首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The male flowering and leaf bud burst of birch take place almost simultaneously, suggesting that the observations of leaf bud burst could be used to determine the timing of birch pollen release. However, long‐distance transport of birch pollen before the onset of local flowering may complicate the utilization of phenological observations in pollen forecasting.

We compared the timing of leaf bud burst of silver birch with the timing of the stages of birch pollen season during an eight year period (1997–2004) at five sites in Finland. The stages of the birch pollen season were defined using four different thresholds: 1) the first date of the earliest three‐day period with airborne birch pollen counts exceeding 10 grains m?3 air; and the dates when the accumulated pollen sum reaches 2) 5%; 3) 50% and 4) 95% of the annual total. Atmospheric modelling was used to determine the source areas for the observed long‐distance transported pollen, and the exploitability of phenological observations in pollen forecasting was evaluated.

Pair‐wise comparisons of means indicate that the timing of leaf bud burst fell closest to the date when the accumulated pollen sum reached 5% of the annual total, and did not differ significantly from it at any site (p<0.05; Student‐Newman‐Keuls test). It was found that the timing of leaf bud burst of silver birch overlaps with the first half of the main birch pollen season. However, phenological observations alone do not suffice to determine the timing of the main birch pollen season because of long‐distance transport of birch pollen.  相似文献   

2.
The number of individuals allergic to plant pollen has recently been on a constant increase, especially in large cities and industrial areas. Therefore, monitoring of airborne pollen types and concentrations during the pollen season is of the utmost medical importance. The research reported in this paper aims to determine the beginning, course and end of the pollen season for the plants in the City of Zagreb, to identify allergenic plants, and to assess the variation in airborne pollen concentration as a function of temperature and precipitation changes for the year 2002. A volumetric Hirst sampler was used for airborne pollen sampling. Qualitative and quantitative pollen analysis was performed under a light microscope (magnification ×400). In the Zagreb area, 12 groups of highly allergenic plants (alder, hazel, cypress, birch, ash, hornbeam, grasses, elder, nettles, sweet chestnut, artemisia and ambrosia) were identified. Birch pollen predominated in spring, the highest concentrations being recorded in February and March. Grass pollen prevailed in May and June, and pollen of herbaceous plants of the genus Urtica (nettle) and of ambrosia in July, August and September. Air temperature was mostly higher or considerably higher than the annual average in those months, which resulted in a many days with high and very high airborne pollen concentrations. The exception was April, when these concentrations were lower because of high levels of precipitation. This also held for the first half of August and the second half of September. Pollen-sensitive individuals were at high risk from February till October because of the high airborne pollen concentrations, which only showed a transient decrease when the temperature fell or there was precipitation.  相似文献   

3.
The aim of this study was to construct a picture of the influence of meteorological conditions on the start and duration of the airborne Betulaceae pollen season and the pollen concentrations in the atmosphere of Zagreb, Croatia. The study during three seasons (2002–2004) used a 7‐day Hirst‐type volumetric pollen and spore trap. Total annual airborne pollen of Alnus, Corylus and Betula greatly varied from year to year. The differences in the dates of onset of airborne pollen presence of Alnus, Corylus and Betula noted in Zagreb in 2002–2004 were controlled by weather conditions, particularly temperature and precipitation. In all years studied, airborne pollen peaks were recorded on days with temperature above 0°C and without or minimal precipitation. The mean number of days with airborne pollen concentrations exceeding levels which provoke symptoms of an allergic reaction was 15, 16 and 29 days for alder, hazel and birch, respectively. The results of the present study may provide useful data for allergologists to reach accurate diagnoses, and timely information on concentrations of airborne pollen types and concentrations for individuals with pollen hypersensitivity.  相似文献   

4.
齐晨  姜江  叶彩华  尤焕苓  乔媛  沙祎  白帆 《生态学报》2023,43(7):2650-2662
花粉是我国北方引发过敏性鼻炎最主要过敏原,花粉症发病期与花粉浓度高峰期吻合。基于北京地区2012至2020年花粉季多站、逐日分类花粉浓度观测数据分析,得出北京地区花粉浓度在3月上旬至5月中旬(可进一步划分为3月中旬至4月上旬和4月下旬至5月上旬两个高峰期)和8月中旬至9月中旬分别存在两个高峰期,第一个高峰期内优势致敏花粉种类为柏科、杨柳科和松科,第二个高峰期内优势致敏花粉种类为桑科、菊科蒿属和藜科。根据优势致敏花粉年浓度峰值日期观测数据,使用与花粉采样站点位置相匹配的逐日气象观测数据累积值,基于作物模型概念和模糊逻辑原理建立了北京地区主要气传致敏花粉年浓度峰值日期预测模型。经检验,柏科、杨柳科、松科、桑科、菊科蒿属和藜科花粉模型预测准确率分别为87.8%、80.0%、64.4%、86.7%、78.8%和81.8%。基于北京地区主要气传致敏花粉年浓度峰值日期预测模型可为本地花粉症防治提供理论参考。  相似文献   

5.
Birch (Betula) pollen seasons were examined in relation to meteorological conditions in Poznań (1996–2010). Birch pollen grains were collected using a volumetric spore trap. An alternate biennial cycle of birch pollen season intensity was noticed in Poznań. The main factors influencing birch pollen season intensity were average daily minimum temperatures during the second fortnight of May and the month of June one year before pollination as well as the intensity of the pollen season of the previous year. Most of the pollen grains are recorded during the first week of the season; the number of pollen grains recorded at this time is positively correlated with mean maximum temperature and negatively correlated with daily rainfall. The significant effect of rainfall in reducing the season pollen index was noticed only during weak pollen seasons (season pollen index <?mean). In addition, mean daily maximum temperature during the first two weeks of the birch pollen season markedly influences its duration. No significant trends in duration and intensity of the pollen season were recorded, however, a slight tendency towards early pollination was observed (?0.4 days/year, p?=?0.310).  相似文献   

6.
Birch (Betula pubescens L.) is by far the most common deciduous tree in Norway and birch forests define the forest line both northwards and upwards. Because of its mountainous topography, long fjords, and long length from north to south, Norway is climatically and ecologically very diverse. Therefore, developing pollen forecasts in Norway is a challenging task. In this study we use MODIS-NDVI (normalized difference vegetation index) satellite data with 250 m spatial resolution and 16-days time resolution for the period 2000–2007, and birch pollen counts from ten Burkad traps distributed throughout Norway, to characterize the onset of birch flowering in Norway. Four of the seven trap stations with long-term series show significant values at the 5% level or better between the MODIS-NDVI defined onset and the date when the annual accumulated birch pollen sum reaches 2.5% of the annual total. A map of Norway that shows the eight-year mean (2000–2007) onset of birch flowering was produced. It reveals large differences in the timing of the onset of birch flowering along the north–south and altitude gradients. The map provides useful general information that can be utilized by the Norwegian pollen forecast service. This study shows that remote sensing is a useful tool for not only characterizing the onset of the birch pollen season but also revealing regional differences not easily detected by pollen stations alone.  相似文献   

7.
Mohammed H. Halwagy 《Grana》2013,52(6):333-339
The amount of airborne pollen in Kuwait was sampled daily over a twelve year period using a Hirst volumetric spore trap. The pollen was identified and expressed at the mean number m-33 day-1. Pollen occurs throughout the year but the concentration of the various pollen types varied from year-to-year and from season-to-season. The highest counts were in 1978, and the lowest in 1986. This latter low value is the result of prolonged drought, intensive human interference and continuous grazing. The highest counts are recorded in the spring (April-May) and the autumn (September-October). The pollen spectrum comprises mainly: Chenopodiaceae, Prosopis, Cyperus, Poaceae, Plantago and Brassicaceae. Poaceae pollen is abundant during the spring and the high valves coincide with the flowering season of the annual and perennial grass species. Cyperus is also abundant in the spring (April-May) the major source being the perennial sedge, Cyperus conglomeratus. Chenopodiaceae dominates from June to November with the highest peak in September and October. The majority of the species belonging to this family are perennials which flower during summer and autumn. Prosopis shows 2 peaks: a lower one in May-June and a higher one in October. A calendar of airborne pollen grain is presented. These results coulf be of use in allergy cases in Kuwait and possibly also in adjacent countries (S. Iraq, NE Saudi Arabia).  相似文献   

8.
We studied the possibility of integrating flowering dates in phenology and pollen counts in aerobiology in Germany. Data were analyzed for three pollen types (Betula, Poaceae, Artemisia) at 51 stations with pollen traps, and corresponding phenological flowering dates for 400 adjacent stations (< 25 km) for the years 1992–1993 and 1997–1999. The spatial and temporal coherence of these data sets was investigated by comparing start and peak of the pollen season with local minima and means of plant flowering. Our study revealed that start of birch pollen season occurred on average 5.7 days earlier than local birch flowering. For mugwort and grass, the pollen season started on average after local flowering was observed; mugwort pollen was found 4.8 days later and grass pollen season started almost on the same day (0.6 days later) as local flowering. Whereas the peak of the birch pollen season coincided with the mean flowering dates (0.4 days later), the pollen peaks of the other two species took place much later. On average, the peak of mugwort pollen occurred 15.4 days later than mean local flowering, the peak of grass pollen catches followed 22.6 days after local flowering. The study revealed a great temporal divergence between pollen and flowering dates with an irregular spatial pattern across Germany. Not all pollen catches could be explained by local vegetation flowering. Possible reasons include long-distance transport, pollen contributions of other than phenologically observed species and methodological constraints. The results suggest that further research is needed before using flowering dates in phenology to extrapolate pollen counts.  相似文献   

9.
This study sought to compare airborne pollen counts for a number of common herbaceous species (Plantago, Chenopodiaceae–Amaranthaceae, Rumex, and Urticaceae) in two cities with differing weather conditions, Córdoba (Southwestern Spain) and Poznan (Western Poland). Pollen seasons for these species were studied from 1995 to 2005. Aerobiological sampling was performed using a Hirst type 7-day spore trap, in accordance with the procedure developed by the European Aerobiology Network. A Spearman correlation test was used to test for correlations between meteorological parameters and daily airborne pollen counts. The Spearman correlation test and the Wilcoxon signed ranks test were also used to compare mean daily pollen counts for the two study sites. In Córdoba, the pollen season generally started around two months earlier than in Poznan, and also lasted longer. These findings were attributed to the presence of a larger number of species in Córdoba, with overlapping pollen seasons, and also to more favorable weather conditions. Trends in pollen season start dates were fairly stable over the study period, with a slight tendency to delayed onset in Córdoba and a modest advance in start date in Poznan. The pollen season end date also remained reasonably stable over the study, with only a slight tendency for the season to end earlier in Córdoba and later in Poznan. A clear trend towards declining annual pollen counts was recorded over the study period for all pollen types in both cities.  相似文献   

10.
Climatic change is expected to affect the spatiotemporal patterns of airborne allergenic pollen, which has been found to act synergistically with common air pollutants, such as ozone, to cause allergic airway disease (AAD). Observed airborne pollen data from six stations from 1994 to 2011 at Fargo (North Dakota), College Station (Texas), Omaha (Nebraska), Pleasanton (California), Cherry Hill and Newark (New Jersey) in the US were studied to examine climate change effects on trends of annual mean and peak value of daily concentrations, annual production, season start, and season length of Betula (birch) and Quercus (oak) pollen. The growing degree hour (GDH) model was used to establish a relationship between start/end dates and differential temperature sums using observed hourly temperatures from surrounding meteorology stations. Optimum GDH models were then combined with meteorological information from the Weather Research and Forecasting (WRF) model, and land use land coverage data from the Biogenic Emissions Land use Database, version 3.1 (BELD3.1), to simulate start dates and season lengths of birch and oak pollen for both past and future years across the contiguous US (CONUS). For most of the studied stations, comparison of mean pollen indices between the periods of 1994–2000 and 2001–2011 showed that birch and oak trees were observed to flower 1–2 weeks earlier; annual mean and peak value of daily pollen concentrations tended to increase by 13.6 %–248 %. The observed pollen season lengths varied for birch and for oak across the different monitoring stations. Optimum initial date, base temperature, and threshold GDH for start date was found to be 1 March, 8 °C, and 1,879 h, respectively, for birch; 1 March, 5 °C, and 4,760 h, respectively, for oak. Simulation results indicated that responses of birch and oak pollen seasons to climate change are expected to vary for different regions.  相似文献   

11.
Birch pollen is highly allergenic. Knowledge of daily variations, atmospheric transport and source areas of birch pollen is important for exposure studies and for warnings to the public, especially for large cities such as London. Our results show that broad-leaved forests with high birch tree densities are located to the south and west of London. Bi-hourly Betula pollen concentrations for all the days included in the study, and for all available days with high birch pollen counts (daily average birch pollen counts >80 grains/m3), show that, on average, there is a peak between 1400 hours and 1600 hours. Back-trajectory analysis showed that, on days with high birch pollen counts (n = 60), 80% of air masses arriving at the time of peak diurnal birch pollen count approached North London from the south in a 180 degree arc from due east to due west. Detailed investigations of three Betula pollen episodes, with distinctly different diurnal patterns compared to the mean daily cycle, were used to illustrate how night-time maxima (2200–0400 hours) in Betula pollen counts could be the result of transport from distant sources or long transport times caused by slow moving air masses. We conclude that the Betula pollen recorded in North London could originate from sources found to the west and south of the city and not just trees within London itself. Possible sources outside the city include Continental Europe and the Betula trees within the broad-leaved forests of Southern England.  相似文献   

12.
Halo-nitrophilous scrubs are characterised by their floristic richness in species of the family Amaranthaceae (include Chenopodiaceae) and the Mediterranean saltbush (Atriplex halimus L.) is one of the most characteristic species in the Mediterranean region. Pollen from Amaranthaceae is the main cause of pollinosis at the end of summer and autumn. In this study, the floral phenology of the species Atriplex halimus L., was studied relating it to the atmospheric concentration of Amaranthaceae pollen with the aim to know if it can serve as an indicator of the maximum pollen concentrations. Observations of the male floral phenology of Atriplex halimus were performed over the course of three years in the central Iberian Peninsula (Spain) and the aerobiological pollen data of Amaranthaceae were obtained using a Hirst-type volumetric trap. The results demonstrated that the flowering period of Atriplex halimus closely coincided with the peak pollen levels. Besides, the prevailing movements of air masses in relation to the distribution and abundance of the halo-nitrophilous scrub during the flowering period of Atriplex halimus were studied using a back-trajectory analysis. The results showed that distinct predominant wind patterns led to differences in the quantity of pollen recorded during the pollen season and in the behaviour of the evolution of airborne pollen concentrations.  相似文献   

13.
A ten-year birch pollen record for Reykjavík, Iceland, has been analyzed with respect to fluctuations in the annual pollen sum, the starting date, and the duration of the birch pollen season. A three-year cycle is observed for the annual birch pollen sum, which could be of value in predicting the severity of the next birch pollen season. The annual birch pollen sum is regressed on six climatic variables, only one of which turned out to be statistically significant. The number of days with temperatures above +7.5°C in the year of inflorescence initiation shows a significant correlation with the annual birch pollen sum of the following flowering year (P =0.009). For the starting date of the birch pollen season the accumulated thermal sum on May 15 is shown to have the best predictive value, estimating it to within one week. The mean duration of the birch pollen season in southwestern Iceland is 17 days, starting May 29 and ending June 14.  相似文献   

14.
This paper presents a 2-year survey ofArtemisia airborne pollen concentrations in Murcia. An importantArtemisia blooming taking place in winter is confirmed in Murcia (SE Spain). This phenomenon could explain the incidence of winter pollinosis in Murcia. On the other hand, for the first time, three consecutive pollen seasons ofArtemisia, corresponding to three different species (A. campestris, A. herba-alba andA. barrelieri) have been noted. Mathematical analyses show the relations between pollen concentrations ofArtemisia in summer and autumn, and precipitation occurring 6–8 weeks before. Blooming outsets seem to be related to cumulative percentage of isolation from 1 March. Meteorological factors do not seem to influence pollen concentration in any significant way once pollination has begun.  相似文献   

15.
The influence of meteorological parameters on airborne pollen of Australian native arboreal species was investigated in the sub-tropical city of Brisbane, Australia over the five-year period, June 1994–May 1999. Australian native arboreal pollen (ANAP), shed by taxa belonging to the families Cupressaceae, Casuarinaceae and Myrtaceae accounts for 18.4% of the total annual pollen count and is distributed in the atmosphere during the entire year with maximum loads restricted to the months May through November. Daily counts within the range 11–100 grains m–3 occurred over short intervals each year and were recorded on 100 days during the five-year sampling period. Total seasonal ANAP concentrations varied each year, with highest annual values measured for the family Cupressaceae, for which greater seasonal frequencies were shown to be related to pre-seasonal precipitation (r 2 = 0.76, p = 0.05). Seasonal start dates were near consistent for the Cupressaceae and Casuarinaceae. Myrtaceae start dates were variable and established to be directly related to lower average pre-seasonal maximum temperature (r 2 = 0.78, p = 0.04). Associations between daily ANAP loads and weather parameters showed that densities of airborne Cupressaceae and Casuarinaceae pollen were negatively correlated with maximum temperature (p < 0.0001), minimum temperature (p < 0.0001) and precipitation (p < 0.05), whereas associations with daily Myrtaceae pollen counts were not statistically significant. This is the first study to be conducted in Australia that has assessed the relationships between weather parameters and the airborne distribution of pollen emitted by Australian native arboreal species. Pollen shed by Australian native Cupressaceae, Casuarinaceae and Myrtaceae species are considered to be important aeroallergens overseas, however their significance as a sensitising source in Australia remains unclear and requires further investigation.  相似文献   

16.
In Melbourne, Australia, grass pollen is the predominant cause of hayfever in late spring and summer. The grass pollen season has been monitored in Melbourne, using a Burkard spore trap, for 13 years (1975–1981, 1985 and 1991–1997). Total counts for grass pollen were highly variable from one season to the next (approximately 1000 to >8000 grains/m3). The daily grass pollen counts also showed a high variability (0 to approximately 400 grains/m3). In this study, the grass pollen counts of the 13 years (12 grass pollen seasons, extending from October to January) have been compared with meteorological data in order to identify the conditions that can determine the daily amounts of grass pollen in the air. It was found that the seasonal total of grass pollen was directly correlated with the rainfall sum of the preceding 12 months (1 September–31 August): seasonal total of grass pollen (counts/m3)=18.161 × rainfall sum of the preceding 12 months (mm) −8541.5 (r s=0.74,P<0.005,n=12). The daily amounts of grass pollen in the air were positively correlated with the corresponding daily average ambient temperatures (P<0.001). The daily amount of grass pollen which was to be expected with a certain daily average temperature was linked to the seasonal total of grass pollen: in years with high total grass pollen counts, a lower daily average temperature was required for a high daily pollen count than in years with low total grass pollen counts. As the concentration of airborne grass pollen determines the severity of hayfever in sensitive patients, an estimation of daily grass pollen counts can provide an indication of potential pollinosis symptoms. We compared daily grass pollen counts with the reported symptomatic responses of hayfever sufferers in November 1985 and found that hayfever symptoms were significantly correlated to the grass pollen counts (P<0.001 for nasal,P<0.005 for eye symptoms). Thus, a combination of meteorological information (i.e. rainfall and temperature) allows for an estimation of the potential daily pollinosis symptoms during the grass pollen season. Here we propose a symptom estimation chart, allowing a quick prediction of eye and nasal symptoms that are likely to occur as a result of variations in meteorological conditions, thus enabling both physicians and patients to take appropriate avoidance measures or therapy.  相似文献   

17.
Determining the start of the birch pollen season requires the reliable separation of non‐local from locally produced birch pollen. The research was undertaken close to the latitudinal birch tree line at the Kevo Subarctic Research Institute (69°45′N 27°01′E) in northern Finland. By comparing phenological and aerobiological observations, the proportion of birch pollen present in the air before local anthesis commences can be delimited. We coupled this with data of pollen deposition monitored by means of a modified Tauber trap. The dominant birch species at Kevo is the mountain birch Betula pubescens ssp. czerepanovii, whereas B. pubescens ssp. pubescens is very rare, hence we consider the proportion of the southerly B. pubescens‐type pollen deposited in the pollen trap to be non‐local in origin.

We did not observe any trend towards an earlier start of the phenologically observed mountain birch anthesis at Kevo as predicted from work elsewhere. Moreover, the fixed 2.5% threshold method for determining the birch pollen season proved not to be applicable since in many years this threshold was reached before the end of continuous snow cover. The results indicate that in some years non‐local birch pollen contributes considerably to the allergen load in Lapland with up to 57% of the total birch pollen sum being recorded before the day on which local anthesis commenced, and up to 70% of the annual birch pollen deposited being of the southerly birch type.  相似文献   

18.
We present a model for the prediction of the magnitude ofBetula flowering and pollen dispersal which may be used in the management of birch pollinosis and in the planning of clinical trials. The pollen sum during the flowering season is regressed on the temperature sum from May 1st to July 20th during the initiation year, the pollen sum of the initiation year, and the temperature sum during the main pollen season in the flowering year. We suggest that the fluctuating flowering pattern inBetula alba-species is primarily determined by the availability of assimilation products during inflorescence initiation and development during the spring one year before anthesis. When inflorescences, which are initiated during the previous year, elongate in the beginning of anthesis, they act as strong sinks to stored carbohydrates, and thus compete with developing leaves and shoots. The result is an initially reduced photosynthetic capacity in years with intense flowering, and a limited potential for the initiation of new inflorescences for the following year. The ambient temperature during catkin initiation affects assimilation efficiency and is a determinant of about equal importance to flowering intensity as is the magnitude of the flowering in the initiation year. The amount of pollen dispersed is also dependent on the weather during anthesis, which is not possible to predict until about one month in advance. The two other independent variables are available during the previous summer, making it possible to give a sufficiently valid prediction to allergologists about the magnitude of the next birch pollen season, according to its botanical determinants. We suggest that the varying reproductive output inBetula alba should not be described as true masting. A more parsimonious explanation to the flowering pattern is that an individual continually maximizes reproductive effort, according to what is possible, but that reproduction is often constrained by the environment.  相似文献   

19.
We present a model for the prediction of the magnitude ofBetula flowering and pollen dispersal which may be used in the management of birch pollinosis and in the planning of clinical trials. The pollen sum during the flowering season is regressed on the temperature sum from May 1st to July 20th during the initiation year, the pollen sum of the initiation year, and the temperature sum during the main pollen season in the flowering year. We suggest that the fluctuating flowering pattern inBetula alba-species is primarily determined by the availability of assimilation products during inflorescence initiation and development during the spring one year before anthesis. When inflorescences, which are initiated during the previous year, elongate in the beginning of anthesis, they act as strong sinks to stored carbohydrates, and thus compete with developing leaves and shoots. The result is an initially reduced photosynthetic capacity in years with intense flowering, and a limited potential for the initiation of new inflorescences for the following year. The ambient temperature during catkin initiation affects assimilation efficiency and is a determinant of about equal importance to flowering intensity as is the magnitude of the flowering in the initiation year. The amount of pollen dispersed is also dependent on the weather during anthesis, which is not possible to predict until about one month in advance. The two other independent variables are available during the previous summer, making it possible to give a sufficiently valid prediction to allergologists about the magnitude of the next birch pollen season, according to its botanical determinants. We suggest that the varying reproductive output inBetula alba should not be described as true masting. A more parsimonious explanation to the flowering pattern is that an individual continually maximizes reproductive effort, according to what is possible, but that reproduction is often constrained by the environment.  相似文献   

20.
For calculating the total annual Olea pollen concentration, the onset of the main pollen season and the peak pollen concentration dates, using data from 1998 to 2004, predictive models were developed using multiple regression analysis. Four Portuguese regions were studied: Reguengos de Monsaraz, Valença do Douro, Braga and Elvas. The effect of some meteorological parameters such as temperature and precipitation on Olea spatial and temporal airborne pollen distribution was studied. The best correlations were found when only the pre‐peak period was used, with thermal parameters (maximum temperature) showing the highest correlation with airborne pollen distribution. Independent variables, selected by regression analysis for the predictive models, with the greatest influence on the Olea main pollen season features were accumulated number of days with rain and rainfall in the previous autumn, and temperatures (average and minimum) from January through March. The models predict 59 to 99% of the total airborne pollen concentration recorded and the initial and peak concentration dates of the main Olea pollen season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号