was studied using a multiphasic approach. The terminal restriction fragment length polymorphism analysis of 16S rRNA genes demonstrated the impact of different hybrid poplar clones on the endophytic community structure. Detailed analysis of endophytic bacteria using cultivation methods in combination with cloning of 16S rRNA genes amplified from plant tissue revealed a high phylogenetic diversity of endophytic bacteria with a total of 53 taxa at the genus level that included Proteobacteria, Actinobacteria, Firmicutes and Bacteroidetes. The community structure displayed clear differences in terms of the presence and relative proportions of bacterial taxa between the four poplar clones studied. The results showed that the genetic background of the hybrid poplar clones corresponded well with the endophytic community structure. Out of the 513 isolates and 209 clones identified, Actinobacteria, in particular the family Microbacteriaceae, made up the largest fraction of the isolates, whereas the clone library was dominated by Alpha- and Betaproteobacteria. The most abundant genera among the isolates were Pseudomonas and Curtobacterium, while Sphingomonas prevailed among the clones.  相似文献   

11.
Various molecular-biological approaches using the 16S rRNA gene sequence have been used for the analysis of human colonic microbiota. Terminal- restriction fragment length polymorphism (T-RFLP) analysis is suitable for a rapid comparison of complex bacterial communities. Terminal-restriction fragment (T-RF) length can be calculated from a known sequence, thus one can predict bacterial species on the basis of their T-RF length by this analysis. The aim of this study was to build a phylogenetic assignment database for T-RFLP analysis of human colonic microbiota (PAD-HCM), and to demonstrate the effectiveness of PAD-HCM compared with the results of 16S rRNA gene clone library analysis. PAD-HCM was completed to include 342 sequence data obtained using four restriction enzymes. Approximately 80% of the total clones detected by 16S rRNA gene clone library analysis were the same bacterial species or phylotypes as those assigned from T-RF using PAD-HCM. Moreover, large T-RFs consisted of common species or phylotypes detected by both analytical methods. All pseudo-T-RFs identified by mung bean nuclease digestion could not be assigned to a bacterial species or phylotype, and this finding shows that pseudo-T-RFs can also be predicted using PAD-HCM. We conclude that PAD-HCM built in this study enables the prediction of T-RFs at the species level including difficult-to-culture bacteria, and that it is very useful for the T-RFLP analysis of human colonic microbiota.  相似文献   

12.
The phylogenetic diversity of the bacterial community in the gut of the termite Coptotermes formosanus was investigated using a 16S rRNA gene clone library constructed by PCR. After screening by restriction fragment length polymorphism (RFLP) analysis, 49 out of 261 clones with unique RFLP patterns were sequenced and phylogenetically analyzed. Many of the clones (94%) were derived from Bacteroidales, Spirochaetes, and low G + C content gram-positive bacteria consisting of Clostridiales, Mycoplasmatales, Bacillales, and Lactobacillales. In addition, a few clones derived from Actinobacteria, Proteobacteria, Planctomycetes, Verrucomicrobia, and the candidate phylum "Synergistes" were also found. The most frequently identified RFLP type, BCf1-03, was assigned to the order Bacteroideales, and it constituted about 70% of the analyzed clones. The phylogenetic analysis revealed that the representative clones found in this study tended to form some clusters with the sequences cloned from the termite gut in several other studies, suggesting the existence of termite-specific bacterial lineages.  相似文献   

13.
新疆艾比湖湿地博乐河入口处土壤细菌多样性分析   总被引:1,自引:0,他引:1  
【目的】了解新疆艾比湖湿地国家级自然保护区非培养土壤细菌群落组成及多样性。【方法】采用非培养法直接从湿地土壤提取总DNA进行16S r RNA基因扩增,构建细菌16S r RNA基因克隆文库。使用MspⅠ和AfaⅠ限制性内切酶对阳性克隆进行16S r RNA基因扩增片段的限制性酶切分析(Amplified r DNA restriction analysis,ARDRA),挑取具有不同双酶切图谱的克隆进行测序,序列比对并构建16S r RNA基因系统发育树。【结果】从土壤细菌的16S r RNA基因文库中随机挑取75个不同谱型的克隆子,共得到58个OTUs,系统发育归类为8个细菌类群:绿弯菌门(Chloroflexi)、蓝藻门(Cyanobacteria)、变形菌门(Proteobacteria)、厚壁菌门(Firmicutes)、放线菌门(Actinobacteria)、拟杆菌门(Bacteroidetes)、疣微菌门(Verrucomicrob)和芽单胞菌门(Gemmatimonadetes)。其中,变形菌门为第一优势菌群,拟杆菌门为第二优势菌群,两者约占总克隆的65%。【结论】艾比湖湿地博乐河入口处土壤细菌多样性丰富,且存在一定数量的潜在微生物新种。  相似文献   

14.
Culture-independent DNA fingerprints are commonly used to assess the diversity of a microbial community. However, relating species composition to community profiles produced by community fingerprint methods is not straightforward. Terminal restriction fragment length polymorphism (T-RFLP) is a community fingerprint method in which phylogenetic assignments may be inferred from the terminal restriction fragment (T-RF) sizes through the use of web-based resources that predict T-RF sizes for known bacteria. The process quickly becomes computationally intensive due to the need to analyze profiles produced by multiple restriction digests and the complexity of profiles generated by natural microbial communities. A web-based tool is described here that rapidly generates phylogenetic assignments from submitted community T-RFLP profiles based on a database of fragments produced by known 16S rRNA gene sequences. Users have the option of submitting a customized database generated from unpublished sequences or from a gene other than the 16S rRNA gene. This phylogenetic assignment tool allows users to employ T-RFLP to simultaneously analyze microbial community diversity and species composition. An analysis of the variability of bacterial species composition throughout the water column in a humic lake was carried out to demonstrate the functionality of the phylogenetic assignment tool. This method was validated by comparing the results generated by this program with results from a 16S rRNA gene clone library.  相似文献   

15.
Culture-independent DNA fingerprints are commonly used to assess the diversity of a microbial community. However, relating species composition to community profiles produced by community fingerprint methods is not straightforward. Terminal restriction fragment length polymorphism (T-RFLP) is a community fingerprint method in which phylogenetic assignments may be inferred from the terminal restriction fragment (T-RF) sizes through the use of web-based resources that predict T-RF sizes for known bacteria. The process quickly becomes computationally intensive due to the need to analyze profiles produced by multiple restriction digests and the complexity of profiles generated by natural microbial communities. A web-based tool is described here that rapidly generates phylogenetic assignments from submitted community T-RFLP profiles based on a database of fragments produced by known 16S rRNA gene sequences. Users have the option of submitting a customized database generated from unpublished sequences or from a gene other than the 16S rRNA gene. This phylogenetic assignment tool allows users to employ T-RFLP to simultaneously analyze microbial community diversity and species composition. An analysis of the variability of bacterial species composition throughout the water column in a humic lake was carried out to demonstrate the functionality of the phylogenetic assignment tool. This method was validated by comparing the results generated by this program with results from a 16S rRNA gene clone library.  相似文献   

16.
Recent molecular characterizations of microbial communities from deep-sea hydrothermal sites indicate the predominance of bacteria belonging to the epsilon subdivision of Proteobacteria (epsilon Proteobacteria). Here, we report the first enrichments and characterizations of four epsilon Proteobacteria that are directly associated with Alvinella pompejana, a deep sea hydrothermal vent polychete, or with hydrothermal vent chimney samples. These novel bacteria were moderately thermophilic sulfur-reducing heterotrophs growing on formate as the energy and carbon source. In addition, two of them (Am-H and Ex-18.2) could grow on sulfur lithoautrotrophically using hydrogen as the electron donor. Optimal growth temperatures of the bacteria ranged from 41 to 45 degrees C. Phylogenetic analysis of the small-subunit ribosomal gene of the two heterotrophic bacteria demonstrated 95% similarity to Sulfurospirillum arcachonense, an epsilon Proteobacteria isolated from an oxidized marine surface sediment. The autotrophic bacteria grouped within a deeply branching clade of the epsilon Proteobacteria, to date composed only of uncultured bacteria detected in a sample from a hydrothermal vent along the mid-Atlantic ridge. A molecular survey of various hydrothermal vent environments demonstrated the presence of two of these bacteria (Am-N and Am-H) in more than one geographic location and habitat. These results suggest that certain epsilon Proteobacteria likely fill important niches in the environmental habitats of deep-sea hydrothermal vents, where they contribute to overall carbon and sulfur cycling at moderate thermophilic temperatures.  相似文献   

17.
There is a concern of whether the structure and diversity of a microbial community can be effectively revealed by short-length pyrosequencing reads. In this study, we performed a microbial community analysis on a sample from a high-efficiency denitrifying quinoline-degrading bioreactor and compared the results generated by pyrosequencing with those generated by clone library technology. By both technologies, 16S rRNA gene analysis indicated that the bacteria in the sample were closely related to, for example, Proteobacteria, Actinobacteria, and Bacteroidetes. The sequences belonging to Rhodococcus were the most predominant, and Pseudomonas, Sphingomonas, Acidovorax, and Zoogloea were also abundant. Both methods revealed a similar overall bacterial community structure. However, the 622 pyrosequencing reads of the hypervariable V3 region of the 16S rRNA gene revealed much higher bacterial diversity than the 130 sequences from the full-length 16S rRNA gene clone library. The 92 operational taxonomic unit (OTUs) detected using pyrosequencing belonged to 45 families, whereas the 37 OTUs found in the clone library belonged to 25 families. Most sequences obtained from the clone library had equivalents in the pyrosequencing reads. However, 64 OTUs detected by pyrosequencing were not represented in the clone library. Our results demonstrate that pyrosequencing of the V3 region of the 16S rRNA gene is not only a powerful tool for discovering low-abundance bacterial populations but is also reliable for dissecting the bacterial community structure in a wastewater environment.  相似文献   

18.
新疆泥火山细菌遗传多样性   总被引:7,自引:0,他引:7  
为了解新疆乌苏泥火山细菌多样性,从泥火山泥浆样品中直接提取总DNA,构建了含150个有效转化子的泥火山细菌16S rDNA基因文库,转化子经菌液PCR及HaeⅢ酶切后获得16个不同带型,克隆测序结果表明,其分属于16个不同的分类单元.一部分序列与已知细菌类群的16S rDNA序列相似性较高,归属变形菌门(Proteobacteria),厚壁菌门(Firmicutes),梭杆菌门(Fusobacteria),放线菌门(Actinobacteria);另外一部分序列与已知细菌类群的16S rDNA序列同源性较低,可能代表新的分类单位.研究结果显示,泥火山环境中微生物种群丰富,值得进一步研究.  相似文献   

19.
Zhang T  Liu M  Sun J  Shi Y W  Zeng J  Lou K 《农业工程》2012,32(5):265-270
The bacterial community composition and diversity in rock varnish of Turpan Basin were investigated by restriction fragment length polymorphism (RFLP) and clone library of the 16S rRNA gene. 114 positive clones were screened, which could be grouped into 28 phylotypes and then further divided into 23 different operational taxonomic units (OTUs). These were affiliated into 5 phyla (Acidobacteria, Proteobacteria, Chloroflexi, Firmicutes and Cyanobacteria). Clones from actinobacteria were the dominant, accounting for 67.5% of total clones in the library, followed by Proteobacteria (15.8%), Chloroflexi (13.2%), Firmicutes (2.6%) and Cyanobacteria (0.9%). Rubrobacter (accounts for 35%) in the phylum Actinobacteria was the dominant genus and contained many species which might be resistant to gamma radiation. A 70% of the library clone sequences showed less 97% similarity to 16S rRNA gene sequences of standard strains obtained by pure culture. Shannon–Wiener index value of this study is 2.52 and is lower than deep-sea sediments, soils, lakes and other environments. Results of this study showed that bacterial diversity in rock varnishes of Turpan Basin was low, but maybe exist a large number of new unknown taxons, especially species that could well adapted to drought and resist radiation.  相似文献   

20.
The maturation of murine cecal microbiota was determined by terminal restriction fragment polymorphism (T-RFLP) and 16S rRNA gene clone libraries. Cecal microbiota in specific pathogen free (SPF) mice aged four to 10 weeks were collected. The cluster of samples in 4-week-old mice was different from those of other ages based on T-RFLP profiles. The majority of clones obtained in this study belonged to the Clostridium coccoides (C. coccoides) group, the Bacteroides group or the Lactobacillus group. Phylogenetic analysis showed characteristic clusters composed of new operational taxonomic unit (OTU) of the C. coccoides and Bacteroides groups. The existence of a large number of yet unidentified bacteria inhabiting the murine cecum was demonstrated by 16S rRNA gene clone libraries. T-RFLP analysis data were more complex and more sensitive than the patterns generated by computer simulation of 16S rRNA gene clone library analysis data. T-RFLP revealed development with maturation of cecal microbiota including unidentified bacteria of SPF mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号