首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
蓝藻抗病毒蛋白-N( Cyanovirin-N,CVN)能特异性与病毒表面糖蛋白结合,抑制病毒进入宿主细胞及抑制病毒感染细胞与未感染细胞的融合.通过分子设计及优化,在CVN的N-末端连接了5个氨基酸的柔性多肽(GGGGS),构建了SUMO-L5-CVN融合表达系统.SUMO-L5-CVN在大肠杆菌BL21中呈可溶性表达;通过表达条件优化,以0.5 mmol/L IPTG在20℃诱导24h 是最佳的诱导表达条件;SUMO-L5-CVN表达量占菌体总蛋白的30%;经Ni-NTA亲和层析获得融合蛋白SUMO-L5-CVN,SUMO蛋白酶酶切,以及进一步从Ni-NTA亲和层析获得的目的蛋白L5-CVN蛋白纯度>98%.结果表明,低浓度的L5-CVN与流感病毒表面糖蛋白gp120就有较高的亲和力.  相似文献   

2.
蓝藻抗病毒蛋白-N基因的克隆、表达、纯化及活性鉴定   总被引:1,自引:0,他引:1  
蓝藻抗病毒蛋白-N(Cyanovirin-N,CVN)具有强效抗HIV及其他包膜病毒活性,该蛋白序列特殊,难以重组制备,在大肠杆菌细胞质中形成包涵体。本研究根据大肠杆菌密码子偏好性对CVN原始核苷酸序列进行优化,通过多次PCR合成SUMO-CVN的全长DNA序列,构建pET3c-SUMO-CVN重组表达质粒,重组质粒转化大肠杆菌BL21(DE3),获得表达菌株。通过对诱导剂浓度和诱导时间的优化,发现以0.5mmol/LIPTG在20℃诱导24h可获得最高表达,SDS-PAGE结果显示,SUMO-CVN为可溶性表达,表达量占菌体总蛋白的28%;经特异性的SUMO蛋白酶对融合蛋白进行酶切及两步Ni-NTA凝胶亲和层析可以得到纯度较高的重组CVN蛋白。ELISA结果表明,重组蛋白CVN与gp120蛋白有较高的亲和力。体外抗病毒活性实验表明,重组蛋白CVN在纳摩尔浓度具有很好的抗HSV-1和HIV-1/ⅢB活性;这为开发基于CVN的新型、高效抗病毒药物打下了基础。  相似文献   

3.
[目的]在大肠杆菌表达系统表达UvrB蛋白,优化其表达和纯化的条件,并初步研究其对抗紫外线伤害的功能。[方法]克隆大肠杆菌MG1655菌株UvrB编码序列,采用酶切连接的方法构建表达载体p Waldo-GFP-UvrB,并转入BL21(DE3)表达菌株诱导蛋白质表达,采用Ni-NTA亲和层析以及分子筛层析的方法纯化蛋白质,采用紫外光刺激的方法研究其细胞内功能。[结果]成功构建UvrB表达载体,获得UvrB在BL21(DE3)中重组菌株,其表达条件为22℃,0. 2 mmol/L IPTG诱导20 h,UvrB以可溶蛋白的形式存在。SDS-PAGE结果显示UvrB蛋白质分子量约76 k Da与预期相符;经纯化后UvrB蛋白质得率约为0. 6 mg/L培养基,纯度 85%,为其进一步研究奠定了基础。[结论]研究克隆并构建了大肠杆菌UvrB蛋白的原核表达体系,优化了其纯化方案,得到纯度 85%的可溶UvrB蛋白质,为进一步研究UvrB蛋白质功能奠定了基础。  相似文献   

4.
目的:原核表达重组APOBEC3G蛋白,为其功能及免疫原性研究奠定基础。方法:提取H9细胞全细胞基因组RNA,通过RT-PCR获得目的基因,经纯化、酶切后克隆到原核表达载体pET32a中,转化大肠杆菌BL21(DE3)菌株获得表达工程菌株,并对表达条件和纯化条件进行优化;利用Western Blot分析鉴定目的蛋白。结果:构建了APOBEC3G蛋白的原核表达载体Apo-His-pET32a,并在大肠杆菌中获得高表达,目的蛋白以可溶性蛋白形式存在;经Ni-NTA亲和层析柱一步纯化,获得了高纯度的重组APOBEC3G蛋白,蛋白浓度可达1.2mg/mL;Westem Blot显示获得了目的蛋白。结论:在原核表达系统中表达、纯化了可溶性APOBEC3G蛋白,为进一步对其进行免疫原性和功能研究奠定了基础。  相似文献   

5.
为进一步研究谷氧还蛋白1(Grx1)的生物学功能及作用机制,将已构建的pRSETA-Grx1融合蛋白表达载体在大肠杆菌BL21(DE3)菌株中表达,并优化表达条件,用SDS-PAGE和凝胶影像分析.结果表明,当菌体密度OD600为1.0时开始诱导,加入终浓度0.5mmol/LIPTG,37℃,110±5r/min振荡培养5h,重组蛋白为可溶性,表达量达30%以上.用Ni-NTA树脂亲和层析纯化重组蛋白,获得蛋白质纯度达90%以上;W estern印迹结果表明,该蛋白具有免疫活性;MTT结果显示,终浓度为10mg/LGrx1重组蛋白具有保护细胞抵御500μmol/LH2O2作用(P<0.01).  相似文献   

6.
目的:构建炭疽芽胞杆菌FtsE蛋白的原核表达载体,实现其在原核表达系统中的可溶性表达,并纯化融合蛋白。方法:用PCR方法从炭疽芽胞杆菌A16R株扩增得到ftsE基因片段,酶切后连接到pET28a原核表达载体,构建重组表达质粒pET28a-ftsE,转化大肠杆菌BL21(DE3)菌株,筛选可溶性诱导表达与纯化融合蛋白的条件,以获得高纯度融合蛋白。结果:构建了FtsE蛋白的融合表达载体,并在大肠杆菌中获得高效表达;在20℃下,经0.1 mmol/L IPTG诱导3 h表达的产物主要是可溶性蛋白,经Ni-NTA亲和层析纯化获得了高纯度的FtsE融合蛋白,经Western印迹检测,目的蛋白表达正确。结论:实现了炭疽芽胞杆菌FtsE蛋白原核表达系统的可溶性表达并获得了高纯度融合蛋白,为后续研究奠定了基础。  相似文献   

7.
[目的]克隆黄瓜Cu/Zn-SOD基因,并利用大肠杆菌进行可溶性表达、纯化及活性测定。[方法]采用Trizol法提取黄瓜表皮的总RNA,然后设计特异性引物,通过RT-PCR技术克隆获得黄瓜Cu/Zn-SOD基因。该基因与p GEX2T载体相连后,转化大肠杆菌BL21(DE3),摸索可溶性表达方法。利用GST亲和层析方法纯化目标蛋白,SOD酶活性测定采用邻苯三酚法。[结果]成功地克隆了全长为459 bp的黄瓜Cu/Zn-SOD基因,编码152个氨基酸。Protein Blast分析表明其结构域中分别包含Cu2+、Zn2+结合位点,为典型的Cu/Zn-SOD酶。目标蛋白可溶性表达条件是16℃、0. 1 mmol/L IPTG诱导20 h。SDS-PAGE分析表明GST亲和层析成功地获得重组黄瓜Cu/Zn-SOD。活性测定表明两次纯化的蛋白样品SOD酶活力分别为2 328. 9 U/m L、2 144. 7 U/m L。[结论]从黄瓜表皮中克隆获得Cu/Zn-SOD基因,该基因在大肠杆菌系统中获得可溶性表达,纯化后的重组蛋白具有较高的SOD酶活力。  相似文献   

8.
人工设计合成芋螺毒素基因Mr VIB来构建表达载体p ET32a/Trx-EK-Mr VIB,将其转化大肠杆菌BL21(DE3)plys S进行诱导表达。菌体经超声破碎后利用Ni-NTA琼脂糖柱进行亲和层析纯化融合蛋白,SDS-PAGE电泳分析融合蛋白表达。结果表明融合表达载体p ET32a/Trx-EK-Mr VIB经PCR扩增和测序鉴定具有正确的开放阅读框。SDS-PAGE电泳显示融合蛋白在大肠杆菌中获得高效可溶性表达,经一步亲和层析获得纯度大于90%的融合芋螺毒素达73.6 mg/L。本文成功构建了融合表达载体p ET32a/Trx-EK-Mr VIB,融合芋螺毒素Trx-EK-Mr VIB在大肠杆菌中获得高效可溶性表达。  相似文献   

9.
以在宿主菌株BL21(DE3)中成功表达的重组金黄色葡萄球菌a-溶血素蛋白为研究对象, 分析比较通过凝胶过滤层析(Gel filtration chromatography)和镍柱亲和层析纯化试剂盒(Ni-NTA spin columns)纯化所得到的重组蛋白的蛋白含量和生物特性方面的差异。SDS-PAGE分析检测纯化产物, Bradford法测定蛋白含量, 兔红细胞测定半数溶血效价。结果显示这2种方法得到的纯化产物在53 kD处均呈现单一清晰带, 达电泳级纯度。与此同时, 凝胶过滤对目的蛋白的纯化率为14.04%, 蛋白含量为0.337 mg/mL, 溶血活性为1519 HU/mg; 镍柱亲和层析的纯化率为17.5%, 蛋白含量为0.35 mg/mL, 溶血活性为1463 HU/mg。由此可见, 凝胶过滤得到的纯化产物在蛋白含量和蛋白活性方面丝毫不亚于镍柱亲和层析纯化试剂盒。  相似文献   

10.
[目的]实现藻红蛋白在大肠杆菌中的高效生物合成。[方法]将藻红蛋白生物合成的多个基因构建到单一表达质粒上,质粒转化大肠杆菌后获得表达菌株,优化诱导物、诱导温度和诱导时长等发酵条件,利用亲和层析法分离纯化重组藻红蛋白,分析重组蛋白的光谱学性质与抗氧化活性。[结果]获得了高效生物合成藻红蛋白的大肠杆菌菌株,以乳糖为诱导物时最佳诱导条件为:2.0 g/L的乳糖、25℃下诱导28 h,藻红蛋白表达量达211.6 mg/L;以IPTG为诱导物时最佳诱导条件为:0.4 mmol/L的IPTG,在25℃条件下诱导28 h,藻红蛋白表达量达188.7 mg/L。藻红蛋白色基结合率达92.0%,OD555/OD280为8.0。[结论]成功实现了藻红蛋白在大肠杆菌中的高效生物合成,重组藻红蛋白具有羟基自由基的清除活性。  相似文献   

11.
以在宿主菌株BL21(DE3)中成功表达的重组金黄色葡萄球菌α-溶血素蛋白为研究对象,分析比较通过凝胶过滤层析(Gel filtration chromatography)和镍柱亲和层析纯化试剂盒(Ni-NTA spin columns)纯化所得到的重组蛋白的蛋白含量和生物特性方面的差异.SDS-PAGE分析检测纯化产物,Bradford法测定蛋白含量,兔红细胞测定半数溶血效价,结果显示这2种方法得到的纯化产物在53 kD处均呈现单一清晰带,达电泳级纯度.与此同时,凝胶过滤对目的蛋白的纯化率为14.04%,蛋白含量为0.337 mg/mL,溶血活性为1519 HU/mg;镍柱亲和层析的纯化率为17.5%,蛋白含量为0.35 mg/mL.溶血活性为1463 HU/mg.由此可见,凝胶过滤得到的纯化产物在蛋白含量和蛋白活性方面丝毫不亚于镍柱亲和层析纯化试剂盒.  相似文献   

12.
[目的]获得可用于蛋白晶体筛选的高纯度Bnip3蛋白。[方法]将Bnip3截断基因构建到原核表达载体上并转化大肠杆菌。IPTG诱导表达后通过GST柱纯化目标蛋白。TEV酶切除GST标签后采用凝胶过滤层析纯化Bnip3蛋白。[结果]Bnip3截断基因重组体成功构建并诱导表达目标蛋白。通过GST亲和层析得到可溶性的携带GST标签的Bnip3(1~111)和Bnip3(1~152)蛋白。切除GST标签的Bnip3(1~152)通过凝胶过滤层析得到构象均一的二聚体蛋白。[结论]采用原核表达、亲和层析和凝胶过滤层析可获得构象均一的高纯度二聚体Bnip3蛋白。  相似文献   

13.
目的:构建炭疽芽胞杆菌FtsE蛋白的原核表达载体,实现其在原核表达系统中的可溶性表达,并纯化融合蛋白。方法:用PCR方法从炭疽芽胞杆菌A16R株扩增得到厅sE基因片段,酶切后连接到pET28a原核表达载体,构建重组表达质粒pET28a-ftsE,转化大肠杆菌BL21(DE3)菌株,筛选可溶性诱导表达与纯化融合蛋白的条件,以获得高纯度融合蛋白。结果:构建了FtsE蛋白的融合表达载体,并在大肠杆菌中获得高效表达;在20℃下,经0.1mmol/LIPTG诱导3h表达的产物主要是可溶性蛋白,经Ni-NTA亲和层析纯化获得了高纯度的FtsE融合蛋白,经Western印迹检测,目的蛋白表达正确。结论:实现了炭疽芽胞杆菌FtsE蛋白原核表达系统的可溶性表达并获得了高纯度融合蛋白,为后续研究奠定了基础。  相似文献   

14.
目的:构建Cec4a的原核重组表达体系,通过诱导表达、酶切纯化获得重组蛋白,并检测产物的抗菌活性。方法:基于Cec4a的序列设计引物,克隆Cec4a基因的DNA片段。利用原核表达载体(pCold-SUMO)构建重组原核表达质粒,并将其转化到大肠杆菌C41(DE3)等感受态细胞,使用IPTG进行诱导表达。通过Ni-NTA亲和层析柱纯化,获得含有His-SUMO标签的重组Cec4a融合蛋白。在SUMO蛋白酶酶切后,再次使用Ni-NTA亲和层析纯化,得到目的蛋白,最后用鲍曼不动杆菌(ATCC19606)作为指示菌检测表达产物的抗菌活性。结果:成功构建pCold-SUMO-Cec4a原核表达质粒,测序分析其序列与预期结果一致。Cec4a融合蛋白表达量为42.8mg/L,纯化后的Cec4a重组蛋白对鲍曼不动杆菌的MIC为4 μg/mL。结论:通过原核表达,并经Ni-NTA亲和层析纯化,获得了具有抗菌活性的重组蛋白Cec4a,为研究Cec4a的生物活性、抗菌机制及应用奠定了基础。  相似文献   

15.
拟南芥Antiquitin基因的原核表达和生物信息学分析   总被引:1,自引:0,他引:1  
将拟南芥Antiquitin基因重组到原核表达载体pMAL-c4x和pET41中,在T7 Express菌株中诱导表达,经Amylose和Ni-NTA亲和层析柱纯化获得重组蛋白.SDS-PAGE结果表明:MBP和His-tag融合的拟南芥Antiquitin主要以可溶性形式存在,表达量分别占细胞总蛋白的25.1%和39.4%.以乙醛和NAD~+为底物测定融合蛋白活性,结果显示:His-tag融合的Antiquitin具有醛脱氢酶活性,比活力为8.98 U/mg,乙醛的表观K_m和V_(max)值分别为0.98 mmol/L和12.75 U/mg.序列比对和结构预测结果显示:拟南芥Antiquitin包含该家族蛋白典型的催化结构域、NADH结合结构域和寡聚化结构域,活性中心残基为Gly238、Gly291、Glu391、Phe393.  相似文献   

16.
目的:构建蓖麻毒素(RIC)、相思子毒素(ABR)A链突变体的嵌合体蛋白,实现嵌合体蛋白的可溶性表达、纯化及抗原性分析。方法:采用柔性linker连接RIC A链突变体(mRICAD75AV76MY80A)和ABR A链突变体(mABRAE164AR167L),构建嵌合体基因mRICA/mABRA,将该嵌合体基因亚克隆至原核载体pQE80L构建表达质粒pQE80L-mRICA/mABRA,再转化至大肠杆菌M15获得表达工程菌株M15/pQE80L-mRICA/mABRA,工程菌在18℃经0.1 mmol/L的IPTG诱导14 h,表达的嵌合体蛋白经Ni-NTA亲和层析柱纯化,通过ELISA和Western印迹检测嵌合体蛋白的抗原性。结果:所获得的mRICA/mABRA嵌合体基因经一致性比对分析,与预计嵌合基因的序列一致性为100%,其开放读框全长1572 bp,编码524个氨基酸残基;重组表达质粒pQE80L-mRICA/mABRA经PCR及双酶切鉴定证明构建正确,嵌合体蛋白相对分子质量约为62×103,与预测相符,可溶性的嵌合体蛋白经Ni-NTA亲和层析柱纯化,纯度可达99%;间接ELISA和Western印迹结果表明,嵌合体蛋白能同时与抗RIC多克隆抗体和抗ABR多克隆抗体发生特异的抗原抗体反应。结论:得到的mRICA/mABRA嵌合体蛋白具有良好的抗原性,为研制新型RIC和ABR双价疫苗奠定了重要基础。  相似文献   

17.
目的:原核表达系统表达人乳头瘤病毒18型(HPV18)L1蛋白,建立包涵体和可溶性表达的L1蛋白的纯化方法。方法:构建重组表达质粒p GEX-4T-1-HPV18 L1,在大肠杆菌BL21中以包涵体和可溶性方式表达HPV18 L1蛋白。通过超声波破碎菌体、洗涤包涵体、碱变性、透析复性和谷胱甘肽(GST)琼脂糖凝胶4B亲和层析纯化包涵体蛋白;在菌体中加入三磷酸腺苷(ATP)和3.5 mol/L尿素孵育后,GST 4B亲和层析纯化可溶性蛋白,凝血酶酶切。SDS-PAGE和Western印迹鉴定表达和纯化产物。结果:SDS-PAGE结果表明,HPV18 L1蛋白以包涵体和可溶性方式在大肠杆菌BL21内高效表达,均产生相对分子质量约为86 000的HPV18 L1-GST融合蛋白。Western印迹结果显示,包涵体纯化后获得的融合蛋白降解条带较多;而可溶性蛋白纯化后获得的融合蛋白未降解,凝血酶酶切后得到HPV18 L1蛋白,可与HPV18 L1蛋白单克隆抗体结合。结论:采用原核系统表达了HPV18 L1-GST融合蛋白,分别建立了包涵体和可溶性蛋白的纯化方法,获得HPV18 L1蛋白,为其进一步应用奠定了基础。  相似文献   

18.
目的:克隆人ERP57蛋白进行原核表达和纯化。方法:采用巢式RT-PCR从人非小细胞肺腺癌A549细胞总RNA中克隆人ERP57 cDNA,构建ERP57原核表达质粒(pET-28a/ERP57)并转化E.coli的BL21菌株。IPTG诱导蛋白表达,并在变性条件下经Ni-NTA树脂亲和层析纯化。分别用SDS-PAGE和Western blotting鉴定。结果:成功获得大小为1518bp的人ERP57基因片段,转化菌诱导性表达61kDa的人ERP57蛋白,该蛋白可经Ni-NTA树脂亲和层析高度纯化。结论:成功获得纯化的重组人ERP57蛋白,为后续ERP57蛋白功能研究奠定了基础。  相似文献   

19.
[目的]构建Ⅳ型抗冻蛋白(AFPⅣ)大肠杆菌表达系统,纯化诱导表达的可溶性AFPⅣ,并进行质谱鉴定。[方法]构建pET22b-His6-AFPⅣ重组质粒,转化大肠杆菌BL21(DE3),并优化IPTG诱导条件,通过亲和层析进行分离纯化,收集样品并冻干保存,对Ⅳ型抗冻蛋白样品进行质谱(MALDI-TOF-TOF)鉴定。[结果]构建了pET22b-His6-AFPⅣ重组质粒,IPTG诱导表达产生可溶性AFPⅣ,且最佳诱导浓度为0.2 mmol/L,诱导时间4h,纯化后AFPⅣ浓度为136μg/ml。[结论]成功构建了AFPⅣ原核表达系统,优化了IPTG诱导条件,重组AFPⅣ得到纯化,并获得冻干样品5 mg,经质谱鉴定确认为AFPⅣ。  相似文献   

20.
重组人钙网蛋白的克隆与原核表达   总被引:1,自引:0,他引:1  
[摘要]目的: 克隆人钙网蛋白(calreticulin,CRT)并在E.coli中原核表达和纯化。方法:采用RT-PCR 法从人非小细胞肺腺癌A549细胞总RNA中克隆人钙网蛋白cDNA,构建CRT原核表达质粒(pET-15b/CRT)并转化E.coli 的Rossetta菌株。IPTG诱导后,表达蛋白在变性条件下经Ni-NTA 树脂亲和层析纯化,然后透析复性。分别用SDS-PAGE和Western blotting法鉴定CRT表达和纯化状态。结果:从A549细胞总RNA中成功获得人CRT cDNA克隆,重组质粒pET-15b/CRT构建正确。转化pET-15b/CRT的E.coli Rossetta诱导性表达重组人CRT蛋白,该蛋白可经Ni-NTA树脂亲和层析高度纯化。结论:成功建立了CRT原核表达和纯化的实验方法,该方法为后续的CRT蛋白功能研究奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号