首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
合成生物学旨在应用工程学的研究思路及手段去设计或改造生物系统,是一个综合了科学与工程的拥有发展潜力的新兴学科,在生物医药、农业、能源、环保等方面发挥着巨大作用。DNA组装技术是合成生物学中的关键技术,也是合成生物学快速发展的限制性技术。综述了众多DNA组装技术的发展及其在合成生物学研究中的意义和应用。  相似文献   

2.
DNA组装技术     
DNA组装是合成生物学研究的核心技术。随着合成生物学的发展,研究者开发了依赖于DNA聚合酶或DNA连接酶的不同DNA组装技术;为了降低组装成本和便于实现DNA组装的自动化,也发展了一些非酶依赖的DNA组装技术;而几百kb到Mb的大片段DNA的组装则多数依赖于微生物体内重组。文中主要综述了酶依赖、非酶依赖和体内同源重组三类DNA组装技术及其发展情况。  相似文献   

3.
史晏榕  孙宇辉 《微生物学通报》2015,42(11):2229-2237
DNA克隆和组装技术是重要的分子生物学工具。近年来,随着合成生物学的飞速发展,对大片段DNA元件的快速有效组装就显得尤为关键。同时,各种DNA克隆和组装技术也竞相发展起来。通过对基于非典型酶切连接、PCR、同源重组、单链退火拼接等原理发展起来的各种DNA克隆和组装技术进行综述,为合成生物学的进一步发展提供有效的操作工具。  相似文献   

4.
合成生物学是综合了科学与工程的一个崭新的生物学研究领域,为生命现象及其运动规律的解析提供了一种采用“白下而上”合成策略的正向工程学的研究思路和方法手段,在经济和社会发展中具有巨大的应用开发潜力。近年来,DNA合成与系统生物学技术的发展使生命系统复杂基因回路的设计、合成与组装逐步成为可能,并应用于生物基化学品、生物燃料、医药中间体、保健产品的生产和环境保护等领域。但是,合成生物学的研究仍然面临科学、技术和伦理的挑战,只有积极地应对这些问题,在加大研究开发支持力度的同时,做好必要的风险监管,才能真正把握合成生物学发展带来的历史机遇。  相似文献   

5.
目的:21世纪以来,随着合成生物学的高速发展及其所遇到的问题,开发下一代DNA合成技术已经成为了必然趋势。基因芯片技术和DNA大片段组装技术是建立下一代DNA合成平台的关键技术力量。方法:为了开发具有工业化标准的DNA芯片一基因组合成平台,我们首次利用电化学DNA芯片和DNA大片段组装技术合成了72kb的Ostreococcusmud的全叶绿体基因组。结果:首先,我们使用电化学DNA芯片合成仪合成了564条150bp的OligoMix,并成功扩增分离了其中96%的Oligo序列,剩下的基因组序列是通过传统的固相亚磷酰胺三脂合成法合成。在此基础上,我们利用DNA重组技术将564条150bpOligo片段分三步克隆到了一个pGSYN系统。通过高通量测序,我们证实叶绿体基因组被成功地人工合成。整个合成成本大约是目前传统基因合成成本的10%.20%。结论:研究证实基因芯片技术和DNA大片段组装技术的应用是能够明显的降低现阶段基因组合成工艺的成本。新技术的成熟推广和成本的有效控制也会进一步加速科学家对基因组功能的深入研究以及合成生物学的质的飞跃。  相似文献   

6.
合成生物学作为一门交叉学科,通过设计和组装生物原件,从而制造出新的生物系统。合成生物学技术在食品质量安全以及食品废物处理等问题中的应用,将进一步推动食品行业的持续创新,为食品行业的发展提供新的思路和活力。本文回顾了工程化生物合成体系和基因编辑技术的发展,阐释了合成生物学技术在食品行业中应用的可行性,重点介绍了合成生物学技术在改善食品营养风味、高效处理食品废物、生产可降解包装材料及检测食品质量等中的应用,展望了合成生物学面向食品生产的应用前景和挑战,并对合成生物学的实际应用提出了建议。  相似文献   

7.
基因合成技术研究进展   总被引:1,自引:0,他引:1  
冯淼  王璐  田敬东 《生物工程学报》2013,29(8):1075-1085
基因合成是生物学中一项最基本的、最常用的技术.对DNA调控元件、基因、途径乃至整个基因组的合成是验证生物学假设和利用生物学为人类服务的有力工具.合成生物学的快速发展对基因合成能力提出了日益迫切的需求.近年来,基于微芯片基因合成技术取得了很多令人振奋的新进展,正在向着高通量、高保真、自动化的方向发展.文中综述了DNA化学合成和基因组装及相关技术的最新研究进展和发展趋势,这些新技术正在推动着合成生物学向着更高的水平发展.  相似文献   

8.
合成生物学使能技术的研究进展   总被引:1,自引:0,他引:1       下载免费PDF全文
作为一门拥有巨大潜力的新兴工程学科,合成生物学的发展主要得益于各种使能技术(enabling technology)的创新开发与应用.从基本功能元件的构建与标准化,到高通量的微芯片基因合成技术与各种尺度(从bp至Mb)的DNA拼接组装方法,再到强大的基因组编辑工具,在过去十几年里合成生物学使能技术取得了长足的进步.同时,新颖的使能技术也为遗传学、癌症治疗、疾病监测以及生物制造等领域提供了优秀的研究工具,促进了多个学科的发展.如果将这些使能技术作为"配件工具",那么相对应的"主体设备"——底盘细胞也因工具的不断创新得到了快速发展.微生物最小基因组的分析以及对基因组的连续删简优化,为构建一个具有可预测、可控制表型的优良底盘细胞奠定了基础.为促进基于细胞疗法的人类疾病治疗,哺乳动物细胞作为底盘细胞也正在开发中.本文对合成生物学使能技术的最新发展进行了深入总结和梳理,探讨了这些使能技术在合成生物学乃至整个生命科学研究中的应用及其重要意义.  相似文献   

9.
基因组装技术是合成生物学领域近年来发展起来的新型技术。它基于大规模基因组数据分析,发现新型的或隐藏的生物活性物质合成基因簇。利用基因组装技术,可提高或激活沉默的生物合成基因簇在微生物中的表达,从而合成潜在的、有价值的生物活性物质。本文旨在阐明最新的体内和体外基因组装技术的设计原理、关键策略及其应用。基因组装技术是合成生物学、代谢工程和功能基因组学研究的重要工具,对生物活性物质的高效生产及合成具有重要意义。  相似文献   

10.
DNA组装技术是合成生物学的关键共性技术。目前,小分子DNA组装大多采用体外组装策略,而大分子DNA的组装则更多地借助宿主自身的重组机制在体内完成,常用的宿主包括酿酒酵母、大肠杆菌和枯草芽孢杆菌等。本文中,笔者综述了近年来体内大分子DNA组装的研究进展。  相似文献   

11.
合成生物学作为一门新兴学科,其目标主要有两点:一是利用非天然的分子使其出现生命的现象,也就是―人造生命‖;二是―改造生命‖,比如利用一种生命体的元件(或经过人工改造),组装到另一个生命体中,使其产生特定功能。无论是哪种目的,对生命遗传物质DNA的操作都非常关键,其具体包括DNA的从头合成、组装和编辑等。同时,这些使能技术的进步也促进了合成生物学其他领域的发展。本文介绍了DNA操作相关的合成生物学使能技术的最新进展。  相似文献   

12.
2010年,蕈状支原体Mycoplasma mycoides的人工合成,迎来了合成生物学的崭新时代.这种突破性的进展主要得益于酵母自身强大的DNA体内重组能力.近几年来,除了利用体内重组的DNA大片段拼接技术,基于连接或聚合思想的不同尺度的DNA体外组装方法也相继出现,如Biobrick\Bglbrick、SLIC与Gibson等温一步法等,这些方法的应用加快了合成生物学功能元件库、生物合成途径乃至微生物染色体的人工构建.事实上,目前所建立的各种DNA组装方法,均是由DNA分子拼接理念(包括两分子衔接思想与多片段组装模式)衍生而来.文中将在介绍DNA组装基本理念的基础上,对体内、体外主要的DNA组装方法进行简要梳理,希望为不同类型的合成生物学功能器件及生物合成途径的构造提供参考与借鉴.  相似文献   

13.
基于合成生物学的微生物制造在天然产物药物、生物能源、生物基化学品及生物传感器件的研究中发挥越来越重要的作用。本文系统地介绍了合成生物学研究领域的最新技术进展,包括DNA和染色体合成、新生物元件开发与元件库标准化、染色体工程与最小基因组技术、途径装配技术等,并阐述了合成生物学在微生物制造领域内所取得的突破和巨大的应用价值。  相似文献   

14.
田敬东 《生命科学》2011,(9):931-934
合成生物学是一个拥有巨大潜力的新兴学科,合成生物学技术的发展将会对未来生物、医药、农业、能源、材料和环保等方面产生巨大的推进作用。基因合成是合成生物学中最基本和使用最多的一种技术手段,合成生物学的快速发展对基因合成能力提出了空前需求。综述基因合成技术的发展历史、现状和未来趋势,探讨基因合成技术存合成生物学以及整个生命科学研究中的应用和重要意义。  相似文献   

15.
DNA组装与转移技术是合成生物学的核心使能技术之一,生命体设计改造的复杂度不断提升,使得对大片段DNA组装与转移技术的需求也日益旺盛。小片段DNA的组装与转移技术目前已经比较成熟,大片段DNA由于其分子量大、易断裂,使得体外操作繁琐且效率低下。聚焦酿酒酵母体内组装和转移的技术进展,详细介绍了基于酿酒酵母一次组装和迭代组装的不同方法,并从导入与导出的角度介绍了大片段DNA的转移技术,便于研究者更好地理解和选择酿酒酵母体内组装与转移技术。此外,还展望了将酿酒酵母开发为大片段DNA组装与转移通用平台实现更多物种基因组大尺度设计改造的愿景。  相似文献   

16.
自21世纪初以来,高通量DNA测序、大规模DNA合成与组装、高效率基因组编辑等技术不断取得突破,推动合成生物学“读-编-写”进入高通量、自动化的时代,已经开始影响或应用于生物医药、材料化工、农业、食品、能源、环境保护等多个领域。在健康与医药领域,合成生物学研究成果和技术创新可以在认识生命规律的基础上,解析疾病发生发展机制、寻找药物设计靶点、干预自然的生理代谢过程与机体的免疫应答机制、实现对人体生理状态的监测以及对疾病的诊断与治疗,从而深刻影响医疗模式、诊疗体系和生命健康产业。该文对2023年合成生物学在健康与医药领域的规划布局、研发进展和产业发展进行了系统性的梳理,并展望了该领域未来更广泛的应用前景。  相似文献   

17.
合成生物学与代谢工程   总被引:5,自引:0,他引:5  
随着DNA重组技术的日趋成熟,代谢工程的理论和应用已经得到了迅速发展。合成生物学是近年来蓬勃发展的一门新兴学科,在许多领域都具有重要的应用。以下从改造细胞代谢的关键因子、代谢途径的调节和宿主细胞与代谢途径构建的关系等方面详细讨论了合成生物学的最新进展和合成生物学在代谢工程领域的应用。  相似文献   

18.
DNA从头合成技术是指以寡核苷酸链为起始的合成DNA片段的技术,其不断进步是合成生物学快速发展的基石之一。常规使用的连接介导的DNA合成技术和PCR介导的DNA合成技术日益成熟,精确合成长度已经达到0.5—1kb。微阵列介导的DNA合成技术不断发展,其低成本、高通量的特点吸引了人们的注意;而酵母体内DNA合成技术的成功探索也为体外DNA合成提供了一种补偿方法。DNA合成在优化密码子用于异源表达、构建异源代谢途径、合成人工基因组以及合成减毒病毒用于疫苗研制等方面有广泛应用。综述了DNA从头合成技术的研究进展,并介绍了DNA合成的前沿应用。  相似文献   

19.
合成生物学是一个"自上而下",以设计-构建-测试循环为研究模式、以工程化组装构建为特征的新兴跨学科领域.近年来在此新兴领域的众多研究成果使该研究循环获得了极大的成功,特别是在基于计算机的生物系统设计、DNA从头合成、组装及验证,以及代谢产物分析等方面为建立未来高通量生物系统加工生产线打下了坚实的基础.本文旨在总结当前合成生物学的技术发展水平,并对建立自动化生物产品制造厂需要应对的挑战展开讨论.  相似文献   

20.
刘志凤  王勇 《生物工程学报》2021,37(5):1494-1509
20世纪90年代,Bailey及Stephanopoulos等提出了经典代谢工程的理念,旨在利用DNA重组技术对代谢网络进行改造,以达到细胞性能改善,目标产物增加的目的。自代谢工程诞生以来的30年,生命科学蓬勃发展,基因组学、系统生物学、合成生物学等新学科不断涌现,为代谢工程的发展注入了新的内涵与活力。经典代谢工程研究已进入到前所未有的系统代谢工程阶段。组学技术、基因组代谢模型、元件组装、回路设计、动态控制、基因组编辑等合成生物学工具与策略的应用,大大提升了复杂代谢的设计与合成能力;机器学习的介入以及进化工程与代谢工程的结合,为系统代谢工程的未来开辟了新的方向。文中对过去30年代谢工程的发展趋势作了梳理,介绍了代谢工程在发展中不断创新的理论与方法及其应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号