首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Genetic and cytogenetic techniques were applied to linkage analysis of chromosome 1. Eight marker genes, including five on the short arm and three on the long arm, were analyzed with two telotrisomic lines, Triplo 1S and 1L, and one acrotrisomic line, Triplo 1L1S. Telotrisomic analysis confirmed the position of a c 2, gs3, f3, br, f5, and f8 on the short arm, and 1k2 and n on the long arm of the linkage map of chromosome 1. Conventional three-point tests with two triple genetic marker stocks showed that f c is located between br and gs3, and n is located in the middle of f8 and 1k2. Acrotrisomic for 1L1S was used for cytogenetic linkage mapping. Giemsa N-banding technique showed that the long (1L) and short (1S) arm had deficiencies of 37.5% and 73%, respectively. Genes f5, br, f c, gs3 and f8 in 1S and 1k2 in 1L were located in the deficient segments of 1L1S. A trisomic ratio obtained with n indicated an association of this gene with the long arm of the acrocentric chromosome. Cytological behavior, morphological characteristics, fertility, and transmission in the acrotrisomic 1L1S are also reported.Contribution from Department of Agronomy and published with the approval of the Director of Colorado State University Agricultural Experiment Station. Series No. 2984. Supported by USDA Competitive Research Grant No. 82-CRCR-1-1020, USDA-CSU Cooperative Research Grant No. 58-9AHZ-2-265 and Colorado State University Hatch project  相似文献   

2.
Summary A total of 37 genetic markers located in chromosomes 2, 3, 4 and 5 were associated with specific arms by means of telotrisomic analysis in five telotrisomics (Triplo 2 L, 2 S, 3 S, 4 S, 5 L) of barley (Hordeum vulgare L.). The genes v, gp (= gp 2), li, gs 5, tr and msg2 showed a trisomic ratio with Triplo 2 L indicating that these genes were on the long arm of chromosome 2. A disomic ratio was obtained for genes wst 4, gs 5, and v with Triplo 2 S, confirming that these genes were on the long arm of chromosome 2(2 L). A disomic ratio was observed for genes e, f(= lg), sk, and gs6 with Triplo 2 L. Two genes, f(= lg) and gs6 showed a trisomic ratio with Triplo 2S. These results indicated that genes e, f(= lg), sk, and gs 6 are on the short arm of chromosome 2 (2S). Since only one telocentric chromosome was available for chromosome 3, 4 and 5, most of the well-mapped marker genes were tested with those telocentric chromosomes. The genes cu 2, uz, wst, als, gs 2, zb,f2, and cer-zn 348 showed trisomic ratio with the telocentric for chromosome 3. These genes were located on the short arm of chromosome 3 (Robertson 1971). This indicated that the telocentric chromosome is for the short arm of chromosome 3(3 S). A disomic ratio was obtained for genes yst, x c, al, yst2, a n, ari-a 6 and x s, indicating that these genes are on the long arm of chromosome 3. Two genes, f9 and K, showed trisomic ratio with the telocentric chromosome for 4, while genes gl(= gl2), br2, yh, lg 3, lg 4 and lk 5 showed disomic ratios. This indicated that the telocentric chromosome is for the short arm of chromosome 4. Two genes, fs 2 and g, were studied with Triplo 5 L. Both showed trisomic ratio, indicating that fs 2 and g are located on Triplo 5 L. The centromere position (C) on chromosome 2, 3 and 4 was thus located as (the left side of C is the short arm and the right is the long arm): chromosome 2: fskgs6e — C — gs5msg2wst4vgplitr; chromosome 3: f2cer-zn 348uzgs2alscu2wstzb — C — ystx calyst2a nari-a 6x s; chromosome 4: f9KClg4lg 3gl2br2lk5yh. The centromere position on chromosome 5 was not precisely located.Contribution from the Department of Agronomy, Published with the approval of the director of the Colorado State University Experiment Station as Scientific Series Paper No. 2606. This research was supported in part by by NSF Grant GB 4482X and GB 30 493 to T. Tsuchiya and Colorado State University Experiment Station Hatch Project  相似文献   

3.
Summary Four genes coding for isozymes in rice (Oryza sativa L.), were located to respective chromosmes through trisomic analysis. Twelve primary trisomics in IR36 background were crossed with 2 lines having contrasting alleles at four loci. For each gene, all 12 disomic and trisomic F1 hybrids were screened for allele dosage effects. Either F2 or BC1 populations of all cross combinations were assessed for gene segregtion. Evidence from both sources indicated the following locations: Pgi-1 on chromosome 4, Sdh-1 on chromosome 6, Est-8 on chromosome 7 and Adh-1 on chromosome 11. The location of Sdh-1 was further confirmed through the production of triallelic heterozygotes with trisomic 6.  相似文献   

4.
R J Singh  T Tsuchiya 《Génome》1993,36(2):350-355
The origin, identification, meiotic chromosome behavior, and breeding behavior of an unstable trisomic barley were studied. The extra chromosome originated by breakage and fusion of an acrocentric chromosome 3 in a plant from an F2 population of a cross between acrotrisomic 3L3S (2n = 14 + 1 acro3L3S) and a balanced lethal stock, xc. (xantha) ac (albino). The F2 population segregated only for the albino trait. The genotypic constitution of the trisomic plant was ac ac (for both normal chromosome 3) and Ac (for the unstable metacentric chromosome). The unstable extra metacentric chromosome was designated as metacentric 3B (abbreviated as meta3B). Meiotic chromosome behavior in plants with 2n = 14 + 1 meta3B differed from plant to plant and within spikes. Some plants showed only trisomic cells with a chromosome configuration of 1 III + 6 II and 7 II + 1 I at metaphase I, whereas other plants showed both trisomie and disomic cells (7 II) that resulted from the elimination of the extra meta3B. The frequency of ring trivalents was low (6.8%). An average transmission rate of unstable meta3B ranged from 4.3 to 12.9%. The elimination of meta3B, and hence loss of the dominant Ac allele, resulted in albino seedlings as well as white stripes on plants, leaves, and spikes. Chromosome numbers of albino seedlings in the progeny of 2n = 14 + 1 meta3B were all diploid (2n = 14), while green seedlings contained 2n = 14 + 1 meta3B. However, progenies of some spikes of one trisomic plant showed a low frequency of green diploids and metatrisomics (2n = 14 + 1 meta3B), which was attributed to crossing-over.  相似文献   

5.
Summary Autotetraploid gene segregation was studied in Zea mays L. using a marking system of two very closely linked genes (A 1 and Sh 2) in the repulsion phase. This system makes it possible to identify many euploid and aneuploid genotypes and enables the estimation of some parameters of autotetraploid gene segregation such as double reduction, numerical nondisjunction, and the relative transmission frequencies of monosomic, disomic, and trisomic gametes. It was found that these three types of gametes did not function at the same rates on the male and female sides. Differences in observed segregation ratios between reciprocal testcrosses were explained by this phenomenon. Estimates of the frequency of double reduction were made for loci used after eliminating the effect of numerical non-disjuction on the segregation ratios. The value of double reduction appears to be the same in the male and female tetrasomic tetraploid. Tetraploids which were disomic for chromosome 3 were not isolated although they might be expected to be common in the progeny of self-fertilized or sib-crossed trisomic tetraploids. Their absence may be explained in part by the low rate of transmission of monosomic gametes from the male parent. Autotetraploid populations which are unstable for chromosome number probably achieve an equilibrium between forces which produce aneuploidy and forces which remove aneuploids from the population.This paper is dedicated to Dr. M. M. Rhoades.Cooperative investigations of the Plant Science Research Division, Agricultural Research Service, U.S. Department of Agriculture, and the Agronomy Department, Missouri Agricultural Experiment Station. Journal Series No. 6557.  相似文献   

6.
Five isozymic loci were localized in the tomato (Lycopersicon esculentum) genome by trisomic analysis. Results revealed the following locations: Aps-1 on chromosome 6, Est-1 and Prx-2 on chromosome 2, Prx-4 on chromosome 10, and Prx-7 on chromosome 3. Three genes—Aps-1, Prx-2, and Prx-4—showed an arithmetic increase in allozyme concentration in direct proportion to the increase of gene dosage in respective primary trisomics. In contrast, no increase in relative Est-1 isozyme concentration was observed for any primary trisomic type. The phenotypes of the Aps-1, Prx-2, and Est-1 genes showed a pattern of banding intensity proportional to the allelic ratio (+/+/a vs. + /a/a) in primary trisomics; zymotypes of these differential trisomic heterozygotes appeared as converse images of each other.This research was performed under the auspices of NSF Grants BMS75-03024 and DEB77-02248 to C. M. Rick.  相似文献   

7.
Summary By starch gel electrophoresis three mobility variants of a cathodic moving doublet of bands, encoded by the structural gene prxC, were detected in all organs of flowering petunias. In root tissue two of the variants showed a lower electrophoretic mobility than in other organs. During development of flower buds the PRXc enzymes showed an increase in mobility. The gene prxC was located on chromosome IV by showing linkage to the genes An3 and Dw1, by trisomic segregation, and by the construction of triply heterozygous trisomics IV. The gene order on chromosome IV is B1-An3/Dw1-prxC. It was concluded that the temporal programming difference in the expression of the alleles prxC2 and prxC3 is caused by internal site mutation. Analysis of progeny obtained by crossing of lines to the trisomic IV with genotype prxC1/C1/C2 showed differential expression of the two prxC1 alleles of the trisomic IV.  相似文献   

8.
Summary Variation in male and female transmission of the translocated extra chromosome (5R3R) was studied in a tertiary trisomic of rye (Secale cereale L.). In two F5 lines derived from a single F4 line, female transmission was lower than in five others derived from another F4 line. This could be caused by genetic factors or by the strong inbreeding depression in these lines, leading to low viability of trisomic progeny. After selfing, male transmission was estimated as very low, but this was primarily based on the occurrence of tetrasomics that probably have a very poor viability. In testcrosses with disomic female parents, male transmission was much higher (up to 27%), without variation within F5 lines. One F5 line showed significantly higher male transmission than any of the seven tested, including a sister line from the same F4. This was consistent in the F6. Apparently high male transmission is genetically determined. There was a positive correlation with recombination of the marker ti (tigrina) on the extra chromosome and the normal 5R chromosomes. At the first meiotic metaphase, trivalents and quinquivalents were frequent in the trisomics. Assuming loss of univalents, 40% of the microspores should carry the translocated extra chromosome. In most lines, more than 40% were found at pollen mitosis. Observations on timing of pollen mitosis showed a delayed development in aneuploid spores, with clear differences between plants, but no correlation with male transmission. The cause of reduced male transmission and the expression of genetic variation therein can, therefore, not be found in meiotic behaviour or delayed microspore development. Pollen germination and tube growth may be more important.  相似文献   

9.
Summary Seven out of twelve possible types of primary trisomies of dihaploid S. tuberosum were crossed as females with a disomic recessive mutant for topiary (tp tp) identified in S. infundibuliforme. All primary trisomics used proved to be homozygous dominant. Trisomic plants from the seven F1's were crossed with a disomic heterozygous F1 plant (supposed genotype Tp tp). In the half sib progeny of each trisomic type the mutant plants could be easily identified by the presence of typical lateral shoots, particularly at the cotyledonary nodes. The observed segregation ratios for normal to mutant were tested against the expected non-critical ratio 3 1 and against various critical ratios. It is concluded that the gene tp is located on chromosome 3 of the potato.  相似文献   

10.
Chromosomal locations of 10 isozyme loci in rice (Oryza sativa L.) were determined through trisomic analysis. All 10 genes produced altered allozyme banding patterns in specific F1 trisomics. This served as the primary source of evidence for chromosome locations ofEst-5, Icd-1, Acp-1, andPgd-1. The locations ofAmp-1, Amp-2, Amp-4, Pox-5, Got-1, andCat-1 were further confirmed from segregation data in BC1 generations, as the ratios deviated significantly from 1:1 in the critical trisomics but agreed with the expected trisomic ratios. Triallelic heterozygotes were recovered forAmp-1 andAmp-2. On the basis of these dataGot-1, Est-5, andIcd-1 were located to chromosome 1,Amp-1 to chromosome 2,Cat-1 andPox-5 to chromosome 3,Acp-1 to chromosome 6,Amp-2 andAmp-4 to chromosome 8, andPgd-1 to chromosome 11. BecauseAcp-2 andPox-2 are known to be linked withAcp-1, they must also be on chromosome 6. The gene order and recombination values between isozyme loci on chromosomes 3, 6, 8, and 11 are presented.The senior author wishes to acknowledge the financial support from the Chinese government.  相似文献   

11.
Estimation of linkage in trisomic inheritance   总被引:2,自引:0,他引:2  
 Based on F2 families derived from selfed F1 trisomic plants we have developed a genetic model to estimate linkage relationships between pairs of loci located on the extra chromosome. Genotypic frequencies of each class expected in a trisomic F2 family have been calculated and the maximum-likelihood equations for recombination-fraction estimation have been derived for a variety of genetic situations. Morton’s test of homogeneity was used to compare recombination fractions estimated between loci exhibiting trisomic segregation to those obtained in families where the same loci showed Mendelian segregation. This method has been applied to an analysis of morphological, isozyme and RAPD data from faba bean (Vicia faba L.). Received: 11 October 1996 / Accepted: 21 March 1997  相似文献   

12.
Summary Aneuploid stocks, which included Triticum aestivum/alien, disomic, chromosome addition lines, wheat/alien, ditelosomic, chromosome addition lines, and the available aneuploids of Chinese Spring wheat, were used to locate genes that influence milling energy requirement (ME). Genes that affected ME were found on all seven homoeologous chromosome groups. The addition of complete wheat chromosomes 1B, 1D, 2A, 2D, 5B, 6B, 7B and 7D increased ME. Positive effects were also found in specific chromosome arms: 1BS, 2DS, 5AS, 5BS and 6BL. Wheat chromosome 3B conditioned low ME and the gene(s) responsible was located on the short arm. Other negative effects were attributed to wheat chromosome arms 4BL, 4DL, 5DS and 6DS. Alien chromosome additions that conferred high ME included 2H, 5H, 6H and 7H of barley, Hordeum vulgare and 2R, 2R, 4R, 4RL, 6R, 6RL and 7RL of rye, Secale cereale. Those that conferred a low ME included 1H ch of H. chilense, and 6u and 7u of Aegilops umbellulata, 5R and 5RS of S. cereale and 5R m and 5R mS of S. montanum. Although the control of ME is polygenic, there is a major effect of genes located on the short arms of homoeologous group 5 chromosomes.  相似文献   

13.
Genomic in situhybridization (GISH) to root-tip cells at mitotic metaphase, using genomic DNA probes from Thinopyrum intermedium and Pseudoroegneria strigosa, was used to examine the genomic constitution of Th. intermedium, the 56-chromosome partial amphiploid to wheat called Zhong 5 and disease-resistant derivatives of Zhong 5, in a wheat background. Evidence from GISH indicated that Th. intermedium contained seven pairs of St, seven JS and 21 J chromosomes; three pairs of Th. intermedium chromosomes with satellites in their short arms belonging to the St, J, J genomes and homoeologous groups 1, 1, and 5 respectively. GISH results using different materials and different probes showed that seven pairs of added Th. intermedium chromosomes in Zhong 5 included three pairs of St chromosomes, two pairs of JS chromosomes and two pairs of St-JS reciprocal tanslocation chromosomes. A pair of chromosomes, which substituted a pair of wheat chromosomes in Yi 4212 and in HG 295 and was added to 21 pairs of wheat chromosomes in the disomic additions Z1, Z2 and Z6, conferred BYDV-resistance and was identical to a pair of St-JS tanslocation chromosomes (StJS) in Zhong 5. The StJS chromosome had a special GISH signal pattern and could be easily distinguished from other added chromosomes in Zhong 5; it has not yet been possible to locate the BYDV-resistant gene(s) of this translocated chromosome either in the St chromosome portion belonging to homoeologous group 2 or in the JS chromosome portion whose homoeologous group relationship is still uncertain. Among 22 chromosome pairs in disomic addition line Z3, the added chromosome pair had satellites and belonged to the St genome and homoeologous group 1. Disomic addition line Z4 carried a pair of added chromosomes which was composed of a group-7 JS chromosome translocated with a wheat chromosome; this chromosome was different to 7 Ai-1, but was identical to 7 Ai-2. The leaf rust and stem rust resistance genes were located in the distal region of the long arm, whereas the stripe rust resistance gene(s) was located in the short arm or in the proximal region of the long arm of 7 Ai-2. A pair of JS-wheat translocation chromosomes, which originated from the WJS chromosomes in Z4, was added to the disomic addition line Z5; the added chromosomes of Z5 carried leaf and stem rust resistance but not stripe rust resistance; Z5 is a potentially useful source for rust resistance genes in wheat breeding and for cloning these novel rust-resistant genes. GISH analysis using the St genome as a probe has proved advantageous in identifying alien Th. intermedium in wheat. Received: 17 May 1999 / Accepted: 22 June 1999  相似文献   

14.
In this study, two species of Romaleidae grasshoppers, Radacridium mariajoseae and R.nordestinum, were analyzed after CMA3/DA/DAPI sequential staining and fluorescence in situ hybridization (FISH) to determine the location of the 18S and 5S rDNA and histone H4 genes. Both species presented karyotypes composed of 2n = 23, X0 with exclusively acrocentric chromosomes. CMA3+ blocks were detected after CMA3/DA/DAPI staining in only one medium size autosome bivalent and in the X chromosome in R. mariajoseae. On the other hand, all chromosomes, except the L1 bivalent, of R. nordestinum presented CMA3+ blocks. FISH analysis showed that the 18S genes are restricted to the X chromosome in R. mariajoseae, whereas these genes were located in the L2, S9 and S10 autosomes in R. nordestinum. In R. mariajoseae, the 5S rDNA sites were localized in the in L1 and L2 bivalents and in the X chromosome. In R. nordestinum, the 5S genes were located in the L2, L3, M4 and M5 pairs. In both species the histone H4 genes were present in a medium size bivalent. Together, these data evidence a great variability of chromosome markers and show that the 18S and 5S ribosomal genes are dispersed in the Radacridium genome without a significant correlation.  相似文献   

15.
《The Journal of cell biology》1985,101(5):1749-1756
In the chicken, the nucleolus organizer regions, or sites of the genes encoding 18S, 5.8S, and 28S ribosomal RNA (rRNA), map to one pair of microchromosomes that can be identified by silver nitrate cytochemistry. This nucleolar organizer chromosome also contains the major histocompatibility complex. Chickens aneuploid for this chromosome have been identified and reproduced for over seven generations. Crossing two trisomic parents results in the production of viable disomic, trisomic, and tetrasomic progeny, showing two, three, and four nucleoli and nucleolar organizers per cell, respectively. A molecular analysis of rRNA genes was undertaken to establish the gene copy numbers in the aneuploid genotypes, and to determine if elevated numbers of rRNA genes are stably maintained and inherited over multiple generations. Gene copy numbers were determined using hybridization analysis of erythrocyte DNA obtained from individuals comprising a family which segregated disomic, trisomic, and tetrasomic genotypes. The values obtained were 290, 420, and 570 rDNA repeats per cell for disomic, trisomic, and tetrasomic animals, respectively. These results provide molecular confirmation of the two aneuploid states and show that elevated gene copy numbers have been maintained over multiple generations. Fibroblasts derived from disomic and tetrasomic embryos were found to grow at similar rates in culture, and mature rRNA levels in chicken embryo fibroblasts from disomic, trisomic and tetrasomic embryos were also found to have similar levels of mature rRNA. Therefore, despite the increase in rDNA content, the level of rRNA is regulated to diploid amounts in aneuploid fibroblasts.  相似文献   

16.
PK23-2, a line of six-rowed barley (Hordeum vulgare L.) originating from Pakistan, has resistance to Japanese strains I and III of the barley yellow mosaic virus (BaYMV). To identify the source of resistance in this line, reciprocal crosses were made between the susceptible cultivar Daisen-gold and PK23-2. Genetic analyses in the F1 generation, F2 generation, and a doubled haploid population (DH45) derived from the F1 revealed that PK23-2 harbors one dominant and one recessive resistance genes. A linkage map was constructed using 61 lines of DH45 and 127 DNA markers; this map covered 1268.8 cM in 10 linkage groups. One QTL having a LOD score of 4.07 and explaining 26.8% of the phenotypic variance explained (PVE) for resistance to BaYMV was detected at DNA marker ABG070 on chromosome 3H. Another QTL having a LOD score of 3.53 and PVE of 27.2% was located at marker Bmag0490 on chromosome 4H. The resistance gene on chromosome 3H, here named Rym17, showed dominant inheritance, whereas the gene on chromosome 4H, here named rym18, showed recessive inheritance in F1 populations derived from crosses between several resistant lines of DH45 and Daisen-gold. The BaYMV recessive resistance genes rym1, rym3, and rym5, found in Japanese barley germplasm, were not allelic to rym18. These results revealed that PK23-2 harbors two previously unidentified resistance genes, Rym17 on 3H and rym18 on 4H; Rym17 is the first dominant BaYMV resistance gene to be identified in primary gene pool. These new genes, particularly dominant Rym17, represent a potentially valuable genetic resource against BaYMV disease.  相似文献   

17.
Summary Ten out of twelve primary trisomics of dip-loid S. tuberosum were crossed as females with a recessive mutant for yellow margin (ym ym) obtained from S. phureja. All primary trisomics used proved to be homozygous dominant. Trisomic plants from all ten F1's were backcrossed with the mutant and trisomics from eight F1's were crossed also with a disomic heterozygous f1 plant from triple 10 X mutant.In both BC1 and half sib progeny of each trisomic type the mutant plants were easily identified because of their typical small roundish leaflets with yellow or reddish margins. The observed segregation ratios for normal to mutant were tested against the expected non-critical ratios and against various expected critical ratios.From the results of these tests it is concluded that the gene ym is located on chromosome 12 of the potato. A hypothesis of linkage between ym and a gene l x for lethality is put forward. It is concluded that l x is not identical with a previously detected recessive gene l 2 which is responsible for yellow cotyledons and lethality.  相似文献   

18.
Endometriosis affects 10–15% of women of reproductive age and is a common cause of infertility and pelvic pain. Although endometriosis is characterized by abnormal growth or turn-over of cells, the genetic changes involved remain unclear. We employed a multi-color fluorescence in situ hybridization (FISH) strategy to determine the incidence of somatic chromosomal numeric alterations in severe/late stage endometriosis. Using alpha-satellite sequence-specific DNA probes for chromosomes 7, 8, 11, 12, 16, 17, and 18, simultaneous two- and three-color FISH were performed to evaluate the frequency of monosomic, disomic, and trisomic cells in normal control and endometriotic tissue specimens. In one of four endometriosis samples studied, a significantly higher frequency of monosomy for chromosome 17 (14.8%, χ2 4 = 53.3, P < 0.0001) and 16 (8.8%, χ2 4 = 11.4, P < 0.05) was observed. An increased number of cells with chromosome 11 trisomy (14.8%, χ2 4 = 96.2, P < 0.0001) were detected in a second case. In a third case, a distinct colony of nuclei with chromosome 16 monosomy (14.1%, χ2 4 = 21.39, P < 0.005) was detected. Acquired chromosome-specific aneuploidy may be involved in endometriosis, reflecting clonal expansion of chromosomally abnormal cells. That candidate tumor suppressor genes and oncogenes have been mapped to chromosomes 11, 16, and 17 suggests that chromosomal loss or gain plays a role in the development and/or progression of endometriosis. Received: 27 December 1997 / Accepted: 14 April 1997  相似文献   

19.
Polymorphism in ten enzyme systems (ACO, ACP, AAT, EST, FK, ME, NAG, PRX, 6PGD, and SOD) in Vicia faba L. was analyzed, revealing 13 loci, six of which have not been reported before. Inheritance, genetics, possible location, and linkage analysis were studied in 13 different F2 populations trisomic for four of the six chromosomes (nos. 3, 4, 5, and 6) of the species. Each of these loci exhibited typical Mendelian inheritance except for those involved in the trisomic chromosome. Five loci have been assigned to a specific chromosome: Est-2 to chromosome 3, Fk-2 to chromosome 4, Prx-1 to chromosome 5, and Sod-1 and Pgd-p to chromosome 6. Nag-1 and Pgd-c displayed a linkage of 22.8 cM indicating a clear homology with chromosome 5 of garden pea on which both markers are syntenic.  相似文献   

20.
C-banding polymorphism was analyzed in 14 accessions of Triticum searsii from Israel, and a generalized idiogram of the species was established. One accession was homozygous for whole arm translocations T1SsS·4SsS and T1SsL·4SsL. C-banding analysis was also used to identify 7 T. aestivum cv Chinese Spring-T. searsii disomic chromosome addition lines, 14 ditelosomic chromosome addition lines, 21 disomic whole chromosome, and 31 ditelosomic chromosome substitution lines. The identity of these lines was further confirmed by meiotic pairing analysis. Sporophytic and gametophytic compensation tests were used to determine the homoeologous relationships of the T. searsii chromosomes. The results show that the T. searsii chromosomes do not compensate well for their wheat homoeologues. The C-banding patterns of T. searsii chromosomes are distinct from those of other S-genome species and from the B-genome chromosomes of wheat, indicating that T. searsii is not a direct B-genome donor species of T. turgidum and T. aestivum.Contribution No. 95-72-J from the Kansas Agricultural Experiment Station, Kansas State University, Manhattan, Kansas, USA  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号