首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
17 beta-Hydroxysteroid dehydrogenase (17 beta-HSD) catalyzes the interconversion of estradiol-17 beta (E2) and estrone (E1). The present study is designed to investigate the following: (1) the developmental stage of hamster embryos at which 17 beta-HSD activity first becomes detectable, and (2) the E1----E2 and E2----E1 conversion rate in the preimplantation hamster embryo. Embryos obtained from superovulated hamsters on days 1-4 were cultured in medium containing 107 ng [3H]E1 or -E2/ml and the respective conversion product, [3H]E2 or -E1, was isolated and assayed. The results show that (1) E1----E2 conversion was active in all embryos at the rate of 0.57, 0.66, 0.54 and 0.48 fmol/embryo/hr for day 1 (one-cell), 2 (two-cell), 3 (eight-cell) and 4 (blastocyst), respectively, and (2) E2----E1 conversion was not detectable in hamster embryos. In long-term blastocyst culture, E2----E1 conversion becomes detectable at 25 hours and increases sharply from 25 to 47 hours. These results suggest that (1) 17 beta-HSD may function mainly to convert E1 into E2 in preimplantation hamster embryos and (2) E2----E1 conversion may become active only during and after implantation.  相似文献   

2.
The rate of estrone (E1)----estradiol-17 beta (E2) or E2----E1 conversion catalyzed by 17 beta-hydroxysteroid dehydrogenase (17 beta-HSD) activity was determined for each mouse embryo in modified F-10 medium containing 0.95 microM 3H-E1 or 3H-E2. During delayed implantation, the E1----E2 conversion rate was decreased (p less than 0.005) from 5.69 +/- 0.34 fmol/h/blastocyst on Day 5 to 3.50 +/- 0.46 fmol/h/blastocyst on Day 9, whereas E2----E1 was increased (p less than 0.005) from 7.44 +/- 1.08 to 18.60 +/- 2.04 fmol/h/blastocyst. After estrogen injection, the Day 9 implanting blastocyst showed an increase (p less than 0.005) in E1----E2 conversion to 9.05 +/- 0.64 fmol/h/blastocyst but a slight, insignificant decrease in E2----E1 conversion to 14.2 +/- 1.82 fmol/h/blastocyst. A similar trend was also observed in Day 5 implanting blastocysts when compared to Day 5 delayed blastocysts. Thus, 17 beta-HSD activity in delayed blastocysts favors E2----E1 over E1----E2 conversion in a ratio of 5:1. After estrogen induction of implantation, the E1----E2 conversion rate is stimulated and the ratio of E2----E1 to E1----E2 rate is decreased to 1.5:1. The results suggest that 17 beta-HSD activity may be involved in blastocyst implantation.  相似文献   

3.
When Day 5 rat blastocysts and Day 4 and 5 mouse blastocysts were cultured in 53 microliters of medium containing 1340 or 2680 pg [3H]estradiol (E2), large amounts of [3H]estrone (E1) were detected in the medium at daily intervals for up to 5 days. This indicates the presence of 17 beta-hydroxysteroid dehydrogenase in the embryos. The activity was higher at a higher concentration of E2 and was also higher in mouse than in rat blastocysts. In the mouse, the activity was higher in Day 5 than Day 4 blastocysts during the first day in culture; then it decreased in Day 5 but increased in Day 4 blastocysts. The importance of E2 in embryonic development and implantation as suggested by others may be related to the activity of 17 beta-hydroxysteroid dehydrogenase.  相似文献   

4.
J T Wu  K I Williams 《Steroids》1989,54(4):401-419
When day 6 rabbit blastocysts were cultured (3 embryos/mL) in medium 199 containing 3.68 microM estradiol-17 beta (E2), 40% of E2 was metabolized in 24 h, at a rate of 18 pmol/embryo(b)/h, yielding 4 major metabolite fractions. Two of them were identified to be estrogen glucosides: 17 beta-hydroxyestra-1,3,5(10)-trien-3-yl beta-D-glucopyranoside (E(2)3G) (12 pmol/b/h) and 17-oxoestra-1,3,5(10)-trien-3-yl beta-D-glucopyranoside (E(1)3G) (0.5 pmol/b/h). If the blastocysts were cultured in 3.68 microM E1 medium, 75% of E1 was metabolized in 24 h (34.1 pmol/b/h); most of it appears as E2 (8 pmol/b/h), E(1)3G (16 pmol/b/h), and E(2)3G (6 pmol/b/h). Thus, the 17 beta-hydroxysteroid dehydrogenase activity in the rabbit blastocysts catalyzes mainly in the direction of the E1----E2 conversion, with little or no E2----E1. This may be responsible in part for the faster metabolism of E1 than E2 by the rabbit blastocyst. In comparison with the rat, mouse, and hamster blastocyst, the rabbit embryo shows an additional capability to conjugate large amounts of estrogens into glucosides by steroid glucosyltransferase.  相似文献   

5.
Estradiol (E(2)) is an important risk factor in the development and progression of breast cancer. However, a "direct effect" of E(2) in breast cancerization has not yet been demonstrated. The estrogen receptor complex can mediate the activation of oncogens, proto-oncogens, nuclear proteins and other target genes that can be involved in the transformation of normal to cancerous cells. Breast cancer cells possess all the enzymes (sulfatase, aromatase, 17beta-hydroxysteroid dehydrogenase (17beta-HSD)) necessary for the local bioformation of E(2). In the last years, many studies have shown that treatment of breast cancer patients using anti-aromatase agents has beneficial therapeutic effects. The aromatase activity is very low in most breast cancer cells but was significantly increased in a hormone-dependent breast cancer cell line: the MCF-7aro, using the aromatase cDNA transfection and G-418 (neomycin) selection. In the present study, we explore the effect of E(2) on the aromatase activity of this cell line. The MCF-7aro cell line was a gift from Dr. S. Chen (Beckman Research Institute, Duarte, U.S.A.). For experiments the cells were stripped of endogenous steroids and incubated with physiological concentrations of [(3)H]-testosterone (5 x 10(-9)mol/l) alone or in the presence of E(2) (5 x 10(-5), 5 x 10(-7) and 5 x 10(-9)mol/l) for 24h at 37 degrees C. The cellular radioactivity uptake was determined in the ethanolic supernatant and the DNA content in the remaining pellet. [(3)H]-E(2), [(3)H]-estrone ([(3)H]-E(1)) and [(3)H]-testosterone were characterized by thin layer chromatography and quantified using the corresponding standard. It was observed that [(3)H]-testosterone is converted mainly into [(3)H]-E(2) and not to E(1), which suggests very low or absence of oxidative 17beta-HSD (type 2) activity in these experimental conditions. The aromatase activity, corresponding to the conversion of [(3)H]-testosterone to [(3)H]-E(2) after 24h, is relatively high, since the concentration of E(2) was 2.74+/-0.11pmol/mg DNA in the non-treated cells. E(2) inhibits this conversion by 77, 57 and 21%, respectively, at the concentrations of 5 x 10(-5), 5 x 10(-7) and 5 x 10(-9)mol. In previous studies, it was demonstrated that E(2) exerts a potent anti-sulfatase activity in the MCF-7 and T-47D breast cancer cells. The present data show that E(2) can also block the aromatase activity. The dual inhibition of the aromatase and sulfatase activities, two crucial enzymes for the biosynthesis of E(2) by E(2) itself in breast cancer add interesting and attractive information for the use of estrogen therapeutic treatments.  相似文献   

6.
Progesterone (P) is required for the differentiation of reproductive tracts and maintenance of pregnancy. This study investigates whether the hamster blastocyst is capable of metabolizing P and, if so, at what stage of preimplantation development such capability becomes detectable. When the blastocysts collected from superovulated hamsters on Day 4 of pregnancy were cultured in 0.4 microM P medium, P metabolism was easily detectable at 1.25 h of culture and over half was metabolized by 7.5 h. Two major metabolites were generated: 5 alpha-pregnane-3,20-dione (or 5 alpha-dihydroprogesterone; 5 alpha-DHP) and 5 alpha-pregnane-3 beta-ol-20-one (or allopregnanolone; AP), about 90-95% and 5-10%, respectively. This indicates the activity of two enzymes: delta 4-5 alpha-reductase and 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD). The rate of P metabolism increased with P concentration (0.4-6.4 microM), indicating a high capacity of the enzymes. Studies of embryos collected on Days 1-3 showed that P metabolism was not detectable up to 0100 h of Day 3 (2-4-cell), but was detectable with two metabolites, 5 alpha-DHP and AP, at 1515 h of Day 3 (morula) and thereafter. This indicates that, by the morula stage, the hamster embryo has already acquired the enzymatic capability (5 alpha-reductase and 3 beta-HSD) to metabolize P. These results, together with our earlier finding of 17 beta-hydroxysteroid dehydrogenase activity in Days 1-4 embryos, suggest that hamster preimplantation embryos can metabolize both P and estrogens, thus possibly modulating local actions of these hormones and causing local effects in the reproductive tract.  相似文献   

7.
Estrogens play an important role in the development of breast cancer. Inhibiting 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1)--the enzyme responsible for the last step in the biosynthesis of the most potent estrogen, estradiol (E2)--would thus allow hindering the growth of estrogen-sensitive tumors. Based on a previous study identifying 16beta-benzyl-E2 (1) as a lead compound for developing inhibitors of the transformation of estrone (E1) into E2, we modified the benzyl group of 1 to improve its inhibitory activity. Three strategies were also devised to produce compounds with less residual estrogenic activity: (1) replacing the hydroxy group by a hydrogen at position 3 (C3); (2) adding a methoxy at C2; and (3) adding an alkylamide chain known to be antiestrogenic at C7. In order to test the inhibitory potency of the new compounds, we used the human breast cancer cell line T-47D, which exerts a strong endogenous 17beta-HSD1 activity. In this intact cell model, 16beta-m-carbamoylbenzyl-E2 (4m) emerged as a potent inhibitor of 17beta-HSD1 with an IC50 value of 44 nM for the transformation of [14C]-E1 (60 nM) into [14C]-E2 (24-h incubation). In another assay aimed at assessing the unwanted estrogenic activity, a 10-day treatment with 4m at a concentration of 0.5 microM induced some proliferation (38%) of T-47D estrogen-sensitive (ER+) breast cancer cells. Interestingly, when 4m (0.5 microM) was given with E1 (0.1 nM) in a 10-day treatment, it blocked 62% of the T-47D cell proliferation induced by E1 after its reduction to E2 by 17beta-HSD1. Thus, in addition to generating useful structure-activity relationships for the development of 17beta-HSD1 inhibitors, our study demonstrates that using such inhibitors is a valuable strategy for reducing the level of E2 and consequently its proliferative effect in T-47D ER+ breast cancer cells.  相似文献   

8.
Progesterone has been shown to decrease occupied pituitary and uterine nuclear estradiol receptor (E2R) binding in mature and immature estrogen-primed rats. Progesterone has also been shown to stimulate pituitary but not uterine 17 beta-hydroxysteroid dehydrogenase (17 beta-HSD) in the rat. The conversion of estradiol to its less active metabolite estrone by 17 beta-HSD and activation of phosphatase are among mechanisms considered to be involved in the reduction of E2R. To determine if 17 beta-HSD stimulation was a mechanism by which progesterone induced nuclear E2R decrease, the synthetic estrogen ethinylestradiol, which is not oxidized by 17 beta-HSD, was used instead of estradiol to prime adult ovariectomized rats. When ethinylestradiol-primed rats received 0.8, 2.0 or 4.0 mg/kg body wt of progesterone 2 h before sacrifice, the total and occupied nuclear E2R accumulation in the anterior pituitary by a subsequent ethinylestradiol injection 1 h later did not show any decrease. This response was different from that observed previously in estradiol-primed animals in which progesterone showed a multiphasic decrease of occupied form of nuclear E2R. However, in the uterus of ethinylestradiol-primed rats, a partial decrease of total and occupied nuclear E2R accumulation was observed in the presence of the three doses of progesterone used. The decrease of uterine nuclear E2R with the three progesterone doses was different from the dose-dependent effect of progesterone observed in the uterus of estradiol-primed rats. Affinity constants of the interaction between [3H]estradiol and the nuclear E2R were similar among groups treated with ethinylestradiol, estradiol and progesterone. These results demonstrate the involvement of 17 beta-HSD in the reduction of anterior pituitary gland E2R by progesterone in the estradiol-treated animals. Furthermore, the mechanism of decrease of E2R by progesterone in the uterus appears to be different from the pituitary gland.  相似文献   

9.
Explant and dissociated neuron-enriched cultures of nodose ganglia (inferior or distal sensory ganglion of the Xth cranial nerve) were established from chick embryos taken between embryonic Day 4 (E4) and Day 16 (E16). The response of each type of culture to nerve growth factor (NGF) was examined over this developmental range. At the earliest ages taken (E4-E6), NGF elicited modest neurite outgrowth from ganglion explants cultured in collagen gel for 24 hr, although the effect of NGF on ganglia taken from E4 chicks was only marginally greater than spontaneous neurite extension from control ganglia of the same developmental age. The response of nodose explants to NGF was maximal at E6-E7, but declined to a negligible level in ganglia taken from E9-E10 or older chick embryos. In dissociated neuron-enriched cultures, nodose ganglion neurons were unresponsive to NGF throughtout the entire developmental age range between E5 and E12. In contrast to the lack of effect of NGF, up to 50% of nodose ganglion neurons survived and produced extensive neurites in dissociated cultures, on either collagen- or polylysine-coated substrates, in the presence of extracts of late embryonic or early posthatched chick liver (E18-P7). Antiserum to mouse NGF did not block the neurotrophic activity of chick (or rat or bovine) liver extracts. Whether cultured with chick liver extract alone or with chick liver extract plus NGF, nodose ganglion neurons taken from E6-E12 chick embryos and maintained in culture for 2 days were devoid of NGF receptors, as assessed by autoradiography of cultures incubated with 125I-NGF. Under similar conditions 70-95% of spinal sensory neurons (dorsal root ganglion--DRG) were heavily labeled. 2+  相似文献   

10.
The 17beta-hydroxysteroid dehydrogenase type 1 (17beta-HSD1) catalyses the reduction of the weakly active estrone (E1) into the most potent estrogen, 17beta-estradiol (E2). E2 stimulates the growth of hormone-dependent diseases via activation of the estrogen receptors (ERs). 17beta-HSD1 is often over-expressed in breast cancer cells. Thus, it is an attractive target for the treatment of mammary tumours. The combination of a ligand- and a structure-based drug design approach led to the identification of bis(hydroxyphenyl) azoles as potential inhibitors of 17beta-HSD1. Different azoles and hydroxy substitution patterns were investigated. The compounds were evaluated for activity and selectivity with regard to 17beta-HSD2, ERalpha and ERbeta. The most potent compound is 3-[5-(4-hydroxyphenyl)-1,3-oxazol-2-yl]phenol (18, IC(50)=0.31 microM), showing very good selectivity, high cell permeability and medium CaCo-2 permeability.  相似文献   

11.
We report the synthesis and biochemical evaluation of a number of 4-hydroxyphenyl ketones as potential inhibitors of the enzyme 17beta-hydroxysteroid dehydrogenase (17beta-HSD). In particular, we evaluated compounds against the catalysis of the conversion of androstenedione (AD) to testosterone (T) [17beta-HSD type 3 (17beta-HSD3)], furthermore, in an effort to determine the specificity of our compounds, we evaluated the ability of the compounds to inhibit the catalysis of the conversion of estrone (E1) to estradiol (E2) [17beta-HSD type 1 (17beta-HSD1)] as well as the conversion of dehydroepiandrosterone (DHEA) to AD [by 3beta-hydroxysteroid dehydrogenase (3beta-HSD)]. The results of our study suggest that the synthesised compounds are, in general, able to inhibit 17beta-HSD3 whilst being weak inhibitors of 17beta-HSD1. Against 3beta-HSD, we discovered that all of the synthesised compounds were weak inhibitors (all were found to possess less than 50% inhibition at [I]=500 microM). More specifically, we discovered that 1-(4-hydroxy-phenyl)-nonan-1-one (15) was the most potent against 17beta-HSD3 (IC(50)=2.9 microM) whilst possessing poor inhibitory activity against 17beta-HSD1 ( approximately 36% inhibitory activity against this reaction at [I]=100 microM) and less than 10% inhibition for the conversion of DHEA to AD. We have therefore provided good lead compounds in the design and synthesis of novel non-steroidal inhibitors of 17beta-HSD3.  相似文献   

12.
The stage and cell-specific accumulation of mammalian isoforms of transforming growth factor-beta (TGF-beta 1, TGF-beta 2, and TGF-beta 3) and TGF-beta binding were examined in the preimplantation embryo and in progesterone (P4)-treated delayed or P4 plus estradiol-17 beta (E2)-treated activated blastocysts in the mouse. Immunocytochemical studies revealed that while all three immunoreactive TGF-beta isoforms were present in one-cell embryos, very little or no immunostaining was observed in two-cell embryos. However, distinct immunostaining of these isoforms was again observed in four-cell embryos and persisted through the blastocyst stage. Among the isoforms studied, TGF-beta 2 immunostaining showed a unique pattern in late morulae. In many of these morulae, the staining was primarily observed in outside cells. However, in blastocysts, immunostaining for all three isoforms was present both in the inner cell mass (ICM) and trophectoderm (Tr). Immunostaining in sectioned blastocysts and immunosurgically isolated ICMs confirmed immunostaining in Tr and ICM cells. To ascertain whether preimplantation embryos can produce TGF-beta isoforms, immunostaining was performed in embryos grown in vitro from two-cell stage in simple balanced salt solution. Immunoreactive TGF-beta s 1-3 were present in embryos at all stages of development examined (four-cell embryos through blastocysts). The virtual absence of immunoactive TGF-beta s in two-cell embryos but their accumulation in embryos at later stages of development in vitro provides evidence that these growth factors were produced by embryos. In order to assess at what stages of development preimplantation embryos could be responsive to TGF-beta s, specific binding of [125I]TGF-beta 1 and [125I]TGF-beta 2 was performed in embryos and examined by autoradiography. Low levels of binding were first detected in eight-cell embryos. The binding increased in morulae followed by a further increase in blastocysts. Analysis of binding of [125I]TGF-beta 2 in immunosurgically isolated ICMs indicated that binding was primarily evident in Tr cells. Affinity labeling of TGF-beta 1 or TGF-beta 2 in Day 4 blastocysts revealed three classes of binding proteins with approximate molecular sizes of 65 kDa (type I), 90 kDa (type II), and greater than 250 kDa (type III), in addition to a doublet of 130 and 140 kDa proteins. This observation is similar to those reported for other cell types. The data suggest that embryos are likely to be responsive to TGF-beta s after the third cleavage.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Implantation in the ferret is believed to be induced by a luteal substance which acts in concert with progesterone (P4) and which is secreted sometime between Days 6 and 8 of pregnancy. This experiment was designed to identify the steroid products synthesized by ferret corpora lutea (CL) on these 2 days of pregnancy. CL were dissected from ferrets on Day 6 or 8 of pregnancy and incubated with [3H] pregnenolone (P3), [3H] P4, or [3H] dehydroepiandrosterone (DHEA). Controls with no tissue or with 50 microliters packed blood cells were incubated at the same time. After incubation of Day 6 CL with [3H] P3 for 180 min, 39% of the added label was found incorporated into P4, 3% into 17 alpha-hydroxyprogesterone (17 alpha-OHP4) and 1% into androstenedione (A). Incubation of Day 8 CL with the same precursor resulted in 35%, 1% and 0.65% of the label being incorporated into the previously mentioned products, respectively. Incubations of Days 6 and 8 ferret CL with [3H] P4 or [3H] DHEA confirmed these results, demonstrating activity of C21-steroid, 17 alpha-hydroxylase and delta 5-isomerase, 3 beta-hydroxysteroid dehydrogenase (3 beta-HSD). These results suggest that ferret CL primarily accumulate steroids of the delta4 pathway on both Days 6 and 8 of pregnancy, with P4, 17 alpha-OHP4, A and testosterone (T) being the most abundant products after in vitro incubation. Thus, ferret CL appear to metabolize steroids in a manner similar to that observed in rats, sows and mares.  相似文献   

14.
Recent studies demonstrated expression and activity of the intracellular cortisone-cortisol shuttle 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1) in skeletal muscle and inhibition of 11beta-HSD1 in muscle cells improved insulin sensitivity. Glucocorticoids induce muscle atrophy via increased expression of the E3 ubiquitin ligases Atrogin-1 (Muscle Atrophy F-box (MAFbx)) and MuRF-1 (Muscle RING-Finger-1). We hypothesized that 11beta-HSD1 controls glucocorticoid-induced expression of atrophy E3 ubiquitin ligases in skeletal muscle. Primary human myoblasts were generated from healthy volunteers. 11beta-HSD1-dependent protein degradation was analyzed by [(3)H]-tyrosine release assay. RT-PCR was used to determine mRNA expression of E3 ubiquitin ligases and 11beta-HSD1 activity was measured by conversion of radioactively labeled [(3)H]-cortisone to [(3)H]-cortisol separated by thin-layer chromatography. We here demonstrate that 11beta-HSD1 is expressed and biologically active in interconverting cortisone to active cortisol in murine skeletal muscle cells (C2C12) as well as in primary human myotubes. 11Beta-HSD1 expression increased during differentiation from myoblasts to mature myotubes (p < 0.01), suggesting a role of 11beta-HSD1 in skeletal muscle growth and differentiation. Treatment with cortisone increased protein degradation by about 20% (p < 0.001), which was paralleled by an elevation of Atrogin-1 and MuRF-1 mRNA expression (p < 0.01, respectively). Notably, pre-treatment with the 11beta-HSD1 inhibitor carbenoxolone (Cbx) completely abolished the effect of cortisone on protein degradation as well as on Atrogin-1 and MuRF-1 expression. In summary, our data suggest that 11beta-HSD1 controls glucocorticoid-induced protein degradation in human and murine skeletal muscle via regulation of the E3 ubiquitin ligases Atrogin-1 and MuRF-1.  相似文献   

15.
Estrogen sulfotransferase (EST) activity measured under optimal in vitro conditions in the 105,000 g cytosols (HSS) of homogenized intrauterine tissues (amnion, chorion, endometrium, decidua basalis and placenta) from guinea-pigs at the 50th day of gestation indicated that the highest specific activity occurred in the chorion. EST activity in the chorion increased from day 34 (early gestation) to peak around day 45 (mid-gestation), before significantly decreasing around day 50 and further declining to barely detectable levels beyond day 60 (late gestation, the onset of parturition). 17 beta-Hydroxysteroid dehydrogenase (17 beta-HSD) activity in the chorion was almost completely membrane associated. The specific activity of the 17 beta-HSD reduction reaction in the 105,000 g pellet was 2.5-fold higher at mid-gestation than at late gestation, while the specific activity of the 17 beta-HSD oxidation reaction was 1.7-fold higher at mid-gestation as compared with late gestation. When intact pieces of chorion tissue from mid- and late gestation were incubated with 5 nM [3H]estradiol (E2), approx. 80% of the recovered free estrogen was E1 (estrone). Only chorion from animals at the onset of parturition were able to produce detectable amounts of E2 from 5 nM [3H]E1. Under the same experimental conditions the ratio of estradiol sulfate (E2S) to estrone sulfate (E1S) isolated from the media and methanol washes of late gestation chorion tissue was 3-4 times greater than for the day 45 tissue.  相似文献   

16.
The importance of estrogens in bone metabolism is illustrated by the accelerated bone loss and increase in osteoporotic fractures associated with postmenopausal estrogen deficiency. In this study, the expression and activity of the enzymes involved in estrogen metabolism in human osteoblastic cells were investigated in relation to differentiation of these cells. PCR reactions using mRNA from an in vitro differentiating human cell line (SV-HFO) were performed to assess mRNA expression of the enzymes aromatase, different subtypes of 17beta-hydroxysteroid dehydrogenase (17beta-HSD), and steroid sulfatase. Aromatase, sulfatase, and 17beta-HSD type 2 and 4 were found to be expressed throughout differentiation. Expression of 17beta-HSD type 3, however, was relatively weak, except for early time points in differentiation. Type 1 17beta-HSD expression was not detected. Aromatase activity decreased during differentiation, as was demonstrated by the conversion of androstenedione (A) and testosterone (T) into estrone (E(1)) and estradiol (E(2)), respectively. The 17beta-HSD isozymes catalysing a reductive reaction convert androstenedione and estrone into testosterone and estradiol, respectively. Their activity declined with differentiation. Analysis of 17beta-HSD activity indicated both oxidative (E(2) to E(1); T to A) and reductive (E(1) to E(2); A to T) metabolism at all stages of osteoblast differentiation. Both activities declined as cells moved toward a differentiating mineralizing phenotype. However, the oxidative reaction was increasingly in favor of the reductive reaction at all times during differentiation. Sulfatase activity, as demonstrated by the conversion of estrone-sulfate into estrone, was constant during differentiation. In conclusion, we have demonstrated that all enzymes necessary for estrogen metabolism are expressed and biologically active in differentiating human osteoblasts. The activity of aromatase and 17beta-HSD was found to be dependent on the stage of cell differentiation. In addition, human osteoblasts effectively convert estradiol into estrone. The efficacy of osteoblasts to synthesize estradiol may determine the ultimate change in rate of bone turnover after menopause, as well as the development of osteoporosis. Moreover, the enzymes involved in the metabolism of estradiol may form a target for intervention.  相似文献   

17.
18.
19.
Culture of preimplantation mammalian embryos and cells can influence their subsequent growth and differentiation. Previously, we reported that culture of mouse embryonic stem cells is associated with deregulation of genomic imprinting and affects the potential for these cells to develop into normal fetuses. The purpose of our current study was to determine whether culture of preimplantation mouse embryos in a chemically defined medium (M16) with or without fetal calf serum (FCS) can affect their subsequent development and imprinted gene expression. Only one third of the blastocysts that had been cultured from two-cell embryos in M16 medium complemented with FCS developed into viable Day 14 fetuses after transfer into recipients. These M16 + FCS fetuses were reduced in weight as compared with controls and M16 fetuses and had decreased expression of the imprinted H19 and insulin-like growth factor 2 genes associated with a gain of DNA methylation at an imprinting control region upstream of H19. They also displayed increased expression of the imprinted gene Grb10. The growth factor receptor binding gene Grb7, in contrast, was strongly reduced in its expression in most of the M16 + FCS fetuses. No alterations were detected for the imprinted gene MEST: Preimplantation culture in the presence of serum can influence the regulation of multiple growth-related imprinted genes, thus leading to aberrant fetal growth and development.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号