首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Beers SA  Buckland AG  Giles N  Gelb MH  Wilton DC 《Biochemistry》2003,42(24):7326-7338
An important characteristic of the human group IIA secreted phospholipase A(2) (IIA PLA(2)) is the extremely low activity of this enzyme with phosphatidylcholine (PC) vesicles, mammalian cell membranes, and serum lipoproteins. This characteristic is reflected in the lack of ability of this enzyme to bind productively to zwitterionic interfaces. Part of the molecular basis for this lack of activity is an absence of tryptophan, a residue with a known preference for residing in the interfacial region of zwitterionic phospholipid bilayers. In this paper we have replaced the eight residues that make up the hydrophobic collar on the interfacial binding surface of the enzyme with tryptophan. The catalytic and interfacial binding properties of these mutants have been investigated, particularly those properties associated with binding to and hydrolysis of zwitterionic interfaces. Only the insertion of a tryptophan at position 3 or 31 produces mutants that significantly enhance the activity of the human IIA enzyme against zwitterionic interfaces and intact cell membranes. Importantly, the ability of the enzyme mutants to hydrolyze PC-rich interfaces such as the outer plasma membrane of mammalian cells was paralleled by enhanced interfacial binding to zwitterionic interfaces. The corresponding double tryptophan mutant (V3,31W) displays a specific activity on PC vesicles comparable to that of the human group V sPLA2. This enhanced activity includes the ability to interact with human embryonic kidney HEK293 cells, previously reported for the group V enzyme [Kim, Y. J., Kim, K. P., Rhee, H. J., Das, S., Rafter, J. D., Oh, Y. S., and Cho, W. (2002) J. Biol. Chem. 277, 9358-9365].  相似文献   

2.
The Human Secreted Group IID Phospholipase A(2) (hsPLA2GIID) may be involved in the human acute immune response. Here we have demonstrated that the hsPLA2GIID presents bactericidal and Ca(2+)-independent liposome membrane-damaging activities and we have compared these effects with the catalytic activity of active-site mutants of the protein. All mutants showed reduced hydrolytic activity against DOPC:DOPG liposome membranes, however bactericidal effects against Escherichia coli and Micrococcus luteus were less affected, with the D49K mutant retaining 30% killing of the Gram-negative bacteria at a concentration of 10μg/mL despite the absence of catalytic activity. The H48Q mutant maintained Ca(2+)-independent membrane-damaging activity whereas the G30S and D49K mutants were approximately 50% of the wild-type protein, demonstrating that phospholipid bilayer permeabilization by the hsPLA2GIID is independent of catalytic activity. We suggest that this Ca(2+)-independent damaging activity may play a role in the bactericidal function of the protein.  相似文献   

3.
Tyrosine 34 and glutamine 146 are highly conserved outer sphere residues in the mononuclear manganese active site of Escherichia coli manganese superoxide dismutase. Biochemical and spectroscopic characterization of site-directed mutants has allowed functional characterization of these residues in the wild-type (wt) enzyme. X-ray crystallographic analysis of three mutants (Y34F, Q146L, and Q146H) reveal subtle changes in the protein structures. The Y34A mutant, as well as the previously reported Y34F mutant, retained essentially the full superoxide dismutase activity of the wild-type enzyme, and the X-ray crystal structure of Y34F manganese superoxide dismutase shows that mutation of this strictly conserved residue has only minor effects on the positions of active site residues and the organized water in the substrate access funnel. Mutation of the outer sphere solvent pocket residue Q146 has more dramatic effects. The Q146E mutant is isolated as an apoprotein lacking dismutase activity. Q146L and Q146H mutants retain only 5-10% of the dismutase activity of the wild-type enzyme. The absorption and circular dichroism spectra of the Q146H mutant resemble corresponding data for the superoxide dismutase from a hyperthermophilic archaeon, Pyrobaculum aerophilum, which is active in both Mn and Fe forms. Interestingly, the iron-substituted Q146H protein also exhibits low dismutase activity, which increases at lower pH. Mutation of glutamine 146 disrupts the hydrogen-bonding network in the active site and has a greater effect on protein structure than does the Y34F mutant, with rearrangement of the tyrosine 34 and tryptophan 128 side chains.  相似文献   

4.
Lacombe T  Gabriel JM 《FEBS letters》2002,531(3):469-474
The human isopeptidase T (isoT) is a zinc-binding deubiquitinating enzyme involved in the disassembly of free K48-linked polyubiquitin chains into ubiquitin monomers. The catalytic site of this enzyme is thought to be composed of Cys335, Asp435, His786 and His795. These four residues were site-directed mutagenized. None of the mutants were able to cleave a peptide-linked ubiquitin dimer. Similarly, C335S, D435N and H795N mutants had virtually no activity against a K48-linked isopeptide ubiquitin dimer, which is an isoT-specific substrate that mimics the K48-linked polyubiquitin chains. On the other hand, the H786N mutant retained a partial activity toward the K48-linked substrate, suggesting that the His786 residue might not be part of the catalytic site. None of the mutations significantly affected the capacity of isoT to bind ubiquitin and zinc. Thus, the catalytic site of UBPs could resemble that of other cysteine proteases, which contain one Cys, one Asp and one His.  相似文献   

5.
The GIVA phospholipase A(2) (PLA(2)) contains two domains: a calcium-binding domain (C2) and a catalytic domain. These domains are linked via a flexible tether. GIVA PLA(2) activity is Ca(2+)-dependent in that calcium binding promotes protein docking to the phospholipid membrane. In addition, the catalytic domain has a lid that covers the active site, presumably regulating GIVA PLA(2) activity. We now present studies that explore the dynamics and conformational changes of this enzyme in solution utilizing peptide amide hydrogen/deuterium (H/D) exchange coupled with liquid chromatography-mass spectrometry (DXMS) to probe the solvent accessibility and backbone flexibility of the C2 domain, the catalytic domain, and the intact GIVA PLA(2). We also analyzed the changes in H/D exchange of the intact GIVA PLA(2) upon Ca(2+) binding. The DXMS results showed a fast H/D-exchanging lid and a slow exchanging central core. The C2 domain showed two distinct regions: a fast exchanging region facing away from the catalytic domain and a slow exchanging region present in the "cleft" region between the C2 and catalytic domains. The slow exchanging region of the C2 domain is in tight proximity to the catalytic domain. The effects of Ca(2+) binding on GIVA PLA(2) are localized in the C2 domain and suggest that binding of two distinct Ca(2+) ions causes tightening up of the regions that surround the anion hole at the tip of the C2 domain. This conformational change may be the initial step in GIVA PLA(2) activation.  相似文献   

6.
The cloned Escherichia coli gor gene encoding the flavoprotein glutathione reductase was placed under the control of the tac promoter in the plasmid pKK223-3, allowing expression of glutathione reductase at levels approximately 40,000 times those of untransformed cells. This greatly facilitated purification of the enzyme. By directed mutagenesis of the gor gene, His-439 was changed to glutamine (H439Q) and alanine (H439A). The tyrosine residue at position 99 was changed to phenylalanine (Y99F), and in another experiment, the H439Q and Y99F mutations were united to form the double mutant Y99FH439Q. His-439 is thought to act in the catalytic mechanism as a proton donor/acceptor in the glutathione-binding pocket. The H439Q and H439A mutants retain approximately 1% and approximately 0.3%, respectively, of the catalytic activity of the wild-type enzyme. This reinforces our previous finding [Berry et al. (1989) Biochemistry 28, 1264-1269] that direct protonation and deprotonation of the histidine residue are not essential for the reaction to occur. The retention of catalytic activity by the H439A mutant demonstrates further that a side chain capable of hydrogen bonding to a water molecule, which might then act as proton donor, also is not essential at this position. Tyr-99 is a further possible proton donor in the glutathione-binding pocket, but the Y99F mutant was essentially fully active, and the Y99FH439Q double mutant also retained approximately 1% of the wild-type specific activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Harris TK  Wu G  Massiah MA  Mildvan AS 《Biochemistry》2000,39(7):1655-1674
The MutT enzyme catalyzes the hydrolysis of nucleoside triphosphates (NTP) to NMP and PP(i) by nucleophilic substitution at the rarely attacked beta-phosphorus. The solution structure of the quaternary E-M(2+)-AMPCPP-M(2+) complex indicated that conserved residues Glu-53, -56, -57, and -98 are at the active site near the bound divalent cation possibly serving as metal ligands, Lys-39 is positioned to promote departure of the NMP leaving group, and Glu-44 precedes helix I (residues 47-59) possibly stabilizing this helix which contributes four catalytic residues to the active site [Lin, J. , Abeygunawardana, C., Frick, D. N., Bessman, M. J., and Mildvan, A. S. (1997) Biochemistry 36, 1199-1211]. To test these proposed roles, the effects of mutations of each of these residues on the kinetic parameters and on the Mn(2+), Mg(2+), and substrate binding properties were examined. The largest decreases in k(cat) for the Mg(2+)-activated enzyme of 10(4.7)- and 10(2.6)-fold were observed for the E53Q and E53D mutants, respectively, while 97-, 48-, 25-, and 14-fold decreases were observed for the E44D, E56D, E56Q, and E44Q mutations, respectively. Smaller effects on k(cat) were observed for mutations of Glu-98 and Lys-39. For wild type MutT and its E53D and E44D mutants, plots of log(k(cat)) versus pH exhibited a limiting slope of 1 on the ascending limb and then a hump, i.e., a sharply defined maximum near pH 8 followed by a plateau, yielding apparent pK(a) values of 7.6 +/- 0.3 and 8.4 +/- 0.4 for an essential base and a nonessential acid catalyst, respectively, in the active quaternary MutT-Mg(2+)-dGTP-Mg(2+) complex. The pK(a) of 7.6 is assigned to Glu-53, functioning as a base catalyst in the active quaternary complex, on the basis of the disappearance of the ascending limb of the pH-rate profile of the E53Q mutant, and its restoration in the E53D mutant with a 10(1.9)-fold increase in (k(cat))(max). The pK(a) of 8.4 is assigned to Lys-39 on the basis of the disappearance of the descending limb of the pH-rate profile of the K39Q mutant, and the observation that removal of the positive charge of Lys-39, by either deprotonation or mutation, results in the same 8.7-fold decrease in k(cat). Values of k(cat) of both wild type MutT and the E53Q mutant were independent of solvent viscosity, indicating that a chemical step is likely to be rate-limiting with both. A liganding role for Glu-53 and Glu-56, but not Glu-98, in the binary E-M(2+) complex is indicated by the observation that the E53Q, E53D, E56Q, and E56D mutants bound Mn(2+) at the active site 36-, 27-, 4.7-, and 1.9-fold weaker, and exhibited 2.10-, 1.50-, 1.12-, and 1.24-fold lower enhanced paramagnetic effects of Mn(2+), respectively, than the wild type enzyme as detected by 1/T(1) values of water protons, consistent with the loss of a metal ligand. However, the K(m) values of Mg(2+) and Mn(2+) indicate that Glu-56, and to a lesser degree Glu-98, contribute to metal binding in the active quaternary complex. Mutations of the more distant but conserved residue Glu-44 had little effect on metal binding or enhancement factors in the binary E-M(2+) complexes. Two-dimensional (1)H-(15)N HSQC and three-dimensional (1)H-(15)N NOESY-HSQC spectra of the kinetically damaged E53Q and E56Q mutants showed largely intact proteins with structural changes near the mutated residues. Structural changes in the kinetically more damaged E44D mutant detected in (1)H-(15)N HSQC spectra were largely limited to the loop I-helix I motif, suggesting that Glu-44 stabilizes the active site region. (1)H-(15)N HSQC titrations of the E53Q, E56Q, and E44D mutants with dGTP showed changes in chemical shifts of residues lining the active site cleft, and revealed tighter nucleotide binding by these mutants, indicating an intact substrate binding site. (ABSTRACT TRUNCATED)  相似文献   

8.
The role of two sequence motifs (SM) as putative cleavage catalytic centers (77)PDX(13)EAK (SM I) and (811)PDX(20)DQK (SM II) of type IV restriction endonuclease Eco57I was studied by site-directed mutational analysis. Substitutions within SM I; D78N, D78A, D78K, and E92Q reduced cleavage activity of Eco57I to a level undetectable both in vivo and in vitro. Residual endonucleolytic activity of the E92Q mutant was detected only when the Mg(2+) in the standard reaction mixture was replaced with Mn(2+). The mutants D78N and E92Q retained the ability to interact with DNA specifically. The mutants also retained DNA methylation activity of Eco57I. The properties of the SM I mutants indicate that Asp(78) and Glu(92) residues are essential for cleavage activity of the Eco57I, suggesting that the sequence motif (77)PDX(13)EAK represents the cleavage active site of this endonuclease. Eco57I mutants containing single amino acid substitutions within SM II (D812A, D833N, D833A) revealed only a small or moderate decrease of cleavage activity as compared with wild-type Eco57I, indicating that the SM II motif does not represent the catalytic center of Eco57I. The results, taken together, allow us to conclude that the Eco57I restriction endonuclease has one catalytic center for cleavage of DNA.  相似文献   

9.
Five conserved histidine residues are found in the human endothelial nitric-oxide synthase (NOS) heme domain: His-420, His-421, and His-461 are close to the heme, whereas His-146 and His-214 are some distance away. To investigate whether the histidines form a non-heme iron-binding site, we have expressed the H146A, H214A, H420A, H421A, and H461A mutants. The H420A mutant could not be isolated, and the H146A and H421A mutants were inactive. The H214A mutant resembled the wild-type enzyme in all respects. The H461A mutant had a low-spin heme, but high concentrations of L-Arg and tetrahydrobiopterin led to partial recovery of activity. Laser atomic emission showed that the only significant metal in NOS other than calcium and iron is zinc. The activities of the NOS isoforms were not increased by incubation with Fe(2+), but were inhibited by high Fe(2+) or Zn(2+) concentrations. The histidine mutations altered the ability of the protein to dimerize and to bind heme. However, the protein metal content, the inability of exogenous Fe(2+) to increase catalytic activity, and the absence of evidence that the conserved histidines form a metal site provide no support for a catalytic role for a non-heme redox-active metal.  相似文献   

10.
The RNase H activity of HIV-RT is coordinated by a catalytic triad (E478, D443, D498) of acidic residues that bind divalent cations. We examined the effect of RNase H deficient E(478)-->Q and D(549)-->N mutations that do not alter polymerase activity on binding of enzyme to various nucleic acid substrates. Binding of the mutant and wild-type enzymes to various nucleic acid substrates was examined by determining dissociation rate constants (k(off)) by titrating both Mg(2+) and salt concentrations. In agreement with the unaltered polymerase activity of the mutant, the k(off) values for the wild-type and mutant enzymes were essentially identical using DNA-DNA templates in the presence of 6 mM Mg(2+). However, with lower concentrations of Mg(2+) and in the absence of Mg(2+), although both enzymes dissociated more rapidly, the mutant enzymes dissociated several-fold more slowly than the wild type. This was also observed on RNA-DNA templates. These results indicate that alterations in residues essential for Mg(2+) binding have a pronounced positive effect on enzyme-template stability and that the negative residues in the RNase H region of the enzyme have a negative influence on binding in the absence of Mg(2+). In this regard RT is similar to other nucleic acid cleaving enzymes that show enhanced binding upon mutation of active site residues.  相似文献   

11.
The fosfomycin resistance protein FosA is a member of a distinct superfamily of metalloenzymes containing glyoxalase I, extradiol dioxygenases, and methylmalonyl-CoA epimerase. The dimeric enzyme, with the aid of a single mononuclear Mn2+ site in each subunit, catalyzes the addition of glutathione (GSH) to the oxirane ring of the antibiotic, rendering it inactive. Sequence alignments suggest that the metal binding site of FosA is composed of three residues: H7, H67, and E113. The single mutants H7A, H67A, and E113A as well as the more conservative mutants H7Q, H67Q, and E113Q exhibit marked decreases in the ability to bind Mn2+ and, in most instances, decreases in catalytic efficiency and the ability to confer resistance to the antibiotic. The enzyme also requires the monovalent cation K+ for optimal activity. The K+ ion activates the enzyme 100-fold with an activation constant of 6 mM, well below the physiologic concentration of K+ in E. coli. K+ can be replaced by other monovalent cations of similar ionic radii. Several lines of evidence suggest that the K+ ion interacts directly with the active site. Interaction of the enzyme with K+ is found to be dependent on the presence of the substrate fosfomycin. Moreover, the E113Q mutant exhibits a kcat which is 40% that of wild-type in the absence of K+. This mutant is not activated by monovalent cations. The behavior of the E113Q mutant is consistent with the proposition that the K+ ion helps balance the charge at the metal center, further lowering the activation barrier for addition of the anionic nucleophile. The fully activated, native enzyme provides a rate acceleration of >10(15) with respect to the spontaneous addition of GSH to the oxirane.  相似文献   

12.
Yu BZ  Pan YH  Janssen MJ  Bahnson BJ  Jain MK 《Biochemistry》2005,44(9):3369-3379
The family of secreted 14 kDa phospholipase A(2) (PLA2) enzymes have a common motif for the catalytic site but differ in their disulfide architecture. The functional significance of such structural changes has been analyzed by comparing the kinetic and spectroscopic properties of a series of disulfide mutants engineered into the sequence of pig pancreatic IB PLA2 to resemble the mammalian paralogues of the PLA2 family [Janssen et al. (1999) Eur. J. Biochem. 261, 197-207, 1999]. We report a detailed comparison of the functional parameters of pig iso-PLA2, as well as several of the human homologues, with these disulfide engineered mutants of pig IB PLA2. The crystal structure of the ligand free and the active site inhibitor-MJ33 bound forms of PLA2 engineered to have the disulfide bonding pattern of group-X (eng-X) are also reported and compared with the structure of group-IB and human group-X PLA2. The engineered mutants show noticeable functional differences that are rationalized in terms of spectroscopic properties and the differences detected in the crystal structure of eng-X. A major difference between the eng-mutants is in the calcium binding to the enzyme in the aqueous phase, which also influences the binding of the active site directed ligands. We suggest that the disulfide architecture of the PLA2 paralogues has a marginal influence on interface binding. In this comparison, the modest differences observed in the interfacial kinetics are attributed to the changes in the side chain residues. This in turn influences the coupling of the catalytic cycle to the calcium binding and the interfacial binding event.  相似文献   

13.
Several snake venom secreted phospholipases A2 (sPLA2s) including OS2 exert a variety of pharmacological effects ranging from central neurotoxicity to anti-HIV activity by mechanisms that are not yet fully understood. To conclusively address the role of enzymatic activity and map the key structural elements of OS2 responsible for its pharmacological properties, we have prepared single point OS2 mutants at the catalytic site and large chimeras between OS2 and OS1, a homologous but nontoxic sPLA2. Most importantly, we found that the enzymatic activity of the active site mutant H48Q is 500-fold lower than that of the wild-type protein, while central neurotoxicity is only 16-fold lower, providing convincing evidence that catalytic activity is at most a minor factor that determines central neurotoxicity. The chimera approach has identified the N-terminal region (residues 1-22) of OS2, but not the central one (residues 58-89), as crucial for both enzymatic activity and pharmacological effects. The C-terminal region of OS2 (residues 102-119) was found to be critical for enzymatic activity, but not for central neurotoxicity and anti-HIV activity, allowing us to further dissociate enzymatic activity and pharmacological effects. Finally, direct binding studies with the C-terminal chimera, which poorly binds to phospholipids while it is still neurotoxic, led to the identification of a subset of brain N-type receptors which may be directly involved in central neurotoxicity.  相似文献   

14.
The Human Secreted Group IIA Phospholipase A2 (hsPLA2GIIA) presents potent bactericidal activity, and is considered to contribute to the acute-phase immune response. Hydrolysis of inner membrane phospholipids is suggested to underlie the bactericidal activity, and we have evaluated this proposal by comparing catalytic activity with bactericidal and liposome membrane damaging effects of the G30S, H48Q and D49K hsPLA2GIIA mutants. All mutants showed severely impaired hydrolytic activities against mixed DOPC:DOPG liposome membranes, however the bactericidal effect against Micrococcus luteus was less affected, with 50% killing at concentrations of 1, 3, 7 and 9 μg/mL for the wild-type, D49K, H48Q and G30S mutants respectively. Furthermore, all proteins showed Ca2+-independent damaging activity against liposome membranes demonstrating that in addition to the hydrolysis-dependent membrane damage, the hsPLA2GIIA presents a mechanism for permeabilization of phospholipid bilayers that is independent of catalytic activity, which may play a role in the bactericidal function of the protein  相似文献   

15.
Huang YC  Colman RF 《Biochemistry》2002,41(17):5637-5643
Sequence alignment predicts that His(309) of pig heart NADP-dependent isocitrate dehydrogenase is equivalent to His(339) of the Escherichia coli enzyme, which interacts with the coenzyme in the crystal structure [Hurley et al. (1991) Biochemistry 30, 8671-8688], and porcine His(315) and His(319) are close to that site. The mutant porcine enzymes H309Q, H309F, H315Q, and H319Q were prepared by site-directed mutagenesis, expressed in E. coli, and purified. The H319Q mutant has K(m) values for NADP, isocitrate, and Mn(2+) similar to those of wild-type enzyme, and V(max) = 20.1, as compared to 37.8 micromol of NADPH min(-1) (mg of protein)(-1) for wild type. Thus, His(319) is not involved in coenzyme binding and has a minimal effect on catalysis. In contrast, H315Q exhibits a K(m) for NADP 40 times that of wild type and V(max) = 16.2 units/mg of protein, with K(m) values for isocitrate and Mn(2+) similar to those of wild type. These results implicate His(315) in the region of the NADP site. Replacement of His(309) by Q or F yields enzyme with no detectable activity. The His(309) mutants bind NADPH poorly, under conditions in which wild type and H319Q bind 1.0 mol of NADPH/mol of subunit, indicating that His(309) is important for the binding of coenzyme. The His(309) mutants bind isocitrate stoichiometrically, as do wild-type and the other mutant enzymes. However, as distinguished from the wild-type enzyme, the His(309) mutants are not oxidatively cleaved by metal isocitrate, implying that the metal ion is not bound normally. Since circular dichroism spectra are similar for wild type, H315Q, and H319Q, these amino acid substitutions do not cause major conformational changes. In contrast, replacement of His(309) results in detectable change in the enzyme's CD spectrum and therefore in its secondary structure. We propose that His(309) plays a significant role in the binding of coenzyme, contributes to the proper coordination of divalent metal ion in the presence of isocitrate, and maintains the normal conformation of the enzyme.  相似文献   

16.
W Chen  W D Frasch 《Biochemistry》2001,40(25):7729-7735
Site-directed mutants Y317C, Y317E, Y317F, Y317G, and Y317K were made to the catch-loop tyrosine on the beta subunit of the chloroplast F(1)-ATPase in Chlamydomonas. EPR spectra of VO(2+)-ATP bound to site 3 of CF(1) from wild type and mutants were obtained. Every mutant changed the (51)V hyperfine parameters of the VO(2+) bound at this site in the catalytically active conformation of the enzyme but had no effect on these parameters in the form that predominates when the enzyme activity is latent. These results indicate that this residue is a ligand to the metal of the Mg(2+)-nucleotide complex that binds to the empty catalytic site. The mutations also decreased the k(cat) of the ATPase activity to a much greater extent than k(cat)/K(M). Thus, these mutations limit the rate of product (Mg(2+)-ADP and phosphate) release in the ATPase direction or, conversely, the initial binding of substrates in the ATP synthesis direction. On the basis of these observations, coordination of betaY317 by Mg(2+)-ADP that binds to the empty catalytic site provides a means by which substrate binding could trigger gamma subunit rotation and consequent conformation changes of beta subunits during ATP synthesis.  相似文献   

17.
DNase II is an acid endonuclease that is involved in the degradation of exogenous DNA and is important for DNA fragmentation and degradation during cell death. In an effort to understand its catalytic mechanism, we constructed plasmids encoding nine different histidine (H)-to-leucine (L) mutants for porcine DNase II and examined the enzyme properties of the expressed mutant proteins. Of the mutants, all but H132L were secreted into the medium of expressing cells. Six of the mutated DNase II proteins (H41L, H109L, H206L, H207L, H274L and H322L) showed enzyme activity, whereas the H115L, H132L and H297L mutants exhibited very little activity. The H115L and H297L mutants were found to undergo correct protein folding, but were inactive. To further examine these mutants, we expressed H115A and H297A DNase II mutants; these mutants were inactive, but their DNase activities could be rescued with imidazole, indicating that His115 and His297 are likely to function as a general acid and a general base respectively in the catalytic centre of the enzyme. In contrast with the secreted mutants, the H132L mutant protein was found in cell lysates within 16 h after transfection. This protein was inactive, improperly folded and was drastically degraded via the proteosomal pathway after 24 h. The polypeptide of another substitution for His132 with lysine resulted in the misfolded form being retained in endoplasmic reticulum.  相似文献   

18.
The active center histidines of the Escherichia coli phosphoenolpyruvate:sugar phosphotransferase system proteins; histidine-containing protein, enzyme I, and enzyme IIA(Glc) were substituted with a series of amino acids (serine, threonine, tyrosine, cysteine, aspartate, and glutamate) with the potential to undergo phosphorylation. The mutants [H189E]enzyme I, [H15D]HPr, and [H90E]enzyme IIA(Glc) retained ability for phosphorylation as indicated by [(32)P]phosphoenolpyruvate labeling. As the active center histidines of both enzyme I and enzyme IIA(Glc) undergo phosphorylation of the N(epsilon2) atom, while HPr is phosphorylated at the N(delta1) atom, a pattern of successful substitution of glutamates for N(epsilon2) phosphorylations and aspartates for N(delta1) phosphorylations emerges. Furthermore, phosphotransfer between acyl residues: P-aspartyl to glutamyl and P-glutamyl to aspartyl was demonstrated with these mutant proteins and enzymes.  相似文献   

19.
During recent years, the high phospholipase A(2) (PLA(2)) concentrations at sites of inflammation and in circulation in several life-threatening diseases, such as sepsis, multi-organ dysfunction and acute respiratory distress syndrome, has generally been ascribed to the non-pancreatic group IIA PLA(2). Recently the family of secreted low molecular mass PLA(2) enzymes has rapidly expanded. In some cases, a newly described enzyme appeared to be cross-reactive with antibodies against the group IIA enzyme. For this reason, reports describing the expression of group IIA PLA(2) during inflammatory conditions need to be reevaluated. Here we describe the identification of the PLA(2) activity in sera of acute chest syndrome patients and in sera of trauma victims. In both cases, the PLA(2) activity was identified as group IIA. This classification was based upon cross-reactivity with monoclonal antibodies against group IIA PLA(2) which do not recognize the recombinant human group V enzyme. Moreover, purification of the enzymatic activity from the two sera followed by N-terminal amino acid sequence analyses revealed only the presence of group IIA enzyme.  相似文献   

20.
The enzyme phospholipase A2 (PLA2) catalyzes the hydrolysis of the sn-2 ester bond of membrane phospholipids. The highly conserved Tyr residues 52 and 73 in the enzyme form hydrogen bonds to the carboxylate group of the catalytic Asp-99. These hydrogen bonds were initially regarded as essential for the interfacial recognition and the stability of the overall catalytic network. The elimination of the hydrogen bonds involving the phenolic hydroxyl groups of the Tyr-52 and -73 by changing them to Phe lowered the stability but did not significantly affect the catalytic activity of the enzyme. The X-ray crystal structure of the double mutant Y52F/Y73F has been determined at 1.93 A resolution to study the effect of the mutation on the structure. The crystals are trigonal, space group P3(1)21, with cell parameters a = b = 46.3 A and c = 102.95 A. Intensity data were collected on a Siemens area detector, 8,024 reflections were unique with an R(sym) of 4.5% out of a total of 27,203. The structure was refined using all the unique reflections by XPLOR to a final R-factor of 18.6% for 955 protein atoms, 91 water molecules, and 1 calcium ion. The root mean square deviation for the alpha-carbon atoms between the double mutant and wild type was 0.56 A. The crystal structure revealed that four hydrogen bonds were lost in the catalytic network; three involving the tyrosines and one involving Pro-68. However, the hydrogen bonds of the catalytic triad, His-48, Asp-99, and the catalytic water, are retained. There is no additional solvent molecule at the active site to replace the missing hydroxyl groups; instead, the replacement of the phenolic OH groups by H atoms draws the Phe residues closer to the neighboring residues compared to wild type; Phe-52 moves toward His-48 and Asp-99 of the catalytic diad, and Phe-73 moves toward Met-8, both by about 0.5 A. The closing of the voids left by the OH groups increases the hydrophobic interactions compensating for the lost hydrogen bonds. The conservation of the triad hydrogen bonds and the stabilization of the active site by the increased hydrophobic interactions could explain why the double mutant has activity similar to wild type. The results indicate that the aspartyl carboxylate group of the catalytic triad can function alone without additional support from the hydrogen bonds of the two Tyr residues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号