首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using permeable diploid human fibroblasts, we have studied the deoxyribonucleoside triphosphate concentration dependences of ultraviolet- (UV-) induced DNA repair synthesis and semiconservative DNA replication. In both cell types (AG1518 and IMR-90) examined, the apparent Km values for dCTP, dGTP, and dTTP for DNA replication were between 1.2 and 2.9 microM. For UV-induced DNA repair synthesis, the apparent Km values were substantially lower, ranging from 0.11 to 0.44 microM for AG1518 cells and from 0.06 to 0.24 microM for IMR-90 cells. Control experiments established that these values were not significantly influenced by nucleotide degradation during the permeable cell incubations or by the presence of residual endogenous nucleotides within the permeable cells. Recent data implicate DNA polymerase delta in UV-induced repair synthesis and suggest that DNA polymerases alpha and delta are both involved in semiconservative replication. We measured Km values for dGTP and dTTP for polymerases alpha and delta, for comparison with the values for replication and repair synthesis. Km values for polymerase alpha were 2.0 microM for dGTP and 5.0 microM for dTTP. For polymerase delta, the Km values were 2.0 microM for dGTP and 3.5 microM for dTTP. The deoxyribonucleotide Km values for DNA polymerase delta are much greater than the Km values for UV-induced repair synthesis, suggesting that when polymerase delta functions in DNA repair, its characteristics are altered substantially either by association with accessory proteins or by direct posttranslational modification. In contrast, the deoxyribonucleotide binding characteristics of the DNA replication machinery differ little from those of the isolated DNA polymerases.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
Nucleoside-diphosphate kinase is an enzyme which catalyzes the phosphorylation of nucleoside diphosphates into the corresponding triphosphates for nucleic acid biosynthesis. In this communication, we describe the purification and characterization of nucleoside-diphosphate kinase from yeast. The purified protein appears to be homogeneous by sodium dodecyl sulfate-polyacrylamide gel analysis, with a molecular weight of about 17,000-18,000. An estimate from the fast protein liquid chromatography Superose 12 gel filtration shows a native molecular weight of about 68,000 to 70,000. The results suggest that yeast nucleoside-diphosphate kinase is composed of four subunits. Substrate specificity studies show that the relative activity of nucleoside diphosphates (NDP) as phosphate acceptors is in the order of dTDP greater than CDP greater than UDP greater than dUDP greater than GDP greater than or equal to dGDP greater than dCDP greater than dADP greater than ADP; and the relative activity of triphosphate donors is in the order of UTP greater than dTTP greater than CTP greater than dCTP greater than dATP greater than ATP greater than or equal to dGTP greater than GTP. The Km and Vm of dTDP, dGDP, dCDP, dUDP, CDP, and UDP have been determined. The rate constant studies indicate that the purified NDP kinase prefers using, to a slight extent, dTDP (approximately 800 min-1) as the substrate rather than other tested deoxyribo- and ribonucleotides (350-450 min-1). The broad substrate specificity and kinetic data suggest that the enzyme is involved in both DNA and RNA metabolism.  相似文献   

3.
Extensively purified rat liver cytosolic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase kinase was used to examine the role of ADP in inactivation of HMG-CoA reductase (EC 1.1.1.34). Solubilized HMG-CoA reductase was a suitable substrate for HMG-CoA reductase kinase. At sufficiently high concentrations of solubilized HMG-CoA reductase, reductase kinase activity approached that measured using microsomal HMG-CoA reductase as substrate. Inactivation of solubilized HMG-CoA reductase by HMG-CoA reductase kinase required both MgATP and ADP. Other nucleoside diphosphates, including alpha, beta-methylene-ADP, could replace ADP. HMG-CoA reductase kinase catalyzed phosphorylation of bovine serum albumin fraction V by [gamma-32P]ATP. This process also required a nucleoside diphosphate (e.g. alpha, beta-methylene-ADP). Nucleoside diphosphates thus act on HMG-CoA reductase kinase, not on HMG-CoA reductase. For inactivation of HMG-CoA reductase, the ability of nucleoside triphosphates to replace ATP decreased in the order ATP greater than dATP greater than GTP greater than ITP, UTP. TTP and CTP did not replace ATP. Both for inactivation of HMG-CoA reductase and for phosphorylation of bovine serum albumin protein, the ability of nucleoside diphosphates to replace ADP decreased in the order ADP greater than CDP, dADP greater than UDP. GDP did not replace ADP. Nucleoside di- and triphosphates thus appear to bind to different sites on HMG-CoA reductase kinase. Nucleoside diphosphates act as allosteric activators of HMG-CoA reductase kinase. For inactivation of HMG-CoA reductase by HMG-CoA reductase kinase, Km for ATP was 140 microM and the activation constant, Ka, for ADP was 1.4 mM. The concentration of ADP required to modulate reductase kinase activity in vitro falls within the physiological range. Modulation of HMG-CoA reductase kinase activity, and hence of HMG-CoA reductase activity, by changes in intracellular ADP concentrations thus may represent a control mechanism of potential physiological significance.  相似文献   

4.
The enzymes responsible for the phosphorylation of deoxyadenosine and nucleoside analogs are important in the pathogenesis of adenosine deaminase deficiency and in the activation of specific anticancer and antiviral drugs. We examined the role of adenosine kinase in catalyzing these reactions using an enzyme purified 4000-fold (2.1 mumol/min/mg) from human placenta. The Km values of deoxyadenosine and ATP are 135 and 4 microM, respectively. Potassium and magnesium are absolute requirements for deoxyadenosine phosphorylation, and 150 mM potassium and 5 mM MgCl2 are critical for linear kinetics. With only 0.4 mM MgCl2 in excess of ATP levels, the Km for deoxyadenosine is increased 10-fold. ADP is a competitive inhibitor with a Ki of 13 microM with variable MgATP2-, while it is a mixed inhibitor with a Ki and Ki' of 600 and 92 microM, respectively, when deoxyadenosine is variable. AMP is a mixed inhibitor with Ki and Ki' of 177 and 15 microM, respectively, with variable deoxyadenosine; it is a non-competitive inhibitor with a Ki of 17 microM and Ki' of 27 microM with variable ATP. Adenosine kinase phosphorylates adenine arabinoside with an apparent Km of 1 mM using deoxyadenosine kinase assay conditions. The Km values for 6-methylmercaptopurine riboside and 5-iodotubercidin, substrates for adenosine kinase, are estimated to be 4.5 microM and 2.6 nM, respectively. Other nucleoside analogs are potent inhibitors of deoxyadenosine phosphorylation, but their status as substrates remains unknown. These data indicate that deoxyadenosine phosphorylation by adenosine kinase is primarily regulated by its Km and the concentrations of Mg2+, ADP, and AMP. The high Km values for phosphorylation of deoxyadenosine and adenine arabinoside suggest that adenosine kinase may be less likely to phosphorylate these nucleosides in vivo than other enzymes with lower Km values. Adenosine kinase appears to be important for adenosine analog phosphorylation where the Michaelis constant is in the low micromolar range.  相似文献   

5.
The nucleoside diphosphate kinase (NDP kinase) from Myxococcus xanthus has been purified to homogeneity and crystallized (J. Munoz-Dorado, M. Inouye, and S. Inouye, J. Biol. Chem. 265:2702-2706, 1990). In the presence of ATP, the NDP kinase was autophosphorylated. Phosphoamino acid analysis was carried out after acid and base hydrolyses of phosphorylated NDP kinase. It was found that the protein was phosphorylated not only at a histidine residue but also at a serine residue. Replacement of histidine 117 with a glutamine residue completely abolished the autophosphorylation and nucleotide-binding activity of the NDP kinase. Since histidine 117 is the only histidine residue that is conserved in all known NDP kinases so far characterized, the results suggest that the phosphohistidine intermediate is formed at this residue during the transphosphorylation reaction from nucleoside triphosphates to nucleoside diphosphates. Preliminary mutational analysis of putative ATP-binding sites is also presented.  相似文献   

6.
DNA ligase from the hyperthermophilic marine archaeon Pyrococcus furiosus (Pfu DNA ligase) synthesizes adenosine 5'-tetraphosphate (p4A) and dinucleoside polyphosphates by displacement of the adenosine 5'-monophosphate (AMP) from the Pfu DNA ligase-AMP (E-AMP) complex with tripolyphosphate (P3), nucleoside triphosphates (NTP), or nucleoside diphosphates (NDP). The experiments were performed in the presence of 1-2 microM [alpha-32P]ATP and millimolar concentrations of NTP or NDP. Relative rates of synthesis (%) of the following adenosine(5')tetraphospho(5')nucleosides (Ap4N) were observed: Ap4guanosine (Ap4G) (from GTP, 100); Ap4deoxythymidine (Ap4dT) (from dTTP, 95); Ap4xanthosine (Ap4X) (from XTP, 94); Ap4deoxycytidine (Ap4dC) (from dCTP, 64); Ap4cytidine (Ap4C) (from CTP, 60); Ap4deoxyguanosine (Ap4dG) (from dGTP, 58); Ap4uridine (Ap4U) (from UTP, <3). The relative rate of synthesis (%) of adenosine(5')triphospho(5')nucleosides (Ap3N) were: Ap3guanosine (Ap3G) (from GDP, 100); Ap3xanthosine (Ap3X) (from XDP, 110); Ap3cytidine (Ap3C) (from CDP, 42); Ap3adenosine (Ap3A) (from ADP, <1). In general, the rate of synthesis of Ap4N was double that of the corresponding Ap3N. The enzyme presented optimum activity at a pH value of 7.2-7.5, in the presence of 4 mM Mg2+, and at 70 degrees C. The apparent Km values for ATP and GTP in the synthesis of Ap4G were about 0.001 and 0.4mM, respectively, lower values than those described for other DNA or RNA ligases. Pfu DNA ligase is used in the ligase chain reaction (LCR) and some of the reactions here reported [in particular the synthesis of Ap4adenosine (Ap4A)] could take place during the course of that reaction.  相似文献   

7.
Nucleoside diphosphate (NDP) kinases are ubiquitous enzymes that transfer gamma-phosphates from nucleoside triphosphates to nucleoside diphosphates via a ping-pong mechanism. The important role of this large family of enzymes in controlling cellular functions and developmental processes along with their crystallizability has made them good candidates for structural studies. We recently determined the structure of an evolved version of an NDP kinase from Pyrobaculum aerophilum, an extreme thermophile. This NDP kinase has similarity to the 42 other NDP kinases deposited in the Protein Data Bank (PDB) but differs significantly in sequence, structure, and biophysical properties. The P. aerophilum NDP kinase sequence contains two unique segments not present in other NDP kinases, comprising residues 66-100 and 156-165. We show that deletion mutants of the P. aerophilum NDP kinase lacking either or both of these inserts have an altered substrate specificity, allowing dGTP as the phosphate donor. A structural analysis of the evolved NDP kinase in conjunction with mutagenesis experiments suggests that the substrate specificity of the P. aerophilum NDP kinase is related to the presence of these two inserts.  相似文献   

8.
Diadenosine-5',5'-P1,P4-tetraphosphate pyrophosphohydrolase (diadenosinetetraphosphatase) from Escherichia coli strain EM20031 has been purified 5000-fold from 4 kg of wet cells. It produces 2.4 mg of homogeneous enzyme with a yield of 3.1%. The enzyme activity in the reaction of ADP production from Ap4A is 250 s-1 [37 degrees C, 50 mM tris(hydroxymethyl)aminomethane, pH 7.8, 50 microM Ap4A, 0.5 microM ethylenediaminetetraacetic acid (EDTA), and 50 microM CoCl2]. The enzyme is a single polypeptide chain of Mr 33K, as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis and high-performance gel permeation chromatography. Dinucleoside polyphosphates are substrates provided they contain more than two phosphates (Ap4A, Ap4G, Ap4C, Gp4G, Ap3A, Ap3G, Ap3C, Gp3G, Gp3C, Ap5A, Ap6A, and dAp4dA are substrates; Ap2A, NAD, and NADP are not). Among the products, a nucleoside diphosphate is always formed. ATP, GTP, CTP, UTP, dATP, dGTP, dCTP, and dTTP are not substrates; Ap4 is. Addition of Co2+ (50 microM) to the reaction buffer containing 0.5 microM EDTA strongly stimulates Ap4A hydrolysis (stimulation 2500-fold). With 50 microM MnCl2, the stimulation is 900-fold. Ca2+, Fe2+, and Mg2+ have no effect. The Km for Ap4A is 22 microM with Co2+ and 12 microM with Mn2+. The added metals have similar effects on the hydrolysis of Ap3A into ADP + AMP. However, in the latter case, the stimulation by Co2+ is small, and the maximum stimulation brought by Mn2+ is 9 times that brought by Co2+. Exposure of the enzyme to Zn2+ (5 microM), prior to the assay or within the reaction mixture containing Co2+, causes a marked inhibition of Ap4A hydrolysis.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Deoxyguanosine kinase from human placenta   总被引:1,自引:0,他引:1  
Deoxyguanosine kinase (ATP:deoxyguanosine 5'-phosphotransferase) has been purified up to a specific activity of 10.3 nmol/min per mg protein from human placenta. The enzyme appears to have a molecular weight of 58 000 from the results of Sephadex G-75 gel filtration. The enzyme catalyzed phosphorylation of deoxyguanosine and deoxyadenosine, but deoxycytidine was not phosphorylated. An apparent Km value for deoxyguanosine was 2.5 micro M. When ATP was used as a phosphate donor, the pH optimum was at pH 6.0, but the optimum was shifted to pH 6.8 by the addition of dTTP. At physiological pH, the activity was stimulated 3-4-fold by dTTP. dTTP was also an effective phosphate donor, but using dTTP as a phosphate donor, a broad pH optimum of 7.0 was observed. Two Km values of 0.13 and 2.2 mM were obtained for both MgATP2- and MgdTTP2-. The activity was strongly inhibited by dGTP and dGDP; 50% inhibition by 1.0 micro M dGTP and 2.1 micro M dGDP, respectively. The enzyme required the presence o Mg2+ or Mn2+.  相似文献   

10.
Phosvitin/casein type II kinase was purified from HeLa cell extracts to homogeneity and characterized. The kinase prefers phosvitin over casein (Vmax phosvitin greater than Vmax casein; apparent Km 0.5 microM phosvitin and 3.3 microM casein) and utilizes as cosubstrate ATP (apparent Km 3-4 microM), GTP (apparent Km 4-5 microM) and other purine nucleoside triphosphates, including dATP and dGTP but not pyrimidine nucleoside triphosphates. Enzyme reaction is optimal at pH 6-8 and at 10-25 mM Mg2+.Mg2+ cannot be replaced by, but is antagonized by other divalent metal ions. The kinase is stimulated by polycations (spermine) and monovalent cations (Na+,K+), and is inhibited by fluoride, 2,3-diphosphoglycerate, and low levels of heparin (50% inhibition at 0.1 microgram/ml). The HeLa enzyme is composed of three subunits with Mr of approximately 43,000 (alpha), 38,000 (alpha'), and 28,000 (beta) forming alpha alpha'beta 2 and alpha'2 beta 2 structures with obvious sequence homology of alpha with alpha' but not with beta. Photoaffinity labeling with [alpha-32P]- and [gamma-32P]8-azido-ATP revealed high affinity binding sites on subunits alpha and alpha' but not on subunit beta. The kinase autophosphorylates subunit beta and, much weaker, subunits alpha and alpha'. Ecto protein kinase, detectable only by its enzyme activity but not yet as a protein (J. Biol. Chem. 257, 322-329), was characterized in cell-bound form and in released form, and the released form both with and without prior separation from phosvitin which was employed to induce the kinase release from intact HeLa cells (Proc. Natl. Acad. Sci. U.S.A. 80, 4021-4025). Ratios of phosvitin/casein phosphorylation (greater than 2) and of ATP/GTP utilization (1.5-2.1), inhibition by heparin (50% inhibition at 0.1 microgram/ml), and amino-acid side chains phosphorylated in phosvitin and casein (serine, threonine) are comparable for cell-bound and released form. These properties resemble those of type II kinase as does Mr of released ecto kinase (120-150,000). Consistently, a protein with Mr 125,000 in calf serum and a protein (possibly two) with Mr greater than 300,000 in calf plasma which are selectively phosphorylated by the ecto kinase are also substrates of the type II kinase. Thus, nearly all properties examined of the ecto kinase are characteristic for a type II kinase.  相似文献   

11.
It was found that nucleoside 5'-diphosphates could serve as effectors of ribonucleotide reductase. ADP was an activator of CDP reduction; ADP reduction was activated by dGDP; GDP reduction was activated by dTDP. Conversely, dADP inhibited the reduction of CDP, UDP, GDP, and ADP; dGDP inhibited UDP and GDP reductions; and dTDP inhibited UDP reduction. The inhibition of UDP reduction by dADP, dTDP, and dGDP was at least equal to that observed for dATP, dTTP, and dGTP, respectively. In these experiments with the nucleoside diphosphates as effectors, high-pressure liquid chromatography analysis of the reaction mixtures showed that no nucleoside 5'-triphosphates were found during the reaction period which could account for the effects seen with the nucleoside diphosphates as effectors. Further experiments were carried out in which adenyl-5'-yl imidodiphosphate was used as the positive effector of CDP and UDP reductions in place of ATP. Under these conditions, CDP and UDP reductions were inhibited by dADP, dTDP, and dGDP to the same extent observed in the presence of ATP. ADP served not only as a substrate for ribonucleotide reductase but also as an activator of CDP and UDP reductions. The direct products (dNDPs) also served as positive and negative effectors. Dixon plots indicated that the dNDPs were acting as noncompetitive inhibitors with respect to the substrate. ADP increased the sedimentation velocity of the ribonucleotide reductase in a manner similar to ATP. These data are consistent with the allosteric effects seen with the nucleoside 5'-triphosphates. Additionally, from the thorough study of the role of effectors on UDP reduction, it is clear that UDP reduction was most sensitive to the negative effectors dATP, dADP, dTTP, dTDP, dGTP, and dGDP.  相似文献   

12.
We have developed a real-time, simple, and sensitive method for the detection of ATP hydrolysis activity (ATPase) of apyrase (EC 3.6.1.5). The assay is based on the continuous monitoring of the ATP hydrolysis reaction using the firefly luciferase system. The method is sensitive and yields linear responses between 0.7 and 70 mU for the Solanum tuberosum apyrase. The detection limit was found to be 0.7 mU apyrase. We used the method to study the inhibitory effects of various compounds on the ATPase activity of potato apyrase, measured with 500 nM ATP. The concentrations of azide, AMP, Pi, fluoride, and ADP, which inhibit the ATPase activity by 50% (IC50), were found to be approximately 100, 0.25, 0.125, 0.04, and 0.035 mM, respectively. Under our assay conditions, vanadate inhibited about 98% of the ATPase activity of the potato apyrase at a concentration of 250 microM. The possibility of using the new method for other applications is discussed.  相似文献   

13.
Two types of nucleoside diphosphate kinase (NDP kinase I and NDP kinase II) have been purified from spinach leaves to electrophoretic homogeneity. The enzymes were copurified with apparent [35S]GTP-gamma S-binding activities. NDP kinase I, which was not adsorbed to a hydroxyapatite column, and NDP kinase II, which was adsorbed, had molecular weights of 16,000 and 18,000, respectively, as judged by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The molecular weights determined by gel filtration were 92,000 and 110,000, respectively, suggesting that both enzymes are composed of six identical subunits. Minor differences in some amino acids between NDP kinase I and NDP kinase II were observed when both enzymes were analyzed for amino acid composition. The apparent [35S]GTP gamma S-binding activity of purified NDP kinase I and NDP kinase II was found to be due to the formation of a [35S]thiophosphorylated enzyme, which is the intermediate of the NDP kinase reaction.  相似文献   

14.
Nucleoside-diphosphate (NDP) kinase (NTP:nucleoside-diphosphate phosphotransferase) catalyzes the reversible transfer of gamma-phosphates from nucleoside triphosphates to nucleoside diphosphates through an invariant histidine residue. It has been reported that the high-energy phosphorylated enzyme intermediate exhibits a protein phosphotransferase activity toward the protein histidine kinases CheA and EnvZ, members of the two-component signal transduction systems in bacteria. Here we demonstrate that the apparent protein phosphotransferase activity of NDP kinase occurs only in the presence of ADP, which can mediate the phosphotransfer from the phospho-NDP kinase to the target enzymes in catalytic amounts (approximately 1 nm). These findings suggest that the protein kinase activity of NDP kinase is probably an artifact attributable to trace amounts of contaminating ADP. Additionally, we show that Escherichia coli NDP kinase, like its human homologue NM23-H2/PuF/NDP kinase B, can bind and cleave DNA. Previous in vivo functions of E. coli NDP kinase in the regulation of gene expression that have been attributed to a protein phosphotransferase activity can be explained in the context of NDP kinase-DNA interactions. The conservation of the DNA binding and DNA cleavage activities between human and bacterial NDP kinases argues strongly for the hypothesis that these activities play an essential role in NDP kinase function in vivo.  相似文献   

15.
Adenylate kinase, which catalyzes the reversible ATP-dependent phosphorylation of AMP to ADP and dAMP to dADP, can also catalyze the conversion of nucleoside diphosphates to the corresponding triphosphates. Lu and Inouye (Lu, Q., and Inouye, M. (1996) Proc. Natl. Acad. Sci. U. S. A. 93, 5720-5725) showed that an Escherichia coli ndk mutant, lacking nucleoside diphosphate kinase, can use adenylate kinase as an alternative source of nucleoside triphosphates. Bacteriophage T4 can reproduce in an Escherichia coli ndk mutant, implying that adenylate kinase can meet a demand for deoxyribonucleoside triphosphates that increases by up to 10-fold as a result of T4 infection. In terms of kinetic linkage and specific protein-protein associations, NDP kinase is an integral component of T4 dNTP synthetase, a multienzyme complex containing phage-coded enzymes, which facilitates the synthesis of dNTPs and their flow into DNA. Here we asked whether, by similar criteria, adenylate kinase of the host cell is also a specific component of the complex. Experiments involving protein affinity chromatography, immunoprecipitation, optical biosensor measurements, and glutathione S-transferase pulldowns demonstrated direct interactions between adenylate kinase and several phage-coded enzymes, as well as E. coli nucleoside diphosphate kinase. These results identify adenylate kinase as a specific component of the complex. The rate of DNA synthesis after infection of an ndk mutant was found to be about 40% of the rate seen in wild-type infection, implying that complementation of the missing NDP kinase function by adenylate kinase is fairly efficient, but that adenylate kinase becomes rate-limiting for DNA synthesis when it is the sole source of dNTPs.  相似文献   

16.
Ribonucleotide reductase activity is strongly regulated by nucleoside 5'-triphosphates acting as positive and negative effectors. With the use of dGTP analogs, araGTP and dITP, it was found that the structural requirements of dGTP to serve as a positive effector of ADP reductase were not the same as the requirements for dGTP to serve as a negative effector of CDP and ADP reductase activities. The dTTP analogs methylenedTTP and dideoxyTTP also gave different responses in terms of activating GDP reductase activity and inhibiting CDP and ADP reductase activities. Etheno-ATP and etheno-dATP were inactive as positive and negative effectors, respectively, of CDP reductase activity. DideoxyATP was less active than dATP as a negative effector. Formycin ATP was a very poor substitute for ATP as a positive effector of CDP reductase. These studies indicate that the effector sites are very specific in terms of binding nucleoside triphosphates as positive or negative modulators of ribonucleotide reductase activity.  相似文献   

17.
NDPK-A, product of the nm23-H1 gene, is one of the two major isoforms of human nucleoside diphosphate kinase. We analyzed the binding of its nucleotide substrates by fluorometric methods. The binding of nucleoside triphosphate (NTP) substrates was detected by following changes of the intrinsic fluorescence of the H118G/F60W variant, a mutant protein engineered for that purpose. Nucleoside diphosphate (NDP) substrate binding was measured by competition with a fluorescent derivative of ADP, following the fluorescence anisotropy of the derivative. We also determined an X-ray structure at 2.0A resolution of the variant NDPK-A in complex with ADP, Ca(2+) and inorganic phosphate, products of ATP hydrolysis. We compared the conformation of the bound nucleotide seen in this complex and the interactions it makes with the protein, with those of the nucleotide substrates, substrate analogues or inhibitors present in other NDP kinase structures. We also compared NDP kinase-bound nucleotides to ATP bound to protein kinases, and showed that the nucleoside monophosphate moieties have nearly identical conformations in spite of the very different protein environments. However, the beta and gamma-phosphate groups are differently positioned and oriented in the two types of kinases, and they bind metal ions with opposite chiralities. Thus, it should be possible to design nucleotide analogues that are good substrates of one type of kinase, and poor substrates or inhibitors of the other kind.  相似文献   

18.
To elucidate the physicochemical basis of differences between the isoforms of mammalian multifunctional nucleoside diphosphate kinase (NDP), we investigated the recombinant rat homohexameric NDP kinases alpha and beta, consisting of highly homologous alpha or beta subunits of 152 residues each and differing only in variable regions V1 and V2, and their chimerical forms (NDP kinase alpha(1-130)beta(131-152) and NDP kinase beta(1-130)alpha(131-152)) and tagged derivatives (NDP kinase HA-alpha(1-130)beta(131-152), NDP kinase HA-beta(1-130)alpha(131-152), and NDP kinase HA-beta). The thermal stability of these proteins and the ability of some of them to interact with the rhodopsin-transducin (R*Gt) complex have been studied. It was found that NDP kinase alpha, NDP kinase alpha(1-130)beta(131-152), and NDP kinase HA-alpha(1-130)beta(131-152) were similar in their thermal stability (T(1/2) = 61-63 degrees C). NDP kinase beta, NDP kinase beta(1-130)alpha(131-152), NDP kinase HA-beta(1-130)alpha(131-152), and NDP kinase HA-beta were inactivated at a lower temperature (T(1/2) = 51-54 degrees C). NDP kinase HA-alpha(1-130)beta(131-152) interacted with the R*Gt complex in the same manner as NDP kinase alpha, whereas the interaction of NDP kinase HA-beta(1-130)alpha(131-152) and NDP kinase beta with the photoreceptor membranes under the same conditions was very weak. It is suggested that the variability of the region V1 is a structural basis for the multifunctionality of NDP kinase hexamers in the cell.  相似文献   

19.
P Gonin  Y Xu  L Milon  S Dabernat  M Morr  R Kumar  M L Lacombe  J Janin  I Lascu 《Biochemistry》1999,38(22):7265-7272
Nucleoside diphosphate (NDP) kinases display low specificity with respect to the base moiety of the nucleotides and to the 2'-position of the ribose, but the 3'-hydroxyl is found to be important for catalysis. We report in this paper the enzymatic analysis of a series of derivatives of thymidine diphosphate (TDP) where the 3'-OH group was removed or replaced by fluorine, azido, and amino groups. With Dictyostelium NDP kinase, kcat decreases 15-200-fold from 1100 s-1 with TDP, and (kcat/Km)NDP decreases from 12 x 10(6) to 10(3) to 5 x 10(4) M-1 s-1, depending on the substrate. The poorest substrates are 3'-deoxyTDP and 3'-azido-3'-deoxyTDP, while the best modified substrates are 2',3'-dehydro-3'-deoxyTDP and 3'-fluoro-3'-deoxyTDP. In a similar way, 3'-fluoro-2',3'-dideoxyUDP was found to be a better substrate than 2',3'-dideoxyUDP, but a much poorer substrate than 2'-deoxyUDP. (kcat/Km)NDP is sensitive to the viscosity of the solution with TDP as the substrate but not with the modified substrates. To understand the poor catalytic efficiency of the modified nucleotides at a structural level, we determined the crystal structure of Dictyostelium NDP kinase complexed to 3'-fluoro-2',3'-dideoxyUDP at 2.7 A resolution. Significant differences are noted as compared to the TDP complex. Substrate-assisted catalysis by the 3'-OH, which is effective in the NDP kinase reaction, cannot occur with the modified substrate. With TDP, the beta-phosphate, which is the leaving group when a gamma-phosphate is transferred to His122, hydrogen bonds to the 3'-hydroxyl group of the sugar; with 3'-fluoro-2',3'-dideoxyUDP, the beta-phosphate hydrogen bonds to Asn119 and moves away from the attacking Ndelta of the catalytic His122. Since all anti-AIDS nucleoside drugs are modified at the 3'-position, these results are relevant to the role of NDP kinase in their cellular metabolism.  相似文献   

20.
An ATP-binding protein from the haloalkaliphilic archaeon Natronobacterium magadii was purified and characterized by affinity chromatography on ATP-agarose and by fast protein liquid chromatography (FPLC) on a Mono Q column. The N-terminal 20 amino acid sequence of the kinase showed a strong sequence similarity of this protein with nucleoside diphosphate (NDP) kinases from different organisms and, accordingly, we believe that this protein is a nucleoside diphosphate kinase, an enzyme whose main function is to exchange γ-phosphates between nucleoside triphosphates and diphosphates. Comparison of the molecular weights of the NDP kinase monomer determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) (23 000) and of the oligomer determined by sedimentation equilibrium experiments (125 000) indicated that the oligomer is a hexamer. The enzyme was autophosphorylated in the presence of [γ-32P]ATP, and Mg2+ was required for the incorporation of phosphate. The kinase preserved the ability to transfer γ-phosphate from ATP to GDP in the range of NaCl concentration from 90 mM to 3.5 M and in the range of pH from 5 to 12. It was found and confirmed by Western blotting that this kinase is one of the proteins that bind specifically to natronobacterial flagellins. NDP kinase from haloalkaliphiles appeared to be simple to purify and to be a suitable enzyme for studies of structure and stability compared with NDP kinases from mesophilic organisms. Received: December 3, 1997 / Accepted: January 29, 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号