首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了解极端嗜酸热古菌硫氧化代谢途径,基于Acidianus manzaensis YN-25全基因组信息,通过NCBI数据库比对初步筛选了20个可能与硫氧化相关的基因,并通过实时定量PCR(RT-qPCR)比较了所筛选基因在以单质硫(S~0)和亚铁(Fe2+)两种不同能源底物培养下的表达差异。结果表明,A.manzaensis菌中存在至少15个与硫氧化相关的基因,经过比对分析,它们包括5个编码氧化单质硫(S~0)及含硫中间产物的酶基因、4个编码末端氧化酶基因、1个编码硫酸根转运蛋白酶基因、1个编码电子传递蛋白基因,以及4个编码与硫氧化密切相关的硫还原蛋白家族(Sulfur reduction protein)的dsr E基因。基于上述实验分析结果,拟构建极端嗜酸热古菌A.manzaensis的硫氧化模型,即胞外的S~0跨膜转运进入细胞内后,经硫氧化蛋白(SOR)氧化还原生成S_2O_3~(2-),SO_3~(2-)和H_2S等含硫中间产物。接着,细胞内通过其他相关硫氧化酶的作用将这些中间产物进一步氧化,并将氧化得到的电子传递给细胞膜上的氧化型醌(Q~(2+)),使其形成还原型的醌(QH_2),QH_2最终被末端氧化酶氧化形成NADH和ATP,从而为细胞生长提供能量。  相似文献   

2.
以极端嗜酸热古菌(Acidianus manzaensis)为研究对象,基于比较蛋白质组学的研究方法筛选和鉴定了13个A.manzaensis胞外与硫活化相关的蛋白质基因,并从转录水平对其进行了验证。首先通过80℃缓慢摇动水浴30 min分别对A.manzaensis在单质硫(S0)和亚铁(Fe2+)为能源底物进行生长时的胞外蛋白质进行提取,并用双向电泳(2-DE)进行分离,然后选取在S0底物下差异表达的蛋白质斑点进行串联飞行时间质谱(MALDI-TOF/TOF)鉴定和生物信息学分析及功能预测,最后用实时定量PCR(RT-q PCR)对筛选得到的胞外S0活化相关蛋白基因进行转录水平的验证;最终获得了13个极端嗜酸热古菌A.manzaensis胞外活化S0相关的蛋白质基因。筛选得到的蛋白质中一半以上含有较多的半胱氨酸残基(Cys),说明胞外富含巯基(-SH)的蛋白参与了S0活化;其中谷氧还蛋白(glutaredoxin)和FAD键合氧化酶均含有-CXXC-结构域,且两种蛋白质的基因表达量较高,说明含有-CXXC-结构域的蛋白质在极端嗜酸热古菌A.manzaensis活化S0的过程中起重要的作用。  相似文献   

3.
极端嗜热古菌的热休克蛋白   总被引:4,自引:0,他引:4  
随着生物工程产业对于耐高温酶和菌体的需求, 极端嗜热古菌热休克蛋白(heat shock proteins, HSPs)的研究更受重视, 其热休克蛋白体系非常简洁, 不含HSP100s和HSP90s, 就是HSP70(DnaK)、HSP40、(DnaJ)和GrpE等嗜温古菌可能含有的在极端嗜热古菌中几乎不含有, 即仅包括HSP60, sHSP, prefoldin和AAA+蛋白四大类, 因此对其结构、功能和作用机制的研究在理论和实践上都特别有意义。系统地介绍了这四大类组分的结构、功能和作用机制和协同作用的研究进展, 论述了极端嗜热古菌热休克蛋白的系列研究难点和困惑, 展望了进一步的研究方向和重点。  相似文献   

4.
极端嗜酸热古菌S5菌株的重新分类研究   总被引:2,自引:0,他引:2  
对已经鉴定的嗜酸热硫球菌 (Sulfosphaerellusthermoacidophilumgen.nov .sp .nov)S5菌株的进一步研究发现 ,它既能在好氧条件也能在厌氧条件下代谢元素硫进行化能自养生长 ,结合其 1 6SrRNA基因的分子系统学分析 ,S5菌株应归于Acidianus属。另外 ,S5菌株与Acidianus属中三个已知种基因组DNA的同源性分别仅有 44%、2 2 %和 2 3% ,DNA中G +Cmol%为 38,与已知种 31 0和 32 7有较大差异 ;而且 ,在代谢特性上S5菌株为专性化能无机营养型 ,与Acidianusbrierleyi有明显不同。因此S5菌株应是Acidianus属中一个新种 ,建议定名为 :腾冲嗜酸两面菌 (Acidianustengchongensessp .nov .)。  相似文献   

5.
高温会加快碱基脱氨基反应形成损伤碱基的速率,进一步对脱氨基的碱基进行复制会导致突变。因此,极端嗜热古菌基因组的稳定性面临着其生存高温环境的挑战。胞嘧啶脱氨基形成尿嘧啶,是常见的脱碱基类型,复制DNA中尿嘧啶会造成GC→AT的突变。尿嘧啶DNA糖苷酶(Uracil DNA glycosylase,UDG)是修复DNA中尿嘧啶的关键酶。基于识别底物的特异性,UDG分为6个家族,广泛分布在细菌、古菌、真核生物以及一些病毒中。基因组序列显示,极端嗜热古菌至少编码一种UDG。目前,对于细菌和真核生物的UDG已进行了大量的研究,但是关于极端嗜热古菌UDG的研究相对较少,尚处于初期阶段。本文综述了极端嗜热古菌UDG的研究进展,并对今后的研究提出了展望。  相似文献   

6.
7,8二氢-8-氧鸟嘌呤(7,8-dihydro-8-oxoguanine,8oxoG)是一种常见的DNA损伤碱基.由于8oxoG能够与腺嘌呤配对,在DNA中的8oxoG被修复之前进行复制,DNA将会产生GC→TA的突变,从而造成基因组的不稳定.目前,碱基切除修复(Base excision repair,BER)是修...  相似文献   

7.
胸腺嘧啶乙二醇(thymine glycol,Tg)是常见的氧化性DNA损伤碱基之一。DNA中的Tg能够分别阻止DNA聚合酶和RNA聚合酶进行DNA复制和转录,导致相应的生物学过程终止,进而会引起细胞的死亡,因此DNA中的Tg需要被修复。核酸内切酶Ⅲ(endonuclease Ⅲ,EndoⅢ)是一种双功能DNA糖苷酶,能够切除DNA中的Tg,从而启动碱基切除修复途径进行修复DNA中的Tg。细菌、古菌和真核生物的基因组序列中均存在有EndoⅢ蛋白的编码基因。目前,源自于细菌和真核生物的EndoⅢ已有较多的研究,而古菌EndoⅢ的研究相对较少。基于目前已有的极端嗜热古菌EndoⅢ的研究报道,本文综述了极端嗜热古菌EndoⅢ的研究进展,并展望了今后的研究方向。  相似文献   

8.
李玉婷  史昊强  张立奎 《微生物学报》2019,59(10):1889-1896
极端嗜热古菌由于生活在高温环境,其基因组DNA面临着严重的挑战,因此,它们如何维持其基因组稳定是本研究领域最为关注的科学问题之一。极端嗜热古菌具有与常温微生物相似的自发突变频率,暗示着它们比常温微生物具有更加有效的DNA修复体系进行修复高温所造成的基因组DNA损伤。目前,极端嗜热古菌DNA修复的分子机制尚不清楚。核酸内切酶在DNA修复途径中发挥着重要的作用。基因组序列显示极端嗜热古菌编码多种DNA修复核酸内切酶,但是其研究尚处于初期阶段。本文综述了极端嗜热古菌DNA修复核酸内切酶Nuc S、Endo V、Endo Q、XPF和Hjc的研究进展,并对今后的研究提出了展望。  相似文献   

9.
古菌(Archaea)是一类与细菌及真核生物显著不同的生命的第三种形式[1],大多生活在极端或特殊环境,主要包括产甲烷古菌(Methanogenic Achaea)、极端嗜盐古菌(Extremely Halophilic Archaea)和极端嗜热古菌(Extremely Thermophilic Archaea)等三大类.极端古菌是极端环境微生物的重要成员,也是极端环境微生物资源开发的重要领域.其中,嗜盐古菌可产生一类蛋白类抗生素,称为嗜盐菌素(halocin).  相似文献   

10.
极端嗜盐古菌蛋白类抗生素——嗜盐菌素   总被引:5,自引:0,他引:5  
古菌 (Archaea)是一类与细菌及真核生物显著不同的生命的第三种形式[1] ,大多生活在极端或特殊环境 ,主要包括产甲烷古菌 (MethanogenicAchaea)、极端嗜盐古菌 (ExtremelyHalophilicArchaea)和极端嗜热古菌 (ExtremelyThermophilicArchaea)等三大类。极端古菌是极端环境微生物的重要成员 ,也是极端环境微生物资源开发的重要领域。其中 ,嗜盐古菌可产生一类蛋白类抗生素 ,称为嗜盐菌素 (halocin)。与细菌素相似[2 ] ,嗜盐菌素是由质粒编码、核糖体合…  相似文献   

11.
极端嗜热古菌———芝田硫化叶菌 DNA 连接酶 (Ssh 连接酶 ) 的最适辅因子为 ATP ,在 dATP 存在时,该酶也能表现出较弱的连接活性 . ATP 或 dATP 都能够使该酶发生腺苷化,腺苷化的 Ssh 连接酶能够将腺苷基团转移至含切刻的 DNA 上 . 电泳迁移率改变实验表明, Ssh 连接酶能够结合双链 DNA ,且与含切刻及不含切刻的 DNA 结合的亲和力相同,但不结合单链 DNA. 酵母双杂交实验显示,硫磺矿硫化叶菌 ( 与芝田硫化叶菌亲缘关系很近 ) 的 DNA 连接酶,与该菌所含的 3 个增殖细胞核抗原 (PCNA) 同源蛋白中的一个 (PCNA-1) 有相互作用,而与另外 2 个同源蛋白 (PCNA-like 和 PCNA-2) 则无相互作用 . 在古菌中高度保守的 Sac10b 蛋白家族成员 Ssh10b 能够激活 Ssh 连接酶的活性,而硫化叶菌中的主要染色体蛋白——— 7 ku DNA 结合蛋白 (Ssh7) 则对该酶活性没有影响 .  相似文献   

12.
对极端嗜盐古菌遗传转化系统的研究进展进行了综述,内容包括抗性标记基因的选择,基因克隆和表达载体系统的发展以及受体系统的改造。  相似文献   

13.
【目的】开发可用于在极端嗜热嗜酸模式泉古菌冰岛硫化叶菌(Sulfolobus islandicus)中进行高效表达的eCGP123(enhanced consensus green protein variant 123)荧光蛋白,并用作S.islandicus的细胞内蛋白定位工具。【方法】绿色荧光蛋白突变体eCGP123具有极高的热稳定性、耐酸性和可逆的荧光特性等。本研究主要对eCGP123的基因根据S.islandicus密码子偏好性进行优化与合成,在大肠杆菌(Escherichia coli)中表达并研究其蛋白性质;通过在eCGP123的C末端分别融合具有不同细胞内定位的蛋白(包括E.coli来源的Fts Z和S.islandicus来源的Ups E、PCNA1和SiRe_1200等),构建eCGP123及其融合蛋白的表达菌株,用激光共聚焦显微镜分析eCGP123及其融合蛋白在E.coli和S.islandicus活细胞中的亚细胞定位。【结果】我们确认了在E.coli中表达并纯化密码子优化后的e CGP123具有与野生型绿色荧光蛋白相同的吸光值和较高的热稳定性。细胞学分析显示细胞分裂相关蛋白FtsZ和Si Re_1200分别主要定位于E.coli和S.islandicus分裂细胞的中间;鞭毛组分蛋白Ups E呈点状均匀分布,可能定位于细胞膜上;DNA复制滑动夹亚基PCNA1呈区域性点状分布,暗示了DNA复制区域的位置。蛋白的亚细胞定位与预期结果基本吻合。【结论】绿色荧光蛋白e CGP123可以作为报告蛋白,应用于S.islandicus细胞的蛋白定位分析中,可作为该模式菌株中功能基因研究的重要工具,但需要进一步优化条件。  相似文献   

14.
超嗜热古菌能够生活在80℃以上的高温环境中,它们的耐热性已经成为当前研究的热点之一。以往对超嗜热菌的认识多集中于蛋白质的耐热性,而很少有关于基因组热稳定性的综述文章。综述了当前对超嗜热古菌的基因组稳定性以及DNA损伤识别机制的研究进展,以期更好地了解超嗜热古菌的耐热机制。  相似文献   

15.
戴鹏高  黄力 《微生物学报》2003,43(2):241-244
反向旋转酶是一种I型拓扑异构酶,它可以利用ATP水解的能量向DNA分子中引入正超螺旋。通过阴离子交换层析、亲和层析、聚丙烯酰胺凝胶电泳(SDSPAGE)从芝田硫化叶菌(Sulfolobus shibatae)中分离得到一种反向旋转酶。SDSPAGE 显示,该酶分子量约为126 kD,N末端序列测定结果表明,该酶为芝田硫化叶菌中一种新的反向旋转酶。  相似文献   

16.
嗜酸菌及其应用   总被引:7,自引:0,他引:7  
李雅琴   《微生物学通报》1998,25(3):170-172
自然界大多数环境的pH值为5~9,它适合多数微生物生长。嗜酸菌是一种能在低pH条件下生长和繁殖的极端环境微生物[‘-’],通常在pHZ~5生长很好,pHS.5以上生长不好。有些嗜酸菌在中性pH条件下根本不生长,如氧化硫硫杆菌(Thiobacillusthiootidans),酸热硫化叶菌(deghlobusacidocaldarius),酸热芽抱杆菌O沏ciousacidoca儿brius)等,最佳生长pH是2.0~3.0,这些都是专性嗜酸菌。一些真菌也能在pHS.0或更低条件下生长,实际上是耐酸菌。l嗜酸菌生态分布及其对环境适应机制嗜酸菌生长在酸性环境,这主要与硫或硫化物的存在…  相似文献   

17.
摘要:遗传操作系统,是研究基因和基因产物功能的一个极为重要的工具。超嗜热古菌遗传操作系统方面的研究落后于甲烷菌及嗜盐古菌中的研究,主要原因是选择标记的缺乏。然而,近十年来,在以硫化叶菌(Sulfolobus)为代表的超嗜热泉古菌和Thermococcus kodakaraensis为代表的超嗜热广古菌中,遗传操作系统研究取得了很大的进展。本文主要对这两种超嗜热古菌的遗传操作系统进展以及应用进行概述。  相似文献   

18.
超嗜热古菌Thermococcales是一类在类早期地球环境深海热液系统中常见的优势微生物类群,同时也是一类很好地适应了热液系统中剧烈波动的理化因子的微生物,部分Thermococcales微生物具有惊人的生长跨度(超过40℃的温度生长跨度、超过5个pH单位的pH生长跨度以及超过80 MPa的压力生长跨度),同时与其他绝大多数微生物相比具有较小的基因组(2.3 Mb).有关Thermococcales在不同极端环境下的适应性研究发现,其特殊的代谢途径与多重极端环境适应相关,这些代谢途径包括:相容性溶质、能量代谢、膜脂、氨基酸代谢及抗氧化途径,进而发现可能存在应对多重极端环境的共同适应机制.研究Thermococcales的共同适应机制,可帮助探索深部生物圈这样低能、高温极端环境下(包括域外)微生物的生存策略,将为探究早期生命的代谢特点,进而更好地理解生命起源提供宝贵的模型和研究思路,也为合成生物学研究及工业化应用提供理论借鉴与生物材料.  相似文献   

19.
张帆  张兵  向华  胡松年 《微生物学报》2009,49(11):1445-1453
摘要:【目的】利用生物信息学方法了解目前拥有全基因组序列的极端嗜盐古菌中CRISPR结构的特征。【方法】通过比对,保守性分析,GC含量分析,RNA结构预测等方法对已有全基因组序列的嗜盐古菌基因组进行研究。【结果】在5株嗜盐古菌基因组中发现CRISPR结构,在leader序列内得到具有回文性质的保守motif。发现在大CRISPR结构内repeat序列具有很强的保守性。同时根据第四位碱基的不同,repeat序列可形成两类不同的RNA二级结构。【结论】leader序列中回文结构的发现对其可能为蛋白结合位点的假  相似文献   

20.
极端环境下嗜热酸甲烷营养细菌研究进展   总被引:5,自引:0,他引:5  
郑勇  郑袁明  张丽梅  贺纪正 《生态学报》2009,29(7):3864-3871
甲烷营养细菌能够将温室气体甲烷(CH4)转化为CO2或生物质,在碳生物地球化学循环及缓解由温室气体导致的全球气候变化方面发挥着重要的作用.甲烷营养细菌生存的条件范围较为广泛,但在中性pH (5~8)和中温(20~35℃)范围内生长最佳.系统进化分析认为,它们均属于γ-或α-变形菌门(Proteobacteria).最近3项独立完成的研究从极端热酸(pH接近1,温度高于50℃)环境中分离获得了具有甲烷氧化(营养)功能的微生物,经鉴定均属于疣微菌门(Verrucomicrobia).这些全新的、不同于以往的研究结果不仅是对现有关于甲烷营养细菌生态学认知的进一步拓展,同时也暗示着可能存在着新型的、由微生物介导的CH4氧化途径与机制. 因此,特就极端环境中嗜热嗜酸甲烷营养细菌的最新研究进展作一概述.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号