首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
溶氧对L-缬氨酸发酵过程的影响   总被引:1,自引:0,他引:1  
目的:以黄色短杆菌XV0505为供试菌,探索溶氧对L-缬氨酸发酵过程的影响及其控制策略。方法:利用5L发酵罐,考察了不同溶氧浓度对L-缬氨酸发酵的影响,并采用代谢流分析对其结果进行阐述,提出分阶段溶氧控制策略。结果:采用分阶段溶氧控制策略,即在0~24h溶氧浓度为20%,24~60h溶氧浓度为5%,发酵60h,L-缬氨酸可达到58.36g/L,比5%和20%溶氧浓度下分别提高了18.95%和13.56%。结论:溶氧浓度对L-缬氨酸发酵有重要影响。  相似文献   

2.
发酵过程中溶氧浓度对D-核糖发酵的影响   总被引:2,自引:0,他引:2  
通过固定不同溶氧浓度(DOT)对短小芽孢杆菌(Bacillus pumlus)进行分批发酵的过程参数变化的比较,发现发酵前期与后期对氧的需求不尽相同,探讨了氧代谢途径及溶氧浓度对核糖发酵的影响机理,并提出分阶段供氧模式。结果表明,发酵时间44h后,整个发酵过程保持了较高的核糖产率和葡萄糖消耗率,最终核糖产量和细胞生成量分别提高了5.0%和18.8%。  相似文献   

3.
研究了溶氧浓度对产甘油假丝酵母分批发酵生产甘油过程的影响。实验结果表明:当溶氧浓度控制在30%时,C. glycerinogenes的甘油产量、得率和产率达到最高,分别为120.7 g/L、0.575 g/g和1.69 g/(L•h),而糖酵解代谢副产物形成最少。当溶氧浓度为10%时,发酵过程呈现出“巴斯德效应”的特征,生成的酵解代谢副产物维持在较高水平。在快速生长阶段,随着溶氧从10%增加到60%,细胞呼吸类型表现为从厌氧呼吸向好氧呼吸转变,酵解代谢副产物依次减少。在生长稳定期,控制的溶氧浓度越高,酵解代谢副产物乙醇、乙酸等的生成减少。分别选用Logistic方程、Luedeking-Piret方程和Luedeking-Piret-like方程,能较好地模拟细胞生长、甘油合成和葡萄糖消耗的动力学过程。  相似文献   

4.
存在许多因素可以影响整个发酵过程的进行。培养基中的溶氧浓度(DO)作为其中一个最基本的因素,它能显著影响微生物的生长和产物的形成。在发酵过程中必须根据不同阶段供给适量的无菌空气用以保障工程菌的代谢特点保证工程菌繁殖和代谢产物的合成。发酵过程中氧的传质速率受发酵液的理化性质、操作参数及反应器的结构三方面影响。  相似文献   

5.
溶氧对变溶菌素发酵的影响   总被引:7,自引:0,他引:7  
变溶菌素是由球孢链霉菌产生的一种胞外溶菌酶群。它包括几种不同类型的溶菌酶,有着广阔的用途和良好的应用前景。许多研究结果[1,2]表明,它比卵清溶菌酶有更为广泛的溶菌谱,应用范围更广,尤其是在预防和治疗龋齿[3]方面有其独特的优点。在医药上可用作灭菌剂,也可用其作?..  相似文献   

6.
溶氧对L-苏氨酸发酵的影响   总被引:1,自引:0,他引:1  
探索溶氧对L-苏氨酸发酵过程的影响及其控制方法。通过摇瓶装液量试验、不同溶氧控制方式考察发酵过程中溶氧对L-苏氨酸合成的影响。采用补料分批发酵工艺发酵L-苏氨酸,利用氨基酸分析仪测定发酵液中L-苏氨酸的产量,通过10L罐补料分批发酵36h,产酸可达118.9g/L,糖酸转化率为47.6%。可以得出溶氧对L-苏氨酸生物合成有重要影响,并建立了最佳溶氧控制条件。  相似文献   

7.
链霉素产生菌—灰色链霉菌(Streptomyces griseus)是一种高度需氧菌,它在整个代谢过程中以葡萄糖做为主要碳源,只有以氧做为最终电子受体时方能获得大量能量,来满足菌体生长,繁殖和合成链霉素的需要。物质代谢与能量代谢是相辅相成的。据文献记载,空气中,氧在培养液中的饱和浓度(1 atm,25℃)大约只有0.2毫克分子(O_2)/升,而链霉素发酵液中菌体的摄氧率在10~50毫克分子(O_2)/升小时,因此向发酵液中迅速地补充溶解氧,是链霉素发酵中的重要问题。氧分子首先要溶解在水中,然后透过细胞壁和细胞膜进入细胞,它进入细胞内和排出细胞外,是简单的渗透作用,其推动力是培养液和细胞中溶解氧的浓度差。当发酵液中溶氧浓度较低时,进入细胞内的氧就少,当溶氧浓度降到临界值以下时,就不能满足微生物对氧的需求,成为生产中的限制因素。所以研究发酵过程中的溶氧问题是十  相似文献   

8.
L-赖氨酸是当前国内外全价配合饲料的主要添加剂,具有提高饲料利用率,促进动物生长和改进肉质的功效。近年来,随着养殖业、饲料业等行业的迅猛发展,国内市场对赖氨酸的需求量大大增加。当前,赖氨酸的生产主要以发酵法为主,本文重点对目前赖氨酸发酵过程中溶氧的控制进行分析,综述了工业改善溶氧的措施。  相似文献   

9.
溶氧对杀菌肽-X发酵工艺的影响   总被引:1,自引:0,他引:1  
本研究采用 30L自动控制发酵罐研究了重组杀菌肽 X工程菌的基本发酵条件。经 12h发酵培养 ,发酵培养基中氨苄青霉素浓度为 0和 100μg/mL时 ,包涵体得率基本一致 ,干重分别为1.24和1.20g L ;控制溶氧为 20%~30%和溶氧自然变化 (转速分别为 250和150r/min)的条件下 ,包涵体得率有较大差异 ,干重分别为0.05、0.71和1.24g L。在较优化的发酵条件下 ,目的融合蛋白的表达量占菌体总蛋白的 45%~50%。  相似文献   

10.
将结冷胶按不同比例添加到小麦面粉中,分别考察了结冷胶对小麦面粉粉质特性、拉伸特性、糊化特性的影响。结果表明:结冷胶可以提高面团的吸水率,缩短面团形成时间,提高稳定时间,降低弱化度,且含量越高(300mg/kg~3000mg/kg),效果越好;随着结冷胶添加量的增加,拉伸面积、抗拉伸阻力和最大拉伸阻力均呈现增大的趋势。结冷胶对小麦面粉的糊化特性影响不大。同时,进一步考察了结冷胶对小麦面筋蛋白的流变性及微观结构的影响,结果显示:结冷胶可以增加面筋蛋白的黏弹度、韧性及持水性,添加量为600mg/kg的结冷胶便能有效增加面筋的弹性,使面筋网络结构更为连续平滑、孔径变小,孔洞密集且均匀分布。  相似文献   

11.
结冷胶生物合成机理研究进展   总被引:2,自引:0,他引:2  
结冷胶是少动鞘氨醇单胞菌(Sphingomonas paucimobilis)产生的一种新型微生物多糖,其独特的流变特性使结冷胶具有广泛的工业用途。虽然在结冷胶的理化特性方面的研究比较详尽,但是对结冷胶的发酵生产及其生物合成机制还缺乏深入了解。主要关注最近在结冷胶生物合成途径分子生物学方面的研究,用于编码结冷胶生物合成所需蛋白质的基因主要有三类:与糖核苷酸合成有关的基因、与四碳重复单元合成有关的基因及与长链聚合和多糖分泌有关的基因。基因工程是结冷胶分子改造和产量增加最具前景的方法。  相似文献   

12.
出芽短梗霉发酵过程溶氧控制的研究   总被引:2,自引:1,他引:2  
在搅拌罐式生物反应器中,通过控制DO(溶氧浓度)的变化,对出芽短梗霉(Aureobasidium pullulans)发酵过程的控制进行了研究。以100g/L玉米粉水解液做碳源,比较了不同溶氧控制条件下发酵参数的变化及其对出芽短梗霉发酵结果的影响。结果表明,过低的DO对菌体生长和多糖生产都不利,过高的DO使培养液中糖大部分消耗在菌体的生长上,也不利于多糖的生产,通过控制搅拌速度和通气量能将DO维持在较合适的水平。  相似文献   

13.
苏云金杆菌溶氧控制发酵   总被引:2,自引:1,他引:1  
  相似文献   

14.
利用BIOSTATC10自控发酵罐 ,研究了Bt菌种Gc - 91进行间歇培养时氧的供需特性。研究表明 ,以生产培养基配方进行发酵时 ,生长高峰期的临界氧浓度在DO12 .0 %~ 17.5%之间 ,控制溶氧接近于临界氧浓度进行发酵 ,Bt晶体含量和毒力效价有大幅提高。  相似文献   

15.
研究了溶氧对Brewibacterium lactofermentation分批发酵生产L-异亮氨酸(Ile)的影响,提出了前10h恒700d/min以维持溶氧在35%以上,10h后调至600r/min以维持溶氧在15%~20%的两阶段供氧控制模式。与对照相比,获得了较高的产率(0.094g/g)和糖耗速度(4.76/L·h),在较短时间内(52h)获得较高的Ile产量(23.3g/L),比结果最好的单一搅拌转速(600r/min)提高11.6%。生产强度(0.448d/L·h)比恒定搅拌转速(500、600、700、800r/min)控制下的过程分别提高了83.6%、28.7%、44.9%、35.7%。最后采用代谢通量分析对该结果产生的原因进行了定量解释。  相似文献   

16.
氧载体对L-天冬酰胺酶发酵过程影响的研究   总被引:3,自引:0,他引:3  
以抗癌药物L-天冬酰胺酶生产为应用背景,针对发酵过程中存在严重耗氧问题,研究了氧载体对发酵过程的影响。通过对几种氧载体的筛选,认为正十二烷最适合于该发酵过程。随后以产物L-天冬酰胺酶活性、菌体浓度以及溶氧水平为主要指标,考察了氧载体在发酵过程中的作用.实验表明,发酵基质中5%正十二烷的添加量为最佳浓度,这种氧载体的加入,明显地提高了发酵介质中的溶氧水平,改善了供氧条件,增加了菌体浓度,提高了L-天冬酰胺酶发酵水平,在优化条件下,可使发酵液最终酶活提高21%左右。  相似文献   

17.
《菌物学报》2017,(5):611-617
为了解溶氧对赤霉素发酵过程影响以及相应工艺优化,采用不同溶氧条件下藤仓赤霉菌Gibberella fujikuroi分批发酵生产赤霉素的过程进行菌丝浓度、残糖浓度和GA3产物浓度检测,并微分运算得出比生长速率与比产物合成速率随发酵时间变化,分析了溶氧对比生长速率与比产物合成速率以及得率的影响,进而提出Gibberella fujikuroi发酵高产的溶氧控制策略:在发酵初始阶段(0–50h)控制溶氧30%左右,以维持较高的菌体生长速率;发酵中后期(50–184h),溶氧控制在15%,以获取菌丝持续较高的GA3合成速率能力。采用这一优化溶氧控制策略,发酵过程中最大菌丝浓度19.24g/L、最终赤霉素浓度2 180mg/L和平均比产物合成速率0.616mg/(g·h),比未优化前发酵分别提高了8.33%、13.25%和4.58%,表明所采取的分阶段溶氧控制策略对促进GA3生产有效。  相似文献   

18.
通过单因素试验分析不同碳源、氮源、无机盐对(Sphingomonas paucimobilisFJAT-5627)产胶量的影响,确定最适碳源、氮源、无机盐,并在单因素筛选试验的基础上,利用Box-Benhnken设计和响应面分析法对碳源、氮源和无机盐进行优化,得到少动鞘脂单胞菌产生结冷肢发酵培养基最佳优化组合.实验结果表明,少动鞘脂单胞菌产胶量发酵最适碳源、氮源和无机盐分别为淀粉、豆饼粉和KH2PO4.响应面法得到产胶量(Y)与碳源淀粉(x1)、氮源豆饼粉(x2)和无机盐KH2PO4(x3)的回归方程为:Y=13.87+0.54x1+0.22x2-0.42x3-3.26x12-1.85x22-1.51x32+0.053x1x2+0.067x1x3+0.4x2x3.优化培养基组合为:淀粉浓度为30g/L,豆饼粉浓度为5 g/L,KH2PO4的浓度为0.7g/L,且此组合下少动鞘脂假单胞发酵得到结冷胶可达23.87g/L.  相似文献   

19.
在需氧的工业发酵过程中,培养液中溶氧量的高低对微生物的活动以及发酵产物的积累具有重要作用。谷氨酸发酵中,溶氧水平对谷氨酸蓄积的影响也有人作了一些研究,据Hirose等的报告指出,在适宜的溶氧条件(氧传递速度10.5×10~(-7)克分子氧/毫升/分/1  相似文献   

20.
氧载体对L—天冬酰胺酶发酵过程影响的研究   总被引:5,自引:0,他引:5  
以抗癌药物L天冬酰胺酶生产为应用背景,针对发酵过程中存在严重耗氧问题,研究了氧载体对发酵过程的影响。通过对几种氧载体的筛选,认为正十二烷最适合于该发酵过程。随后以产物L天冬酰胺酶活性、菌体浓度以及溶氧水平为主要指标,考察了氧载体在发酵过程中的作用,实验表明,发酵基质中5%正十二烷的添加量为最佳浓度,这种氧载体的加入,明显地提高了发酵介质中的溶氧水平,改善了供氧条件,增加了菌体浓度,提高了L天冬酰胺酶发酵水平,在优化条件下,可使发酵液最终酶活提高21%左右  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号