首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
作为植物最大转录因子家族之一,AP2/ERF转录因子广泛存在于植物中,并因其在基因育种等方面具有重要作用而倍受关注。AP2/ERF转录因子家族成员至少含有一段60个左右氨基酸构成的AP2保守结构域,根据结构域的数量和识别序列的不同可以将其分为AP2、ERF、DREB、RAV和Soloist 5个亚家族,且在拟南芥、水稻、玉米和番茄等植物中,AP2/ERF转录因子及其各个亚家族成员的数量各不相同。研究发现,AP2/ERF转录因子可通过响应乙烯、细胞分裂素和生长素的调节从而直接或间接参与种子发育过程、花和果实等器官的形态建成等植物发育的多个进程;除了初生代谢,AP2/ERF转录因子还在植物次生代谢尤其是在调控药用植物主要药用活性成分(如青蒿素、紫杉醇和木质素)合成方面效果显著。同时,有报道称拟南芥AP2/ERF基因具有正向调节抗灰霉病的功能,一些AP2/ERF基因也被报道在植物应对高盐、干旱、缺氧、低温等非生物胁迫方面具重要功能;另外,AP2/ERF类转录因子还参与了乙烯等介导的非生物信号传导。介绍AP2/ERF转录因子的结构分类特征、在不同植物中的数量分布,并阐述其在植物发育、次生代谢、生物与非生物胁迫和信号传导等方面的研究进展,以期为培育出兼具高产、抗病的实用型转基因作物提供理论依据。  相似文献   

2.
AP2/ERF转录因子家族参与了植物生长发育、抵抗胁迫以及植物激素响应等诸多生物过程,是植物中最重要的转录因子家族之一。该研究基于腐烂病菌侵染后的新疆野苹果(Malus sieversii)全长转录组,使用AP2保守结构域的隐马可夫模型PF00847,鉴定新疆野苹果的AP2/ERF家族成员。利用MEGA6、NCBI CDD-batch、MEME、EXPASY、BUSCA对MsAP2/ERF家族成员进行鉴定、分类和结构分析、理化性质和亚细胞定位分析。通过RNA-seq数据和qRT-PCR实验对差异表达的MsAP2/ERFs基因的表达水平进行分析和验证,旨在鉴定新疆野苹果中潜在具有腐烂病抗性的AP2/ERF家族基因资源。结果显示:(1)在新疆野苹果中共鉴定获得106个AP2/ERF基因,涵盖全部AP2(17个)、ERF(57个)、DREB(25个)、RAV(5个)和Soloist(2个)5个亚家族。(2)进一步的细化分类发现MsERF亚家族包括B1-B6 6个组,而MsDREB亚家族中只有A2、A4、A5、A6共4个组,缺少A1和A3组的基因成员。(3)RNA-seq表达模式分析结果表明,29个MsAP2/ERF基因在腐烂病感染过程中差异表达,其中MsERF亚家族中差异表达基因数量最多(19个)。(4)12个MsAP2/ERF代表基因的qRT-PCR结果表明:8个ERF亚家族基因均受腐烂病病菌诱导显著上调表达,其中B4类ERF成员基因(MsERF40)在腐烂病病菌侵染后5 d表达量上调表达倍数最高;4个MsDREB基因中,3个受到腐烂病病原菌诱导显著上调,1个下调表达;此外,含有TIR保守结构域的MsERF05在腐烂病病菌侵染1 d后上调表达69倍,表明ERF亚家族的MsERF40和MsERF05在新疆野苹果抗腐烂病过程中发挥重要作用。该研究结果为新疆野苹果AP2/ERF基因响应腐烂病的功能和机理研究奠定了基础。  相似文献   

3.
花烟草NaERF1基因的克隆及在非生物胁迫下的表达模式分析   总被引:1,自引:0,他引:1  
AP2/ERF类转录因子,是植物所特有的最大的一类转录因子家族,在植物的生长发育过程中,扮演着重要的角色。探究花烟草ERF转录因子的生理功能,为花烟草抵御逆境的分子机制研究提供借鉴。采用同源克隆的方法进行基因克隆。通过对花烟草进行非生物胁迫,运用qPCR的方法进行基因表达模式分析。从花烟草(Nicotiana alata)中克隆了一个属于ERF家族的基因NaERF1。该基因的开放阅读框全长为819 bp,编码了272个氨基酸。生物信息学分析结果表明,该基因编码的蛋白分子量为30.7 kD,等电点为6.07;具有AP2/ERF类转录因子家族典型的保守结构域;该基因主要定位于细胞质内,并含有多个磷酸化位点。同源性分析的结果显示,NaERF1基因与茄科植物的ERF同源性较高,并且与普通烟草的ERF亲缘关系最近。NaERF1基因的表达具有组织表达特异性,花中表达量最高,茎中次之,根和叶中表达量较低。同时,在高盐、干旱、低温、ABA、低钾及H2O2等非生物胁迫下,NaERF1的表达呈现5种模式。其中,对低钾及ABA胁迫的响应强烈。NaERF1基因属于AP2/ERF类转录因子,可能广泛参与了花烟草包括非生物胁迫响应在内的众多生理过程。  相似文献   

4.
植物AP2/ERF类转录因子研究进展   总被引:6,自引:0,他引:6  
Zhang JY  Wang QJ  Guo ZR 《遗传》2012,34(7):835-847
植物AP2/ERF是一个庞大的转录因子基因家族,含有由60~70个氨基酸组成的AP2/ERF结构域而得名,存在于所有的植物中。AP2/ERF转录因子参与多种生物学过程,包括植物生长、花发育、果实发育、种子发育、损伤、病菌防御、高盐、干旱等环境胁迫响应等。AP2/ERF类转录因子参与水杨酸、茉莉酸、乙烯、脱落酸等多种信号转导途径,而且是逆境信号交叉途径中的连接因子。文章对国内外近年来有关植物AP2/ERF类转录因子的分类、生物学功能、基因调控等方面的研究进行了综述。  相似文献   

5.
DREB转录因子属于AP2/ERF转录因子家族,能够与DRE/CRT顺式作用元件特异性结合,调控与逆境应答基因的表达,因而在植物应对低温、干旱、高盐等逆境胁迫中发挥重要作用。该研究利用苹果全基因组数据,通过生物信息学手段鉴定苹果DREB转录因子家族成员,并分析DREB转录因子家族保守域特点与功能及表达情况。结果表明:从苹果全基因组中共鉴定出60个DREB转录因子家族成员,与拟南芥和水稻相比基本一致,通过引入拟南芥DREB基因进行系统发生分析,进一步可以将其细分为6个亚组;结构域和保守元件分析表明,DREB基因家族含有一个AP2保守结构域;染色体定位表明,苹果DREB基因分布于11条染色体上,部分基因存在串联复制现象;基因结构分析显示,该亚家族基因不含内含子。利用同源拟南芥RNA-Seq数据分析结果表明,DREB转录因子家族对低温、ABA调节等非生物胁迫具有调控作用,同时在DREB亚家族中每个亚组响应不同的非生物胁迫;通过分析DREB基因在不同组织中的表达情况,结果显示DREB基因在植物根部中的表达量最强,其次是叶。  相似文献   

6.
为探究油橄榄AP2/ERF基因家族对水胁迫的响应机制,该研究对受干旱及水淹胁迫的‘佛奥’和‘TYZ-1号’2个品种的根和叶进行转录组测序,并对油橄榄中AP2/ERF转录因子的蛋白理化性质、基因结构及系统进化进行分析,同时分析与水胁迫相关的AP2/ERF转录因子在2个油橄榄品种中的基因表达差异且进行RT-qPCR验证。结果表明:(1)在油橄榄中鉴定得到110个AP2/ERF基因家族成员,该110个蛋白质所含氨基酸大小为173~717 bp,均不存在信号肽,为非分泌蛋白。将油橄榄AP2/ERF与模式植物拟南芥AP2/ERF蛋白构建进化树发现,油橄榄AP2/ERF蛋白分为AP2、RAV、ERF和Solosist 4大类,其中ERF分为ERF和DREB 2个亚类,ERF包含ERF B1~ERF B6 6个子亚类,DREB包含DREB A1~DREB A6 6个子亚类,这与模式植物拟南芥AP2/ERF的分类一致,每个亚家族同时包含了油橄榄和拟南芥AP2/ERF蛋白,说明拟南芥和油橄榄的AP2/ERF家族在进化水平上有一定的相似性。(2)油橄榄AP2/ERF同一亚家族蛋白具有相同的基因结构及保守元...  相似文献   

7.
AP2/ERF转录因子家族是植物中广泛存在的一类转录因子,AP2/ERF这类转录因子主要参与植物的细胞周期、生长发育以及生物和非生物胁迫相关基因的表达调控。由于拟南芥和油菜同属于芸薹属,具有相似的基因信息,利用油菜UniGene数据库,以拟南芥ERF转录因子保守序列为探针,通过电子克隆从一个UniGene Cluster中分离得到三个同类的AP2/ERF转录因子,从cDNA序列、氨基酸序列的相似性、组成成分、理化性质、疏水性/亲水性分析、序列比对、进化树、功能域、二级结构、三级结构、无序化特性进行了预测和较为全面的分析。结果显示油菜来源的BnaERF1、BnaERF2和BnaERF3属于AP2/ERF转录因子的B-2亚族,是亲水性蛋白,在蛋白质的三级结构上与AtERF1相似。蛋白质无序化分析发现,油菜BnaERF1、BnaERF2和BnaERF3无序化程度小于拟南芥AtERF1。设计引物通过PCR和RT-PCR方法分别从甘蓝型双低油菜沪油15幼苗的DNA和cDNA中扩增了上述基因,初步分析BnaERF2没有内含子,BnaERF1和BnaERF3有内含子。另外,通过EST丰度分析显示,该类转录因子的表达最高峰在种子中,其次为花,在芽、茎和分生组织中没有检测出表达的存在。  相似文献   

8.
伤口诱导的去分化因子(WOUND INDUCED DEDIFFERENTIATION,WIND)是AP2/ERF家族成员之一。植物AP2/ERF (APETALA2/ETHYLENE RESPONSE FACTOR)是一个庞大的转录因子基因家族,存在于所有的植物中。目前大部分关于WIND转录因子的研究都局限在模式植物拟南芥中,在其他植物中鲜有研究。总结了近年来WIND基因在植物伤口信号响应、愈伤组织形成、植物生长和代谢及表观遗传调控中的作用,为后续进一步探究该基因的功能及其应用提供理论基础。  相似文献   

9.
大叶杨(Populus lasiocarpa)是中国特有的杨属物种,干旱和水淹是影响大叶杨生长和分布范围的两个关键因子。AP2/ERF转录因子家族在植物响应非生物胁迫中发挥重要作用。本研究采用转录组测序、生物信息学分析手段并结合分子实验验证初步鉴定了参与大叶杨干旱和水淹胁迫响应的关键基因。研究结果显示:(1)在大叶杨中分别鉴定到3,986/385个响应干旱/水淹胁迫的差异表达基因,其中包括237个同时响应干旱和水淹胁迫的差异表达基因。(2)在大叶杨中共鉴定到205个AP2/ERF家族成员,系统发育分析表明其在大叶杨中主要分为5个亚家族,并显著富集于差异表达基因中。(3)筛选部分胁迫前后差异表达的PlAP2/ERF基因进行qRT-PCR实验,经证实这些基因在大叶杨受到干旱/水淹胁迫时均可被诱导表达。综上,大叶杨在水淹胁迫下的差异表达基因数量明显少于干旱胁迫,AP2/ERF基因家族的部分基因参与到大叶杨干旱/水淹胁迫的应激表达过程。  相似文献   

10.
多年生黑麦草是禾本科冷季型草种,温度胁迫严重影响其分布和产量。转录因子调控基因表达在植物响应逆境胁迫中发挥重要作用。该研究以多年生黑麦草品种雅晴为材料,采用高通量RNA-seq技术,对热(40℃)、冷冻(-10℃)和对照(22℃)处理的样本进行转录因子应答分析,以探索多年生黑麦草转录因子对温度胁迫的响应规律,并筛选抗逆转录因子候选基因。结果显示:(1)共鉴定了694个转录因子unigenes,分属于AP2/ERF、GTF、HSF、MYB、NAC、WRKY、bHLH和bZIP等32个家族。(2)在热和冷冻胁迫下,ERF(AP2/ERF)、MYB、NAC和bZIP家族基因均以上调为主,而WRKY家族则多数下调。HSF、GTF和DREB(AP2/ERF)家族成员大多数受热诱导上调,而多数bHLH家族成员受冷冻胁迫上调。(3)功能富集结果表明,多年生黑麦草差异表达的转录因子基因主要参与植物激素信号转导、昼夜节律和病原体互作等通路。研究表明,多年生黑麦草中与胁迫适应相关的转录因子基因普遍上调表达,而与生长和抗病相关的基因多数下调。该研究筛选到大量抗逆转录因子候选基因,为分子育种提供抗逆基因资源。  相似文献   

11.
AP2/EREBP类转录因子为植物所特有的一类转录因子,参与了植物的发育和胁迫途径。本研究利用枣的全基因组数据库,通过生物信息学手段鉴定枣的AP2/EREBP家族的全部成员,并分析AP2/EREBP转录因子家族保守域特点与功能及表达情况,为枣的遗传改良抗性育种提供理论依据。利用在线软件EBI、TAIR、Hmmer3.0、SMART、Pfam、MEME、ProtParam、SOPMA、SignalP4.1Sever和String网站,以及ClustalX2、BioEdit、MEGA6.0、MapInspect软件,对枣的AP2/EREBP转录因子家族的类型、结构域、系谱进化、序列元件、蛋白理化性质及二级结构、信号肽分析、基因定位、基因芯片表达和蛋白功能联系预测进行了分析。分析表明,枣全基因组中有127条AP2/EREBP转录因子,根据其结构域划分为4个亚家族:AP2、RAV、DREB及ERF,各家族成员数分别为:17、6、50及54。进行多序列比对和系谱进化分析,发现2个亚家族各分为6个亚族。生物信息学分析表明,AP2/EREBP家族蛋白均为亲水性蛋白、非分泌型蛋白,且该家族蛋白富含酸性氨基酸;基因定位表明,该家族基因在12条染色体上呈不均匀分布,有染色存在串联复制现象;对127个枣AP2/EREBP蛋白之间的功能联系网络进行了系统预测,分析预测了相关基因的功能和多个基因间的联系;基因芯片表达表明,AP2/EREBP转录因子在低温、高温、光照、遮阴、紫外线、UV敏感处理及外源ABA处理条件下均能被诱导表达,且在根、叶、花和果4个器官中均有显著性表达。枣AP2/EREBP基因家族结构高度保守,对外界胁迫有显著性表达,可能在枣的生长发育及其在枣的多种生理反应信号转导中发挥着重要作用,且各家族成员之间在植物生长发育过程和胁迫响应及激素信号转导途径具有交叉作用。  相似文献   

12.
AP2/EREBP家族的转录因子在调控植物生长发育和应答环境胁迫方面具有重要作用。利用同源克隆结合RACE(rapid-amplification of cDNA ends)技术, 从四合木(Tetraena mongolica)中克隆了AP2/EREBP家族的基因, 将其命名为TmAP2-1(GenBank登录号: JQ676996)。序列分析结果表明, 该基因的开放阅读框长度为1 452 bp, 编码483个氨基酸; 比对结果显示TmAP2-1有2个AP2/ERF结构域, 属于AP2/EREBP转录因子家族的AP2亚家族。亚细胞定位实验结果表明, TmAP2-1定位在细胞核中。该基因编码的蛋白在酵母中没有转录激活活性。利用Real-time PCR检测发现该基因在根、茎、叶等器官中均表达, 且在叶中表达量最高。此外, TmAP2-1还受到NaCl、低温、PEG和ABA的强烈诱导, 推测TmAP2-1可能参与四合木的逆境胁迫响应。在四合木愈伤组织中过表达该基因能够降低四合木愈伤组织中油脂的含量, 同时提高可溶性糖的含量, 暗示该基因可能通过影响糖代谢过程参与逆境胁迫响应。  相似文献   

13.
AP2/ERF是植物中普遍存在的一类重要转录因子,参与植物整个生命周期的生长发育和逆境信号转导。本研究以胡萝卜(Daucus carota)‘黑田五寸’为试验材料,基于其转录组和基因组数据,检索和拼接获得胡萝卜AP2/ERF家族2个转录因子基因序列g39811和g47170。采用RT-PCR方法,分别从‘黑田五寸’中克隆DcERF-B1-1(g39811)和DcERF-B1—2(g4717D)转录因子基因。序列分析显示,胡萝卜DcERF-B1-1和DcERF-B1-2转录因子基因分别含有630个和594个开放阅读框,分别编码209和197个氨基酸;均含有相对保守的AP2结合域,具有典型的植物AP2/ERF类转录因子特征。从氨基酸组成成分、理化性质、亲水性/疏水性和三级结构上分析显示,胡萝卜DcERF—B1-1和DcERF-B1-2转录因子亲水性大于疏水性,其氨基酸序列可能属于亲水性蛋白。空间结构分析显示,它们都具有1个α螺旋和3个β折叠。进化树分析显示,二者均属于AP2/ERF家族转录因子中ERF亚族的B1组。实时定量荧光PCR显示,在低温、干旱、盐胁迫的条件下,DcERF-B1-2转录因子比DcERF-B1-1转录因子对逆境的响应更大;在高温的条件下,DcERF-B1-1转录因子比DcERF-B1-2转录因子对逆境的响应更大。  相似文献   

14.
干旱、低温、土地盐碱化等非生物胁迫是影响植物生长发育以及作物产量的重要因素。近年来大量研究表明,多种转录因子参与调控植物对各种生物及非生物胁迫的应答与防御反应,与此同时人们对其作用机理的探索也日渐深入。AP2/ERF转录因子家族是植物所特有的一类转录因子,在拟南芥中该家族至少有146个成员;而在水稻中该基因家族多达181个,是已知水稻转录因子基因中最大的家族。这些编码含有一个保守APETALA(AP2)结构域的蛋白质可能在植物多个发育过程及应答外界环境信号过程中发挥重要功能。综述了AP2/EREBP类转录因子的结构特征及其功能特性,并重点讨论了它们在植物抗逆中的调控作用及其在植物抗逆性分子遗传改良上的意义。  相似文献   

15.
该研究以雷公藤发状根为材料,根据雷公藤根转录组数据设计引物,采用RT-PCR方法克隆得到2个雷公藤AP2/ERF转录因子,分别命名为TwAP2/ERF1基因(GenBank登录号:GAVZ01042389.1)和TwAP2/ERF2基因(GenBank登录号:GAVZ01016765.1)。TwAP2/ERF1基因含有一个525bp开放阅读框(ORF),编码186个氨基酸;TwAP2/ERF2基因的ORF为789bp,编码262个氨基酸;2个基因编码的蛋白质均为亲水性蛋白质。系统进化分析表明,TwAP2/ERF1与油桐(Vernicia fordii)AP2/ERF(APQ47444.1)和木油桐(Vernicia montana)AP2/ERF(APQ47365.1)相似性较高,TwAP2/ERF2与毛果杨(Populus trichocarpa)AP2/ERF(XP_002304640.1)和樱桃(Prunus pseudocerasus)AP2/ERF(ALD84477.1)相似性较高。雷公藤发状根经MeJA诱导后,TwAP2/ERF1基因的相对表达量明显提高,并于处理后9h达到最高值,为对照表达量的16.77倍;而MeJA处理对TwAP2/ERF2基因的表达表现出抑制作用,但于处理后48h相对表达量有所提高。研究表明,雷公藤TwAP2/ERF1转录因子响应MeJA早期诱导正调控,推测其可能参与调控雷公藤植物次生代谢产物的生物合成,该研究结果为阐明雷公藤次生代谢物质的生物合成调控与利用现代生物技术提高雷公藤植物细胞中次生代谢物质的含量奠定了基础。  相似文献   

16.
低温、干旱、高盐和缺氧等多种不良环境影响植物的生长发育,植物通过长期进化形成复杂的调节机制来适应这些不利条件。AP2/ERF是植物特有的转录因子,在各种胁迫响应过程中发挥关键调控作用。近年来,越来越多的研究表明,植物激素介导的信号级联通路与逆境胁迫响应关系密切,AP2/ERF转录因子可与激素信号转导协同形成交叉调控网络。许多AP2/ERF转录因子通过响应植物激素脱落酸和乙烯,激活依赖或不依赖于脱落酸和乙烯的胁迫响应基因的表达。此外,AP2/ERF转录因子参与赤霉素、细胞分裂素和油菜素内酯介导的生长发育和胁迫应答。该文简要综述了AP2/ERF转录因子的结构特征、转录调控、翻译后修饰、结合位点、协同互作蛋白及其参与调控依赖或不依赖激素信号转导途径的非生物胁迫响应研究进展,为解析不同AP2/ERF转录因子在调控激素和胁迫响应网络中的作用提供理论依据。  相似文献   

17.
洪林  杨蕾  杨海健  王武 《植物学报》2020,55(4):481-496
低温、干旱、高盐和缺氧等多种不良环境影响植物的生长发育, 植物通过长期进化形成复杂的调节机制来适应这些不利条件。AP2/ERF是植物特有的转录因子, 在各种胁迫响应过程中发挥关键调控作用。近年来, 越来越多的研究表明, 植物激素介导的信号级联通路与逆境胁迫响应关系密切, AP2/ERF转录因子可与激素信号转导协同形成交叉调控网络。许多AP2/ERF转录因子通过响应植物激素脱落酸和乙烯, 激活依赖或不依赖于脱落酸和乙烯的胁迫响应基因的表达。此外, AP2/ERF转录因子参与赤霉素、细胞分裂素和油菜素内酯介导的生长发育和胁迫应答。该文简要综述了AP2/ERF转录因子的结构特征、转录调控、翻译后修饰、结合位点、协同互作蛋白及其参与调控依赖或不依赖激素信号转导途径的非生物胁迫响应研究进展, 为解析不同AP2/ERF转录因子在调控激素和胁迫响应网络中的作用提供理论依据。  相似文献   

18.
AP2/ERF是广泛存在于植物中一类重要的转录因子,调控一些参与非生物胁迫相关基因的表达,帮助植物提高逆境胁迫能力。为了深入探讨LaAP2在独行菜耐受低温萌发及幼苗耐受低温生长中的功能,该研究基于前期对独行菜(Lepidium apetalum)转录组数据库分析,克隆获得一个显著上调表达的AP2/ERF家族序列LaAP2。该基因cDNA全长为1 005 bp,编码氨基酸序列包含一个AP2和一个B3结构域,属于AP2/ERF转录因子RAV亚家族。推定的LaAP2蛋白分子量为37.744 67 kD,等电点为9.49。该蛋白氨基酸序列同亚麻荠、拟南芥、油菜等物种显示出较高同源性,系统进化分析结果表明与拟南芥亲缘关系较近。氨基酸序列分析预测表明,LaAP2基因所编码的蛋白不具备信号肽区段,无跨膜区,不属于分泌蛋白,可能为亲水性蛋白;定位于细胞质的可能性为56.5%,定位于细胞核的可能性为21.7%;其主要二级结构元件为无规则卷曲、延伸链、α-螺旋。Real-time PCR分析独行菜幼苗中LaAP2在低温4℃处理下的表达,显示LaAP2表达受低温胁迫呈先下降后升高趋势。这表明LaAP2在独行菜幼苗抵抗低温胁迫中起调控作用。  相似文献   

19.
从小黑杨(Populus simonii×P.nigra)叶片中克隆出732 bp的ERF11转录因子基因(Potri.011G057000.1)cDNA,其编码的蛋白含有243个氨基酸,属于不稳定的亲水蛋白,不存在信号肽,不具跨膜能力,含AP2/ERF家族保守结构域。系统进化树表明,小黑杨ERF11蛋白与胡杨、麻疯树、蓖麻、橡胶树、木薯遗传距离较近,说明其亲缘关系较近。亚细胞定位结果表明,ERF11蛋白定位于细胞核中。ERF11基因表达具有组织特异性,并受胁迫诱导表达。其在根中相对表达水平明显比在茎和叶中表达水平高,在盐和甘露醇胁迫下,基因均表现上调表达。表明ERF11转录因子基因可能与植物应答高盐和干旱胁迫相关。  相似文献   

20.
AP2/EREBP 转录因子在植物发育和胁迫应答中的作用   总被引:1,自引:0,他引:1  
赵利锋  柴团耀 《植物学报》2008,25(1):89-101
AP2/EREBP (APETALA2/ethylene-res ponsive element binding proteins) 是一个起源古老的转录因子超家族, 它含有1个或2个由约60-70个氨基酸残基组成的非常保守的DNA结合域 (DNA-binding domain), 即AP2/ERF结构域。根据AP2/ERF结构域的数目, AP2/EREBP转录因子可以分为2个亚族: EREBP亚族(具有1个AP2/ERF结构域)和AP2亚族(具有2个AP2/ERF结构域)。AP2亚族转录因子有调控花、胚珠和种子发育的功能, 而EREBP亚族转录因子(包括DREB类和ERF类) 的主要功能是调节植物对激素(乙烯和ABA等)、病原和胁迫(低温、干旱及高盐)等的应答反应。本文讨论了AP2/EREBP转录因子在植物发育和胁迫应答中的研究进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号