首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
目的:利用毕赤嗜甲醇酵母表达的重组黑曲霉菊粉内切酶,从菊苣菊粉中制取低聚果糖。方法:用重组黑曲霉菊粉内切酶酶解水提菊粉,用薄层色谱、离子色谱分析酶解产物,研究酶解条件,分析产物组成。结果与结论:菊粉浓度为20~160g/L、酶浓度为12U/g菊粉时,低聚果糖的最大产率逐渐升高然后下降;在接近最大溶解度200g/L时,菊粉寡糖最大产率为62.0%,最大产率与酶的用量无关,但提高酶的浓度可以缩短达到最大产率的时间。pH5.5、50℃、菊粉浓度为40g/L、酶用量为12U/g菊粉时,可达到最大产率64.6%;酶解的产物主要为GF2到GF10的菊粉寡糖。  相似文献   

2.
【目的】低聚果糖是新型的食品和保健品原料,具有广阔的市场需求。以菊粉酶水解菊粉制备低聚果糖的酶法工艺是先进的绿色制造。本研究旨在获得高产的菊粉酶菌株及以菊粉为原料酶法制备低聚果糖的优化工艺。【方法】采用基因工程手段克隆马克斯克鲁维酵母菌(Kluyveromyces marxianus)的菊粉酶基因,实现其在毕赤酵母中的高效表达;测定菊粉酶在不同p H、温度、金属离子和底物浓度等条件下的酶活变化趋势,获得最佳的反应参数;通过高效液相色谱法检测水解产物,获得不同酶量水解产物各组分分布。【结果】菊粉酶工程菌株在10 L发酵罐中的产菊粉酶活达1 570 U/m L、蛋白质含量为2.75 g/L发酵液;菊粉酶最适反应参数为:在体积为1 L的反应体系中,p H 5.0、反应温度50°C、含0.2 mmol/L Mg2+以及菊粉浓度为8%。在该条件下,酶量为10 U时菊粉被完全水解。水解产物中单糖和二糖含量仅为9.25%,而低聚果糖(C3-C8)含量为90.75%,且C3-C5低聚果糖含量高达72.92%。【结论】克隆了K.marxianus菊粉酶基因并实现了高效表达,获得了水解菊粉制备低聚果糖的最佳工艺条件。为菊粉酶的大量生产及低聚果糖的酶法制备奠定了良好的基础。  相似文献   

3.
采用透明圈法筛选得到了产菊粉酶的多株菌株,并得到了1株产内切型菊粉酶较高的隐球酵母属(Cryptococcus)菌株L1,以L1作为出发菌株经Co^60诱变后,得到1株产内切型菊粉酶最好菌株C10,其诱变后低聚果糖得率比诱变前提高了52.6%,酶活力提高了51.9%。  相似文献   

4.
为获得高产菊粉酶的黑曲霉菌株,以Aspergillus niger YH-1为出发菌株,经过亚硝基胍(NTG)诱变,以高温高菊芋粉相结合的方式进行梯度驯化,选育出一株产菊粉酶菌株YH-3,并运用响应面实验方法对该菌株的培养基进行优化。确定了最佳培养基组成:菊芋粉25.2 g/L、豆饼粉40 g/L、蔗糖酯4.9 g/L、NaCl 5.5 g/L。发现内切菊粉酶活力(I)由60.9 U/mL提高到165.0 U/mL,比出发菌株提高了1.7倍。研究证明蔗糖酯对于黑曲霉YH-3发酵产菊粉酶是一种有效的促进剂。  相似文献   

5.
[目的] 基于信号肽和信号肽酶在分泌系统中的重要作用,探索短小芽孢杆菌来源中性β-1,4-内切木聚糖酶在Bacillus subtilis中的重组分泌表达与优化。[方法] 首先,从短小芽孢杆菌基因组DNA中扩增β-1,4-内切木聚糖酶全长基因,连接到pWB980载体P43启动子下游,转化B.subtilis WB800构建重组菌NZ-X。之后,构建信号肽筛选载体,对23个从B.subtilis 168基因组DNA中扩增得到的信号肽进行筛选。最后,以B.subtilis WB800的xynA基因为整合位点,分别整合过表达SipS和SipT两个主要信号肽酶,考察其对融合不同信号肽异源蛋白分泌的影响。[结果] 重组菌NZ-X成功实现β-1,4-内切木聚糖酶的分泌表达,摇瓶发酵上清液酶活为5.33 U/mL,信号肽筛选结果发现YlaE、YfhK、EglS、YqxI、YpjP信号肽与β-1,4-内切木聚糖酶契合度较高,对应酶活依次为7.15、6.69、6.36、6.32、6.18 U/mL,其中SipS信号肽酶对融合YfhK信号肽的β-1,4-内切木聚糖酶的分泌促进作用最大,摇瓶发酵上清液酶活提高到10.64 U/mL,为NZ-X的1.99倍。[结论] 信号肽优化与信号肽酶过表达联用可有效提高B.subtilis中异源蛋白的分泌表达量。  相似文献   

6.
刘军彤  吴敬  陈晟 《生物工程学报》2016,32(8):1070-1080
为了提高分散泛菌Pantoea dispersa UQ68J来源的蔗糖异构酶产量,研究了不同信号肽及发酵条件对蔗糖异构酶在大肠杆菌中重组表达的影响。将携带天然信号肽的蔗糖异构酶基因优化后,转入大肠杆菌Escherichia coli BL21(DE3)构建重组表达菌株——ORI菌株,摇瓶发酵总酶活和胞外酶活分别为85 U/m L、65 U/m L。从天然信号肽开始第22位氨基酸作为成熟蛋白的起始,连接Pel B或Omp A信号肽构建P22和O22菌株,其中P22菌株发酵总酶活提高至138 U/m L,是ORI菌株总酶活的1.6倍;而O22菌株发酵总酶活和ORI菌株无明显差别。采用3.0 g/L的乳糖诱导,P22菌株的蔗糖异构酶总酶活提高至168 U/m L。在3 L发酵罐中,研究甘氨酸浓度和诱导时间对蔗糖异构酶分泌的影响,当补加0.5%甘氨酸,DCW为18 g/L(OD_(600)=30)开始诱导,P22菌株的蔗糖异构酶胞外酶活最高达1 981 U/m L,同时蔗糖异构酶总酶活达到2 640 U/m L,是已报道大肠杆菌重组表达蔗糖异构酶的最高水平。  相似文献   

7.
微生物菊粉酶的研究进展   总被引:2,自引:0,他引:2  
肖春玲 《微生物学杂志》1999,19(4):38-39,46
菊粉酶(Inulinas.EC3.2.1.7)是B-2.1-D-果聚糖酶,可从果糖的非应原端逐个切下单个果糖(外切酶活性),或在分子内部随机切断某个p-2.1糖着键(内切酶活性)[1]。菊粉酶主要来源于菊科植物和部分微生物,微生物菊粉酶主要来自霉菌、酵母菌和细菌。菊粉酶可水解天然果聚精一菊粉(Inulin),利用菊粉酶一步水解菊粉制备高果糖浆具有工艺简单、原料价格低廉、转化率高、副产物少,不增加环境污染等优点,因而具有很大的开发应用潜力。菊粉是果糖的多聚物,富含于菊芋(He-lianthustuberosus)等多种菊科植物中,菊芋块茎主要成分…  相似文献   

8.
从马克斯克鲁维酵母(Kluyveromycesmarxianus)DSM5418中克隆出外切菊粉酶(INU)的成熟肽编码区域,在毕赤酵母(Pichiapastoris)GS115中实现了高效分泌表达,体积酶活力达到15.27U/mL,进一步对重组酶进行了纯化与表征。经过(NH4)2SO4沉淀、透析和分子筛过滤后,得到了纯度大于95%的纯化重组酶,SDS-PAGE分析发现INU的表观相对分子质量为9.0×10^4,大于理论预测值6.0×10^4。纯化酶液的表征结果表明,INU的最适温度和最适pH分别为55℃和5.0,在此条件下INU对菊粉的K。值和比酶活分别为1.90mmol/L和433.86U/mg,对蔗糖的K。值和比酶活分别为27.81mmol/L和1249.49U/mg,I/S值为0.34;HPLC分析表明,INU酶解菊粉的产物由果糖和葡萄糖组成;金属离子Mn2+、Fe3|、K|和Co2+对酶有促进作用,而Zn2+、Cu2+、Ni2+、SDS和EDTA对酶活力有不同程度的抑制作用。  相似文献   

9.
从徐州市沛县河口镇秦庄村牛蒡种植基地取得的土壤样本中,筛选出产菊粉酶的菌株,对从土壤中分离到的40株产菊粉酶的各类微生物进行酶活的测定。通过透明圈法初筛及摇瓶复筛,获得产菊粉酶能力较高的霉菌菌株3株,为C122803、D081506和D081513,这3株菌株的酶活分别达到:C122803:1.411 U/ml;D081506 :1.895U/ml;D081513 :1.792U/ml。其中D081506的酶活最高,为1.895U/ml;对D081506号黑曲霉产菊粉酶的发酵条件进行了研究,确定了优化的发酵条件为:牛蒡汁2%,酵母膏1.6%,(NH4)2SO41.6%,NaCl 0.5%,K2HPO4 0.5%,pH 5.0,在27℃、140 r/min条件下,摇瓶培养24h, D081506酶活力为2.958U/ml,酶活力提高56.09%。  相似文献   

10.
毛壳霉内切菊粉酶的纯化与性质   总被引:4,自引:0,他引:4  
毛壳霉 (Chaetomiumsp .)C34发酵液经硫酸铵分级沉淀、DEAE 纤维素 11离子交换层析、Q SepharoseFastFlow离子交换层析、SephacrylS 2 0 0凝胶过滤、PhenolSepharoseTM HP疏水层析 ,得到电泳纯的内切菊粉酶组分 ,纯化倍数为 30 8倍 ,活力回收率为 7 7%。用SDS PAGE测得该酶亚基的分子量为 6 6kD。菊粉酶的最适pH为 6 0 ,最适温度为 5 0~ 5 5℃。菊粉酶在 5 0℃以下 ,pH5 0~ 8 0时较稳定。Cu2 完全抑制酶的活性 ,Mn2 、Zn2 、Fe2 、EDTA以及NBS(N bromosuccinimide ,N 溴代丁二酰亚胺 )对该酶有很强的抑制作用。该酶对菊粉有较强底物专一性 ,产物主要为低聚果糖 ,也可作用于蔗糖 ,I S值为 2 0。以菊粉为底物时 ,Km 为 0 199mmol L ,Vmax为 115 μmol (mg·min)。  相似文献   

11.
为了实现果聚糖蔗糖酶在解淀粉芽孢杆菌Bacillus amyloliquefaciens 018(简称G3)中的高效表达,选择来源于不同芽孢杆菌的4个果聚糖蔗糖酶基因lsLich、lsAmy、lsSub和lsMega进行异源表达,并将课题组前期确定的对碱性蛋白酶酶活提升较高的5种信号肽进行筛选和组合。其中来源于地衣芽孢杆菌Bacillus licheniformis RN-01的lsLich在重组菌株G3/pLY-2-lsLich中的酶活力最高,酶活力为62.73 U/mL。以LS-Lich作为目的蛋白筛选单信号肽和双信号肽,其中信号肽SPDacB和SPAmyE组合的重组菌株G3/pLY-2-SDA-ls酶活最高,胞外酶活达到125.76 U/mL,较重组菌G3/pLY-2-SD-ls和G3/pLY-2-SA-ls分别提高了31.3%和39.2%,较原始菌株提高了100.49%。该结果表明双信号肽较单信号肽有助于提高LS-Lich的分泌量,同时信号肽组合顺序不同也产生一定的差异。  相似文献   

12.
菊粉富含于菊芋、菊苣等多种菊科植物中,是一种来源丰富的可再生资源。菊粉是一种由D 呋喃果糖经β-2, 1-糖苷键连接,还原端经α-1, 2-糖苷键连接1个葡萄糖残基构成的果聚糖。菊粉能被菊粉酶水解,生产果糖、高果糖浆、菊粉寡糖,可通过微生物发酵生产燃料酒精等产品,在食品、生物能源、医疗保健等方面都有重要应用,受到广泛关注。介绍外切菊粉酶的分类、来源、结构和催化机理,重点总结近10年微生物来源外切菊粉酶的重组表达和酶学性质情况,简述外切菊粉酶在食品、能源等方面的应用,展望外切菊粉酶的研究热点及方向。  相似文献   

13.
王禹焜  张斯童  陈光 《生物工程学报》2020,36(10):2193-2205
内切葡聚糖酶 (EG) 是纤维素酶的重要组分,在纤维素降解酶系中发辉重要作用。由于天然微生物来源的内切葡聚糖酶产量低,极大地制约了其生产和应用,所以对内切葡聚糖酶进行高效异源表达是解决这一问题的有效途径。为了获得高效内切葡聚糖酶酿酒酵母工程菌,本研究从纤维梭菌中克隆了内切葡聚糖酶 (EG) 基因,全长1 996 bp,编码440个氨基酸,并与来源于酿酒酵母的PGK启动子序列、来源于pPIC9K质粒的α-信号肽序列以及来源于pSH65质粒的CYC1终止子序列通过重叠延伸PCR法构建完整表达盒 (PαEGC),通过整合rDNA的方法构建内切葡聚糖酶酿酒酵母的表达载体,在酿酒酵母中进行内切葡聚糖酶的随机多拷贝表达。利用微滴数字PCR鉴定内切葡聚糖酶拷贝数,并探索拷贝数与蛋白表达量之间的关系。通过rDNA整合法获得了拷贝数为1、3、4、7、9、11、15、16、19、21、22、23的内切葡聚糖酶酿酒酵母工程菌,结果表明当拷贝数为15时,酶活性最高,为351 U/mL。本研究成功构建了内切葡聚糖酶酿酒酵母工程菌,为其他工业酶异源高效表达提供参考和借鉴。  相似文献   

14.
为进一步提高菊粉酶在生物技术领域的应用,研究了来源于马克斯克鲁维酵母Kluyveromyces marxianus YX01的菊粉酶性质。通过在毕赤酵母GS115宿主细胞中异源表达该菊粉酶基因(inu),获得了一种外切型菊粉酶,经聚丙烯酰胺凝胶电泳(SDS-PAGE)验证其分子量为86.0 k Da。进一步在该菊粉酶上增加6个His标签,采用聚乙二醇(PEG)20 000透析浓缩和Ni-NTA Agarose静态亲和吸附作用的方法,完成菊粉酶的分离纯化,纯化倍数和酶回收率分别为3.6和33.1%。比较发现粗酶液与纯酶的酶学性质相似,且菊粉酶的最适反应温度为60℃,最适p H值为4.62,并测得该酶的Km和Vmax值,以菊粉为底物时,Km和Vmax值分别为80.53 g/L和4.49 g/(L·min);以蔗糖底物时,Km和Vmax值分别为183.10 g/L和20.20 g/(L·min)。金属离子Mn2+、Ca2+、Cu2+、Zn2+和Fe2+对酶活力具有不同程度的抑制作用,其中Cu2+、Zn2+和Fe2+的抑制作用最为显著。这些研究为进一步提高菊粉酶在工业化的应用奠定了基础。  相似文献   

15.
利用酵母密码子偏爱性将黑曲霉(Aspergillus niger)中的内切菊粉酶(Endoinu linase)基因通过基因全合成的方式合成为酵母密码子偏爱性的内切菊粉酶基因。然后将原始和全合成的内切菊粉酶基因克隆到解脂耶氏酵母表达载体PINA1296上,得重组解脂耶氏酵母表达载体pHBM2020、pHBM2021,将两种质粒分别转化解脂耶氏酵母(Yarrowia lipolytica)CLIB725,筛选得到重组解脂耶氏酵母CLIB725(pHBM2020)、CLIB725(pHBM2021),将两种重组酵母摇瓶培养,经SDS-PAGE、测酶活检测表明两种基因在解脂耶氏酵母中都有表达,全合成菊粉酶比原始菊粉酶酶活要高。  相似文献   

16.
为了实现内生真菌Shiraia sp.Slf 14菊粉酶基因在大肠杆菌中的高效表达,建立有效的包涵体复性技术,获得有活性的重组菊粉酶,本研究通过提取Shiraia sp.Slf 14的总RNA,反转录合成cDNA,设计PCR引物扩增出菊粉酶基因,将其克隆至pET-22b(+)载体后转入E.coli BL21(DE3),利用SDS-PAGE法检测IPTG诱导表达后重组蛋白的表达情况,并进一步检测了包涵体复性及重组酶酶活情况,最终成功获得了相对分子量为62.07 kD的重组蛋白,成功复性包涵体,复性率为25.23%,重组菊粉酶活力为6.84 U/m L。本研究为活性重组菊粉酶的获得及包涵体复性提供了新的方法和依据。  相似文献   

17.
微生物果糖基转移酶能够以蔗糖为底物产生低聚果糖。为获得更多新酶资源,通过PCR法成功地克隆出黑曲霉QU10的果糖基转移酶基因(Gen Bank Accession No.KF699529),基因片段长度为1 941 bp,包含一个54 bp的内含子。进一步利用RT-PCR法克隆了果糖基转移酶的c DNA,其编码628个氨基酸。将所得片段定向克隆到p ET-22b、p GAPZA及p GAPZαA载体,并转化至大肠杆菌或毕赤酵母中,通过筛选获得果糖基转移酶表达活力高的转化子。利用α信号肽的毕赤酵母转化子获得最高果糖基转移酶胞外酶活力为431 U/m L,是原始菌株酶活力的35倍。此毕赤酵母重组酶为同源二聚体,半天然PAGE表观分子量约200 k Da。以蔗糖为底物,果糖基转移酶在p H 5.0、45℃下反应4 h,酶解产物中主要是蔗果三糖和四糖,蔗果寡糖最高可占总质量的58%。结果表明,果糖基转移酶酵母工程菌具有很高的转果糖基的能力,而且表达活力高,具有潜在的工业应用价值。  相似文献   

18.
微生物果糖基转移酶能够以蔗糖为底物产生低聚果糖。为获得更多新酶资源,通过PCR法成功地克隆出黑曲霉QU10的果糖基转移酶基因(Gen Bank Accession No.KF699529),基因片段长度为1 941 bp,包含一个54 bp的内含子。进一步利用RT-PCR法克隆了果糖基转移酶的c DNA,其编码628个氨基酸。将所得片段定向克隆到p ET-22b、p GAPZA及p GAPZαA载体,并转化至大肠杆菌或毕赤酵母中,通过筛选获得果糖基转移酶表达活力高的转化子。利用α信号肽的毕赤酵母转化子获得最高果糖基转移酶胞外酶活力为431 U/m L,是原始菌株酶活力的35倍。此毕赤酵母重组酶为同源二聚体,半天然PAGE表观分子量约200 k Da。以蔗糖为底物,果糖基转移酶在p H 5.0、45℃下反应4 h,酶解产物中主要是蔗果三糖和四糖,蔗果寡糖最高可占总质量的58%。结果表明,果糖基转移酶酵母工程菌具有很高的转果糖基的能力,而且表达活力高,具有潜在的工业应用价值。  相似文献   

19.
在亚洲,低聚果糖的工业生产通常利用米曲霉或黑曲霉发酵蔗糖而来,而曲霉含有水解蔗糖和低聚果糖的蔗糖酶。因此要生产高纯度低聚果糖,必须抑制蔗糖酶的水解活性。本研究以工业生产低聚果糖的米曲霉菌株GX0015为研究材料,采用RT-PCR技术,克隆获得蔗糖酶基因(GenBank登录号:EU181219)。利用生物信息学手段对蔗糖酶基因进行分析:该酶为525个氨基酸残基组成的亲水性膜外蛋白;功能域分析结果显示:该酶具有信号肽序列,糖苷酶32家族N端特征序列和糖苷酶32家族特征序列;并具有糖苷酶32家族酶活性中心的NDPNG、RDP和EC保守序列。米曲霉蔗糖酶与酵母菌的转化酶在进化树上的位置最近。  相似文献   

20.
肠激酶 (Enterokinase,EK) 是一类特异性识别切割DDDDK序列的丝氨酸蛋白酶,作为一种工具酶广泛应用于生物医药领域。目前,EK在毕赤酵母Pichia pastoris中的表达水平较低,难以应用。本研究比较了6种不同的信号肽SP1、SP2、SP3、SP4、SP7和SP8对毕赤酵母分泌表达EK的影响。在摇瓶水平上,与α-factor信号肽相比,SP1信号肽显著提高了EK的分泌表达 (从6.8 mg/L提高至14.3 mg/L),酶活从 (2 390±212) U/mL提高至 (4 995±378) U/mL。在此基础上,通过共表达毕赤酵母内源蛋白Kex2,EK酶活提高至 (7 219±489) U/mL。另外,N端融合WLR三个氨基酸进一步提高酶活至 (15 145±920) U/mL,比酶活为 (1 174 600±53 100) U/mg。EK在毕赤酵母中的高效分泌表达为未来应用奠定了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号