首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Nine XX true hermaphrodites and two XX males were discovered in a family of American cocker spaniels. The true hermaphrodites were partially-masculinized females with ovotestes; the XX males had malformed male external genitalia and cryptorchid aspermatogenic testes. Wolffian and Mullerian duct derivatives were present in both true hermaphrodites and XX males. All four sires of sex-reversed dogs were normal XY males; five of the dams were anatomically normal females and one was an XX true hermaphrodite. A second true hermaphrodite reproduced as a female, producing anatomically normal offspring.All matings that produced sex-reversed offspring were consanguineous. Matings of the parents of sex-reversed cocker spaniels to normal beagles with no family history of intersexuality produced only normal offspring. Examination of G-banded karyotypes of the affected animals, their parents, and siblings, revealed no structural anomalies of the chromosomes that were consistently associated with sex-reversal.In assays for serologically-detectable H-Y antigen, the group of XX true hermaphrodites and the group of XX males had mean levels of the antigen not significantly different from that in normal male controls. Female parents of sex-reversed dogs and some of their female siblings were typed H-Y antigen positive, but the mean level of the antigen in this group was less than that of normal male controls.It is proposed that XX sex reversal in cocker spaniels is due to a mutant gene which when homozygous in females, results in a level of H-Y antigen similar to that found in normal males and the gonads develop as ovotestes or testes. When the gene is heterozygous in females, the level of serologically-detectable H-Y antigen is lowr than that found in normal males and the gonads develop as normal ovaries. The persistence of Mullerian structures in the presence of testicular tissue suggests that Mullerian inhibiting substance is deficient or ineffective in its action in this condition.Supported by NIH Postdoctoral Fellowship IF32 HL05515, University of Pennsylvania Genetics Center Grant, No. GM 20138, and NIH grants AI-19456, HD 17049, and HD 14357; and a grant from the Mrs. Cheever Porter Foundation.  相似文献   

2.
Summary Two loci on the short arm of the human Y chromosome have recently been described as candidates for the testis determining factor (TDF); namely, ZFY, and a locus distal to ZFY, near the pseudoautosomal boundary. We have previously reported on seven 46,XX true hermaphrodites and one 45,X mixed gonadal dysgenesis case all presenting with testicular tissue in their gonads in the apparent absence of Y-specific DNA sequences. A reanalysis of these cases shows them all to lack ZFY, but one 46,XX true hermaphrodite carries sequences next to the Y pseudoautosomal boundary. This case provides further evidence for assigning the TDF locus very close to the pseudoautosomal region on Yp.  相似文献   

3.
六例性反转综合征患者的分子遗传学分析   总被引:2,自引:0,他引:2  
对六例性反转综合征患者(3例XX男性)(3例XY女性)用Y-特异性DNA探针进行了Southern印迹杂交分析,并用PCR技术扩增了SRY基因部分序列。结果表明,1例XX男性缺乏源于Y染色体的杂交信号,也无SRY基因;其余2例XX男性和3例XY女性都检测到Yp-DNA序列和SRY基因。这对进一步阐明性反转综合征的病因和SRY基因的作用机制具有重要意义。  相似文献   

4.
A deletion map of the human Y chromosome based on DNA hybridization.   总被引:65,自引:11,他引:54       下载免费PDF全文
The genomes of 27 individuals (19 XX males, two XX hermaphrodites, and six persons with microscopically detectable anomalies of the Y chromosome) were analyzed by hybridization for the presence or absence of 23 Y-specific DNA restriction fragments. Y-specific DNA was detected in 12 of the XX males and in all six individuals with microscopic anomalies. The results are consistent with each of these individuals carrying a single contiguous portion of the Y chromosome; that is, the results suggest a deletion map of the Y chromosome, in which each of the 23 Y-specific restriction fragments tested can be assigned to one of seven intervals. We have established the polarity of this map with respect to the long and short arms of the Y chromosome. On the short arm, there is a large cluster of sequences homologous to the X chromosome. The testis determinant(s) map to one of the intervals on the short arm.  相似文献   

5.
Eleven Y-specific DNA probes hybridizing with DNA from one or more 46,XX males were isolated from a recombinant phage DNA library constructed from flow sorted human Y chromosomes. Two probes hybridized with DNA from nine out of eleven, i.e. greater than 80% of these 46,XX males. The relative frequency of hybridization of the probes in the 46,XX males and in a 46,X,dic(Y) female, together with in situ hybridization data, allowed mapping of the probes on Yp in relation to a putative testis determining locus. Several of those probes were also absent in a 46,XY female, further refining a model for ordering the probes on Yp. The DNA of one XX male hybridized both with probes from Yp and probes from proximal Yq (excluding the pericentral region). This suggests that complex translocations may occur into the DNA of 46,XX males that involve not only parts of Yp but also parts of Yq.  相似文献   

6.
Steroid sulfatase gene in XX males.   总被引:2,自引:0,他引:2       下载免费PDF全文
The human X and Y chromosomes pair and recombine at their distal short arms during male meiosis. Recent studies indicate that the majority of XX males arise as a result of an aberrant exchange between X and Y chromosomes such that the testis-determining factor gene (TDF) is transferred from a Y chromatid to an X chromatid. It has been shown that X-specific loci such as that coding for the red cell surface antigen, Xg, are sometimes lost from the X chromosome in this aberrant exchange. The steroid sulfatase functional gene (STS) maps to the distal short arm of the X chromosome proximal to XG. We have asked whether STS is affected in the aberrant X-Y interchange leading to XX males. DNA extracted from fibroblasts of seven XX males known to contain Y-specific sequences in their genomic DNA was tested for dosage of the STS gene by using a specific genomic probe. Densitometry of the autoradiograms showed that these XX males have two copies of the STS gene, suggesting that the breakpoint on the X chromosome in the aberrant X-Y interchange is distal to STS. To obtain more definitive evidence, cell hybrids were derived from the fusion of mouse cells, deficient in hypoxanthine phosphoribosyltransferase, and fibroblasts of the seven XX males. The X chromosomes in these patients could be distinguished from each other when one of three X-linked restriction-fragment-length polymorphisms was used. Hybrid clones retaining a human X chromosome containing Y-specific sequences in the absence of the normal X chromosome could be identified in six of the seven cases of XX males.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Summary A peroxidase-anti-peroxidase method for the detection of H-Y antigen at the single cell level is described. The efficiency of the test was examined in cultivated fibroblasts derived from control subjects and from XX males and a true hermaphrodite. For comparison, H-Y antigen was determined in blood cells of the same probands using the cytotoxic test. The finding of H-Y positive fibroblasts in the intersex patients has implications for the origin of these disorders.  相似文献   

8.
Investigation of the ZFY gene in XX true hermaphroditism and Swyer syndrome   总被引:2,自引:0,他引:2  
Summary Four patients with 46,XX true hermaphroditism and one patient with 46,XY pure gonadal dysgenesis (Swyer syndrome) were analyzed with a Y chromosome-derived probe that detects a specific fragment on the short arm of the Y chromosome in the putative testicle-determining region and also a fragment on the short arm of the X chromosome. Normal males and females, an individual with Turner syndrome, and patients with various causes of anomalous gonadal differentiation accompanied by cytogenetically present Y chromosome were used as controls. The Y-specific fragment was not detected in any of the persons with 46,XX true hermaphroditism. However, this fragment was positive in the 46,XY female and in all Y-bearing patients. Cytogenetic and molecular absence of the ZFY sequence in 46,XX true hermaphrodites calls for explanations other than the classic embryogenie theory. The absence of testicular differentiation in the ZFY-positive XY female evidences functionally altered sex determination or, alternatively, defective gonadal receptors.  相似文献   

9.
The origin of 45,X males.   总被引:6,自引:2,他引:4       下载免费PDF全文
Maleness in association with the karyotype 45,X is a very rare and hitherto unexplained condition previously described in only four or five patients. This study was carried out to determine whether such males might actually possess Y-chromosomal material. Of the two 45,X males studied, one was found to be a low-grade mosaic with a 46,XY karyotype in less than 3% of fibroblasts; all lymphocytes karyotyped were 45,X. Fibroblast DNA from this individual was found to contain Y-specific repeated sequences in 1%-3% the amount observed in the father, consistent with mosaicism for a 46,XY cell line. No Y-specific repeated sequences were detected in the other patient, in whom all mitoses were 45,X. In neither patient were there detectable amounts of any of the single-copy Y-specific DNA sequences for which we tested. Studies of Xg blood groups and of X-linked restriction fragment length polymorphisms indicated that the single X chromosome was of maternal origin in both 45,X male probands. In contrast to the situation in XX males, we can exclude paternal X-Y interchange as the etiology in the cases described here. Our findings are compatible with mosaicism being the explanation of at least some "45,X" males.  相似文献   

10.
Four cases of XX patients with testis development are reported. The aim of this study was to describe their clinical features and to see if there was any relationship between phenotypes and the presence of Y material. Several human Y-derived sequences including the SRY probe were used to analyze the DNA of the patients. Yp material including the pseudo-autosomal region and SRY was detected. The cases reported in this study confirm that XX true hermaphrodites cannot be distinguished from XX males on the basis of their genotypes. There is no relationship between clinical and anatomical phenotypes and the presence of Y material. SRY does not warrant a complete and normal testis differentiation. Although similar in some features with Klinefelter's syndrome patients, XX males exhibit specific clinical manifestations due to the lack of Y-specific genes.  相似文献   

11.
We have used pulsed-field gel electrophoresis to study the short arm of the Y chromosome by using a pseudoautosomal probe (MIC2Y) and adjacent Y-specific sequences 27a and 47z (DSXY5) in XX males and XY females, in order to detect chromosomal breakpoints which may have given rise to these individuals. The preliminary published long-range restriction map was used as a basis for this study. Our data confirm the reported fragment sizes and resolve some discrepancies. In addition, the recently cloned ZFY locus, pDP1007, the putative sex-determining locus, has been used to extend this long-range restriction map on Yp. Thus far, the X and Y copy of this sequence appear to have conserved GC islands around this locus, since it is found on a 280-kb fragment in males and females by using SacII, BssHII, NarI, and NotI. Only two Y-specific sequences of 50 and 70 kb have been detected at the pulsed-field level by using SfiI and NaeI, respectively. No translocation breakpoints have been detected in any of the patients studied. One XX male, GM1889, however, does not have any of the Y-specific fragments detected using conventional or pulsed-field gel electrophoresis. This is one of the few typical XX males who therefore does not have the ZFY copy of the TDF clone. Since all the other XX males hybridized to 47z, which is centromeric to ZFY, a series of DNA loci that are centromeric to 47z need to be studied in order to detect chromosomal breakpoints.  相似文献   

12.
Summary G- and R-banded chromosome preparations from eight of twelve 46,XX males, with no evidence of mosaicism or a free Y chromosome, were distinguished in blind trials from preparations from normal 46,XX females by virtue of heteromorphism of the short arm of one X chromosome. Photographic measurements on X chromosomes and on chromosome pair 7 in cells from twelve 46,XX males, eight 46,XX females, and four 46,XY males revealed a significant increase in the size of the p arm of one X chromosome in the group of XX males, independently characterised as being heteromorphic for Xp. No such differences were observed between X chromosomes of normal males and females or between homologues of chromosome pair 7 in all groups. The heteromorphism in XX males is a consequence of an alteration in shape (banding profile) and length of the tip of the short arm of one X chromosome, and the difference in size of the two Xp arms in these 46,XXp+ males ranged from 0.4% to 22.9%. From various considerations, including the demonstration of a Y-specific DNA fragment in DNA digests from nuclei of one of three XX males tested, it is concluded that the Xp+ chromosome is a product of Xp-Yp exchange. These exchanges are assumed to originate at meiosis in the male parent and may involve an exchange of different amounts of material. The consequences of such unequal exchange are considered in terms of the inheritance of genes located on Yp and distal Xp. No obvious phenotypic difference was associated with the presence or absence of Xp+. Thus, some males diagnosed as 46,XX are mosaic for a cryptic Y-containing cell line, and there is now excellent evidence that maleness in others may be a consequence of an autosomal recessive gene. The present data imply that in around 70% of 46,XX males, maleness is a consequence of the inheritance of a paternal X-Y interchange product.  相似文献   

13.
Accidental recombination between the differential segments of the X and Y chromosomes in man occasionally allows transfer of Y-linked sequences to the X chromosome leading to testis differentiation in so-called XX males. Loss of the same sequences by X-Y interchange allows female differentiation in a small proportion of individuals with XY gonadal dysgenesis. A candidate gene responsible for primary sex determination has recently been cloned from within this part of the Y chromosome by Page and his colleagues. The observation that a homologue of this gene is present on the short arm of the X chromosome and is subject to X-inactivation, raises the intriguing possibility that sex determination in man is a quantitative trait. Males have two active doses of the gonad determining gene, and females have one dose. This hypothesis has been tested in a series of XX males, XY females and XX true hermaphrodites by using a genomic probe, CMPXY1, obtained by probing a Y-specific DNA library with synthetic oligonucleotides based on the predicted amino-acid sequence of the sex-determining protein. The findings in most cases are consistent with the hypothesis of homologous gonad-determining genes, GDX and GDY, carried by the X and Y chromosomes respectively. It is postulated that in sporadic or familial XX true hermaphrodites one of the GDX loci escapes X-inactivation because of mutation or chromosomal rearrangement, resulting in mosaicism for testis and ovary-determining cell lines in somatic cells. Y-negative XX males belong to the same clinical spectrum as XX true hermaphrodites, and gonadal dysgenesis in some XY females may be due to sporadic or familial mutations of GDX.  相似文献   

14.
In normal males, Müllerian Inhibiting Substance (MIS), produced by testes during an embryonic critical period, is thought to induce regression of the Müllerian duct system, including the oviducts and uterus. In XX sex-reversed dogs, an apparent contradiction has been reported: The uterus persists in the presence of testes or ovotestes. The objective of this study is to determine whether testes of XX male and ovotestes of true hermaphrodite dogs produce MIS, and to examine the anatomy of Müllerian duct derivatives of affected dogs for evidence of regression. Gonadal samples were tested for MIS activity in a bioassay. The mean MIS activity score of XX males was similar to that of normal XY males and significantly greater than that of normal XX females. The mean MIS activity score of XX true hermaphrodites was intermediate between normal XX females and XY males. Within the true hermaphrodite group, ovotestes in which the proportion of testicular tissue was greater than or equal to 1/2 had higher MIS scores than those in which the proportion of testicular tissue was less than 1/2. XX males had a well-developed epididymis adjacent to each testis, but no oviducts. In true hermaphrodites, the oviduct regressed and an epididymis was present when greater than or equal to 1/2 of the adjacent ovotestis was testicular, and MIS activity in that gonad was high. A few ovotestes with intermediate levels of MIS activity had both an oviduct and an epididymis. Regression of the oviductal portion of the Müllerian duct system was positively correlated to the amount of testicular tissue and the MIS activity of the gonad, as would be predicted by Jost's original hypothesis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Summary We have studied nine patients aged 1 month to 16 years with 46, XX karyotypes and testicular tissue. Some of these patients were followed through puberty. Phenotypically, two presented normal and seven abnormal external genitalia (AG). Among this latter group, four showed hypospadias and three true hermaphroditism (TH). The endocrine data were similar in all three groups: testosterone levels were within normal limits during puberty, decreasing in adulthood; gonadotrophin levels were above the control values at mid puberty. Histologies of the two sub groups of AG patients were identical up to 5 years of age and presented differences when compared with controls, regardless of the ovarian part of the ovotestis. However, in patients older than 8 years, germ cells disappeared and dysgenesis became obvious. In one patient, the ovarian zone of the gonad was detected only after complete serial sections of the removed gonad were examined. Southern blot analysis with Y-DNA probes displayed Y-specific material for the classic 46 XX males and a lack of such sequences for all patients with AG and TH. Based on these findings, we postulate that 46, XX males with AG and 46, XX TH may represent altenative manifestations of the same genetic defect. These data together with those concerning familial cases of 46, XX males with AG and 46, XX TH suggest an autosomally (or pseudoautosomally) determined mechanism.  相似文献   

16.
Kuhnle  U.  Schwarz  H. P.  Löhrs  U.  Stengel-Ruthkowski  S.  Cleve  H.  Braun  A. 《Human genetics》1993,92(6):571-576
We report on 46,XX true hermaphroditism and 46,XX maleness coexisting in the same pedigree, with maternal as well as paternal transmission of the disorder. Molecular genetic analysis showed that both hermaphrodites as well as the 46,XX male were negative for Y-chromosomal sequences. Thus, this pedigree is highly informative and allows the following conclusions: first, the maternal as well as paternal transmission of the disorder allows the possibility of an autosomal dominant as well as an X-chromosomal dominant mode of inheritance; second, testicular determination in the absence of Y-specific sequences in familial 46,XX true hermaphrodites as well as in 46,XX males seems to be due to the varying expression of the same genetic defect; and third, there is incomplete penetrance of the defect.  相似文献   

17.
Summary We report cytogenetic and DNA studies in three XX males. Two males seemed to have extra chromosomal material on the tip of one X chromosome. All three males were shown to have Y chromosome material as indicated by hybridization of Y-specific DNA probes to genomic DNA. One male was unusual in that as he showed the 15-kb fragment detected by pDP34 that is thought to map close to the Y centromere. It is suggested that this finding might point to an inversion on the Y chromosome.  相似文献   

18.
Human gametes and zygotes studied by nonradioactive in situ hybridization   总被引:6,自引:0,他引:6  
A nonradioactive in situ hybridization technique was applied to human gametes and abnormally fertilized or developed zygotes. Using haptenized chromosome-specific probes, visualization was obtained using immunocytochemistry to achieve a fluorescent stain on specific hybrids. Using a chromosome 1-specific DNA probe, almost all spermatozoa gave a positive result, i.e., one hybridization signal per cell could be observed. Furthermore, it was possible to identify sperm cells with two spots, suggesting nondisjunction. Two cleavage arrested embryos from different patients showed both: two brightly fluorescent spots and two weaker spots with the same DNA probe. Using a Y-specific DNA probe the percentages of positive spermatozoa from the normal males ranged between 48.1% and 49.1%. In an embryo with four grossly haploid chromosome sets, three fluorescent spots were obtained with the Y-specific DNA probe, indicating the penetration of three spermatozoa.  相似文献   

19.
Summary Cells from an XX true hermaphrodite expressed a reduced amount of H-Y antigen when compared with normal XY cells and with cells from his father, who had an XY/XX chromosomal constitution. His mother had a normal karyotype and was H-Y negative. The four brothers of the patient were clinically and karyotypically normal. An X-Y interchange followed by random inactivation of the X chromosome is proposed to explain the H-Y antigen titer found in the patient.  相似文献   

20.
Summary This study was conducted to define the range of phenotypic expression and mode of inheritance of XX sex reversal in the cocker spaniel dog. Breeding experiments produced F1, F1BC, and F2 generations in which 29 XX true hermaphrodites and 3 XX males were defined by chromosome constitution, serial histologic sections of the gonads, and examination of the internal and external genitalia. In XX true hermaphrodites, the most common combination of gonads was bilateral ovotestes, followed by ovotestis and ovary, then ovotestis and testis. The amount of testicular tissue in the two gonads was closely correlated within each true hermaphrodite. The distribution of testicular tissue within ovotestes of true hermaphrodites was consistent with the hypothesis that testicular differentiation is initiated in the center of the gonad and spreads outward. XX males had bilateral aspermatogenic testes and the internal ducts and external genitalia were more masculinized than in true hermaphrodites. Results of breeding experiments are consistent with autosomal recessive inheritance, the affected phenotype being expressed only in dogs with an XX chromosome constitution. The phenotypic expression and mode of inheritance of this disorder is compared to XX sex reversal in humans and other animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号