首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
微生物与植物之间存在错综复杂的双向交流和串扰,植物与病原微生物互作直接影响寄主植物的生存状况,而植物和益生微生物互作则有利于宿主的生长和健康,共生微生物也会从中受益。不管是病原微生物还是有益微生物进入植物体内,植物miRNA都会迅速做出响应,同时微生物也可以产生miRNA样RNA(miRNA-likeRNA,milRNA)影响植物健康,可见miRNA(或milRNA)是植物与微生物互作过程中迅速响应的重要媒介分子,其内在机制研究近年来取得了许多进展。文中概述了植物-病原微生物、植物-益生微生物互作中miRNA的调控作用,重点阐述了植物miRNA在植物-病原微生物互作过程中对寄主植物抗病性的调控作用和植物-益生微生物互作过程中对宿主植物生长发育及代谢的调控,以及真菌milRNA对寄主植物的跨界调控作用。  相似文献   

2.
吲哚作为一种典型的氮杂环芳烃化合物,在自然界中广泛存在。近年来,越来越多的研究表明吲哚具有一定的生物活性,是一种新型种间及跨界的信号分子。研究发现,吲哚不仅可以调节微生物的毒性、耐药性、生物膜形成以及群感效应等生理生化行为,调控植物生长发育和防御系统的形成过程,还能够影响动物的肠道炎症、细胞氧化压力及荷尔蒙分泌等生理健康。因此吲哚在微生物代谢、动物健康和植物生长等多个方面扮演了重要角色,具有重要的生物学及生态学双重意义。文中综述了吲哚从生物代谢到信号传递的研究历史,及其在微生物种内或种间以及微生物-动植物之间跨界的信号传导与调控作用的研究进展,旨在为揭示复杂环境中吲哚生物代谢及信号调控的生物学意义与生态学机制提供重要的理论指导。  相似文献   

3.
慕春龙  朱伟云 《微生物学报》2013,53(10):1018-1024
摘要:肠道内环境是宿主和肠道微生物菌群互作的结果,肠道菌群一方面通过抗原物质调节肠道组织的免疫稳定,另一方面,肠道菌群参与糖、脂、蛋白质代谢,产生的代谢产物能够调控细菌营养代谢、群体结构和肠道组织的营养吸收等。microRNA是宿主细胞内调控基因表达的重要因子,肠道微生物菌群不仅调控宿主mRNA的转录,同时也影响某些基因的转录后修饰。研究表明,肠道菌群通过与宿主肠道组织互作,调节肠上皮组织内某些参与炎症应答和屏障功能的microRNA 的表达。本文介绍了肠道微生物与宿主互作的基本内容,对microRNA在肠道微生物与宿主互作和肠道健康中的调节进行综述。  相似文献   

4.
许佳  侯宁  韩凝  边红武  朱睦元 《遗传》2016,38(5):418-426
植物激素是调控植物生长发育的信号分子。近年来的研究发现,小分子RNA作为基因表达调控网络的组分,参与植物激素信号途径,在植物生长发育和胁迫反应方面发挥重要作用。本文综述了miRNA和次级siRNA(Short interfering RNAs)介导的基因调控与植物激素信号通路相互作用的研究进展,主要包括生长素、赤霉素、油菜素内酯和脱落酸途径涉及的miRNA及其功能,并对不同发育过程中miRNA参与的不同激素信号通路的交叉和互作进行了讨论。  相似文献   

5.
生长素是调控果实发育成熟的重要植物激素之一。在生长素介导的信号转导机制中,ARF和Aux/IAA扮演重要的角色。ARF与生长素响应基因启动子区域内的生长素响应元件结合,促进或抑制基因的表达。Aux/IAA通过结构域Ⅲ和Ⅳ与ARF特异性结合,从而调节生长素早期应答基因的转录功能。研究表明,ARF因子参与调控果实形态发育、硬度和糖分积累等,Aux/IAA因子在授粉、果实形态发育等方面作用明显。此外ARF和Aux/IAA之间相互或与自身发生的互作以调控下游基因表达是植物体响应生长素信号的主要机制。介绍了ARF和Aux/IAA的结构特征、在不同植物中的分布状况以及与果实发育成熟的关系,同时讨论了ARF和Aux/IAA互作的研究现状,旨为进一步阐明生长素调控果实发育成熟的机制提供参考。  相似文献   

6.
植物根系代谢物是植物-微生物互作的桥梁纽带,作为信号物质和微生物营养源调控着微生物的群落结构和多样性,而根区微生物区系的改变则反作用于植物的生长、发育和抗性。本文聚焦植物根系代谢物介导的植物-微生物互作,梳理了植物-微生物互作研究中次级代谢物的种类、作用及其检测手段;探讨了植物通过调节自身代谢物以适应品种进化及繁衍后代过程中发挥的功能作用;阐述了逆境胁迫下植物利用根系代谢物招募特异微生物(解磷、溶磷)或者有益微生物促进自身生长以缓解胁迫压力的机制;分析了根系代谢物作为信号物质诱导植物抗病的方式"求救假说",为可持续农业发展提供思路和理论依据。  相似文献   

7.
群体感应(Quorum sensing,QS)是一种细菌细胞与细胞间的通讯系统,即细菌通过分泌扩散性小分子信号感知细菌群体的密度,从而引起一组特定基因在转录水平协调表达。大量研究已表明,群体感应系统控制细菌多种生理行为和过程,以及与真核宿主(寄主)的互作。参与群体感应调控的信号分子多种多样,QS系统所调控的功能也具有多样性,甚至菌株专化性。通过聚焦同一细菌中由多个QS系统组成的信号网络,综合评述了不同QS系统之间如何相互作用全局调控基因表达,以及QS系统如何通过与其它全局调控系统整合精细调节细菌的社会行为以及环境适应性及其应用前景。  相似文献   

8.
寄主植物与昆虫在长期协同进化中形成了复杂的防御和反防御机制。本文系统综述了寄主植物与刺吸式昆虫互作防御的过程与机制。刺吸式昆虫利用特化的口针,吸食寄主植物组织汁液时,植物通过细胞膜表面或细胞内受体感知昆虫取食信号,并经过丝裂原活化蛋白激酶(mitogen-activated protein kinase, MAPK)信号通路、植物激素信号通路、钙离子信号通路、转录因子调控、Rop/Rac GTPase信号通路、活性氧(reactive oxygen species, ROS)通路等信号转导通路激活植物免疫。为了阻止害虫进一步取食,寄主植物形成了增强的物理屏障,并诱导产生次生代谢物、抗营养酶类、抗消化酶类和胼胝质沉积及释放挥发物等多种防御机制。在与寄主植物“博弈”的过程中,刺吸式昆虫往往会利用其取食时分泌的唾液成分,靶向植物靶标蛋白,通过破坏宿主植物的物理屏障,或抑制宿主植物的抗性信号转导,或抑制宿主次生代谢物的毒害作用,或通过跨界RNA和水平基因转移等方式抑制植物的防御反应,从而达到继续取食为害的目的。此外,基于植物与病原菌互作模式,结合寄主植物与刺吸式昆虫互作研究进展,总结了寄主植物...  相似文献   

9.
刘雅琼  侯岁稳 《植物学报》2019,54(2):168-184
蛋白磷酸化修饰是植物细胞信号调控的普遍机制。植物-病原微生物互作过程中, 关键调控蛋白的磷酸化状态影响免疫信号的激活。多种病原微生物通过干扰宿主蛋白的磷酸化状态攻击免疫系统, 以提高致病性。该文对植物免疫调控过程中关键元件的磷酸化修饰及其在免疫信号中的调控作用进行了综述。研究植物-病原菌互作过程中关键蛋白的磷酸化修饰, 有助于深入探讨植物-病原微生物互作的分子机理。该文将为寻找广谱抗病的新途径提供理论依据。  相似文献   

10.
circular RNA(circRNA)是一类具有闭合环状结构的内源性非编码RNA,广泛存在于多种真核生物中,具有结构稳定、序列保守、表达特异性等特征。研究表明circRNAs可作为海绵(sponge)吸附microRNA(miRNA)并参与其表达调控过程,也可通过与蛋白互作调控基因表达等生物过程;发现circRNAs不仅参与植物激素信号转导等生理过程,而且还能在植物响应逆境胁迫中起到重要作用。该文主要对近年来国内外有关circRNAs的类型、形成机制、功能及其在植物生长发育过程中的研究进展进行了综述,并讨论了circRNAs的研究意义及存在的问题,为进一步研究circRNAs在植物中的作用机制及其基因调控网络提供参考。  相似文献   

11.
光敏色素互作因子(PIFs)属于碱性螺旋-环-螺旋(bHLH)转录因子家族,能在细胞核内与活性形式的光敏色素(PHYS)相互作用并被降解。PIFs参与多种信号转导途径,调控植物的生长发育,如抑制种子萌发、促进幼苗的暗形态建成和植物开花等。作为胞内信号调控的重要组分,PIFs广泛参与植物外部环境因素(如高温、光),以及内部激素(如生长素、细胞分裂素和油菜素内酯等)介导的信号网络。当光信号和温度变化时,PIFs会通过影响生长素合成、运输和信号转导,参与生长素路径,调控植物生长发育。论文就PIFs参与生长素调控的植物生长发育研究进展进行综述,并对未来研究方向加以展望。  相似文献   

12.
一氧化氮(NO)作为一种重要的信号分子,不仅参与植物的种子休眠和萌发以及根的形态建成等生长发育过程,还参与调节植物细胞的气孔运动以及植物抗逆应答反应。该文结合最新研究成果,总结了植物NO信号调控机理的研究进展,主要包括NO合成途径、信号转导途径及其与其它信号分子之间的交叉反应和对植物抗逆的调控作用等。  相似文献   

13.
长期的研究表明,生长素在调节植物生长发育的各种生理活动中起关键作用,但对它如何调控这些生理活动却缺乏系统和深入的了解。最近,细胞核内生长素信号途径的发现为揭示其作用机制带来了曙光。乙烯参与果实成熟及植物对逆境的反应等生理活动,其信号途径也已得到部分阐明。越来越多的证据表明,乙烯的作用与生长素对植物生长发育的调控之间有密切的联系。该文概述了生长素与乙烯信号途径的研究进展及其相互关系,讨论了生长素在植物三重反应中的作用;并对生长素与乙烯相互关系研究中存在的问题及研究前景进行了探讨。  相似文献   

14.
胡一兵  刘炜  徐国华 《植物学报》2011,46(3):338-349
长期的研究表明, 生长素在调节植物生长发育的各种生理活动中起关键作用, 但对它如何调控这些生理活动却缺乏系统和深入的了解。最近, 细胞核内生长素信号途径的发现为揭示其作用机制带来了曙光。乙烯参与果实成熟及植物对逆境的反应等生理活动, 其信号途径也已得到部分阐明。越来越多的证据表明, 乙烯的作用与生长素对植物生长发育的调控之间有密切的联系。该文概述了生长素与乙烯信号途径的研究进展及其相互关系, 讨论了生长素在植物三重反应中的作用; 并对生长素与乙烯相互关系研究中存在的问题及研究前景进行了探讨。  相似文献   

15.
活性氧(reactive oxygen species,ROS)是植物体代谢所产生的小分子化合物,既是生长发育和防御途径的关键调节因子,又是需氧代谢的有毒副产物。植物细胞的生理过程受一个被活性氧调节的氧化还原网状途径的调控,本文从植物体内ROS产生的部位与时空特异性、ROS信号与NO和Ca2+波信号的互作等方面综述了ROS信号对植物抗性的调控作用研究进展。  相似文献   

16.
植物各个器官表面及内部定殖着高度多样化的微生物群落,这些微生物与植物长期共进化,作为宿主植物的“共生功能体”(holobiont)在植物生长发育、养分吸收、病害抵御和环境胁迫适应性等方面发挥了重要作用。得益于近10年来多组学技术的发展和应用,有关植物微生物群落的多样性、组成和功能特征、群落构建的驱动因素和植物–微生物互作机制等方面研究取得了一系列重要进展。然而,与土壤微生物组相比,目前对植物微生物组的认识及其应用尚且不足。本文系统总结了植物微生物组的组成特征,植物微生物在调节植物生长发育、促进养分吸收、提高病害抵御能力及环境胁迫适应性等方面的功能及作用机制,从宿主选择、环境因子以及生物互作3个方面总结了驱动植物微生物群落构建的因素,并着重阐述了植物–微生物互作如何塑造植物微生物群落以及如何调节对植物的有益功能。此外,我们对未来植物微生物组研究和应用面临的挑战进行了展望,如核心微生物组挖掘和合成群落构建,植物–微生物互作的分子调控机制,植物微生物群落水平上的互作机制等。深入理解植物微生物群落特征、生态功能以及构建过程对于精准调控植物微生物组以提高植物适应性和生产力以及维持生态系统健康具有...  相似文献   

17.
依靠信号分子的交流方式广泛存在于原核生物和真核生物之间,在此交流过程中,相互联络的生物之间产生并释放小分子化合物,从而建立原核生物和真核生物交流的通道,影响彼此基因的表达,这个过程即为跨界信号交流.跨界信号交流广泛发生在病原菌或益生菌与其宿主之间,其产生的生理效应主要取决于特异信号在生物个体中所激发的信号通路.揭示跨界信号调控的信号分子或语言,并阐明其作用机理具有很大的挑战性.已有研究表明,细菌和植物能产生多种多样的信号分子,解析这些信号分子并探讨其作用机理逐渐成为该领域研究热点,其研究成果将有助于发掘新的植物抗病策略,例如,通过干扰跨界信号调控途径而不是直接杀死病原细菌达到抗病的效果;而益生菌中的信号分子的作用机理的研究,也利于农业上的应用.这篇综述总结了植物与细菌之间跨界信号调控的最新研究进展,以及植物相关细菌群体感应系统的LuxR类的转录调控因子在跨界信号调控过程中的作用机制.  相似文献   

18.
兰科植物内生细菌物种多样性及其促生机理研究进展   总被引:3,自引:0,他引:3  
内生细菌影响兰科植物菌根形成和共生关系的稳定性,在兰科植物的生活史中起着重要作用。内生细菌通过分泌植物激素、采用光合作用、生物固氮或促进矿质营养的循环以及产生铁载体、合成其他活性物质等途径来促进兰科植物生长发育。综述了兰科植物内生细菌物种多样性的研究方法及其对兰科植物的促生机理,基于兰科植物与共生微生物的密切关系,认为内生细菌间、内生细菌与兰科植物菌根真菌间的互作是揭示兰科植物与内生细菌互作机理的重要方向。  相似文献   

19.
自然界植物与环境微生物之间的相互关系除了胁迫以外,同时也有互利互惠的共生互作关系。无论是能对植物造成胁迫伤害的植物-病原菌互作体系,还是能够为植物提供营养的植物-微生物共生互作体系,其细胞信号转导通路中Ca~(2+)信号的分子调控对两种互作体系都有着非常重要的作用。该文对近年来国内外有关植物-病原菌和植物-微生物互作体系在细胞信号转导过程中Ca~(2+)信号上游的分子调控机制分别进行了综述。  相似文献   

20.
细菌利用群体感应(Quorum sensing,QS)系统进行细胞间的通讯联系,进而参与调控细菌多种生物学功能。近年的研究表明,细菌QS信号分子也可以被细菌的真核植物宿主感应,从而介导植物-细菌的跨界信息交流。本文综述细菌QS及其介导的植物-细菌信息交流的最新研究进展,以期为通过操纵细菌QS达到提高植物病害防治效果提供理论基础和指导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号