首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Clostridium botulinum dormant spores germinate in presence of l-alanine via a specific receptor composed of GerAA, GerAB and GerAC proteins. In Bacillus subtilis spores, GerAA and GerAC proteins were located in the inner membrane of the spore. We studied the location of the GerAB protein in C. botulinum spore fractions by Western-blot analysis, using an antipeptidic antibody. The protein GerAB was in vitro translated and used to confirm the specificity of the antibodies. GerAB was not present in a coat and spore outer membrane fraction but was present in a fraction of decoated spores containing inner membrane. These results strongly suggest that the protein GerAB is located in the inner membrane of the spore.  相似文献   

2.
The ultrastructural changes occurring during defined stages of the transition of dormant Bacillus cereus T spores into heat-sensitive forms were investigated. The coat of the heat-activated spores displayed conspicuous striations across its middle layer. Electron microscopy of thin sections of heat-activated spores revealed the presence in the spore of a layer consisting of hexagonally oriented subunits. It was demonstrated that the subcoat region, but not the cortex, disappears rapidly during germination of B. cereus T spores. The fibrous structures apparently associated with the spore coat remain virtually unchanged during the entire course of activation and germination.  相似文献   

3.
The hydrolysis of the bacterial spore peptidoglycan (cortex) is a crucial event in spore germination. It has been suggested that SleC and SleM, which are conserved among clostridia, are to be considered putative cortex-lytic enzymes in Clostridium perfringens. However, little is known about the details of the hydrolytic process by these enzymes during germination, except that SleM functions as a muramidase. Muropeptides derived from SleC-digested decoated spores of a Bacillus subtilis mutant that lacks the enzymes, SleB, YaaH and CwlJ, related to cortex hydrolysis were identified by amino acid analysis and mass spectrometry. The results suggest that SleC is most likely a bifunctional enzyme possessing lytic transglycosylase activity and N-acetylmuramoyl-L-alanine amidase activity confined to cross-linked tetrapeptide-tetrapeptide moieties of the cortex structure. Furthermore, it appears that during germination of Clostridium perfringens spores, SleC causes merely small and local changes in the cortex structure, which are necessary before SleM can function.  相似文献   

4.
The sequence of changes during germination of putrefactive anaerobe 3679h spores was studied under aerobic conditions in a solution containing l-alanine and sodium pyrophosphate. Evidence that specific changes occurred in two distinct regions of the spore is given by data on several criteria that were used to measure germination. During the initial stage of germination, the absorbancy decreased, dipicolinic acid was released, the spores lost their resistance to heat and toxic chemicals, and the spore periphery (cortex) darkened gradually under phase-contrast microscopy. The final stage of germination was characterized by changes in the central spore region (core), notably phase darkening of the spore center and stainability with mercurochrome, and by a slight additional absorbancy decrease.  相似文献   

5.
When the spores of Bacillus megaterium QM B1551 (ATCC 12872) were incubated with 5 mM CdCl2 at 30 C, they underwent the early germination events, such as loss of heat resistance and release of calcium dipicolinate, in the same way as when they were germinated by glucose + KNO3. However, germination by CdCl2 caused no increase in the reducing groups in the cortex and no excretion of glucosamine-containing materials due to the hydrolysis of the cortex peptidoglycan. Addition of CdCl2 at any time during germination by glucose + KNO3 inhibited the release of glucosamine-containing materials from the spores, whereas removal of cadmium from the CdCl2-germinated spores by treatment with cysteine restored the hydrolysis of peptidoglycan. These results suggested that CdCl2 caused the early events of spore germination but prevented the spores from undergoing the events following germination by inhibiting the enzymatic lysis of the cortex peptidoglycan. The conclusion from the study is that cortex degradation is not always required for the initiation of germination.  相似文献   

6.
Spores of Bacillus subtilis lacking all germinant receptors germinate >500-fold slower than wild-type spores in nutrients and were not induced to germinate by a pressure of 100 MPa. However, a pressure of 550 MPa induced germination of spores lacking all germinant receptors as well as of receptorless spores lacking either of the two lytic enzymes essential for cortex hydrolysis during germination. Complete germination of spores either lacking both cortex-lytic enzymes or with a cortex not attacked by these enzymes was not induced by a pressure of 550 MPa, but treatment of these mutant spores with this pressure caused the release of dipicolinic acid. These data suggest the following conclusions: (i) a pressure of 100 MPa induces spore germination by activating the germinant receptors; and (ii) a pressure of 550 MPa opens channels for release of dipicolinic acid from the spore core, which leads to the later steps in spore germination.  相似文献   

7.
Spores of Bacillus subtilis lacking all germinant receptors germinate >500-fold slower than wild-type spores in nutrients and were not induced to germinate by a pressure of 100 MPa. However, a pressure of 550 MPa induced germination of spores lacking all germinant receptors as well as of receptorless spores lacking either of the two lytic enzymes essential for cortex hydrolysis during germination. Complete germination of spores either lacking both cortex-lytic enzymes or with a cortex not attacked by these enzymes was not induced by a pressure of 550 MPa, but treatment of these mutant spores with this pressure caused the release of dipicolinic acid. These data suggest the following conclusions: (i) a pressure of 100 MPa induces spore germination by activating the germinant receptors; and (ii) a pressure of 550 MPa opens channels for release of dipicolinic acid from the spore core, which leads to the later steps in spore germination.  相似文献   

8.
芽孢杆菌孢子萌发机理的研究进展   总被引:1,自引:0,他引:1  
芽孢杆菌休眠孢子的萌发是孢子恢复到营养生长的第一个决定性步骤。孢子被营养性萌发剂和各种非营养信号诱导而萌发恢复到营养细胞状态。芽孢萌发后就丧失了对外界胁迫的抵抗力。该文主要从芽孢萌发信号传导、营养萌发受体、萌发中的离子通道、皮层溶解酶的功能、非营养诱导萌发和萌发途径等方面阐述芽孢杆菌孢子萌发机理的进展,并对其前景作了简要评述。  相似文献   

9.
Germination of spores of Bacillus subtilis with dodecylamine   总被引:1,自引:0,他引:1  
AIMS: To determine the properties of Bacillus subtilis spores germinated with the alkylamine dodecylamine, and the mechanism of dodecylamine-induced spore germination. METHODS AND RESULTS: Spores of B. subtilis prepared in liquid medium were germinated efficiently by dodecylamine, while spores prepared on solid medium germinated more poorly with this agent. Dodecylamine germination of spores was accompanied by release of almost all spore dipicolinic acid (DPA), degradation of the spore's peptidoglycan cortex, release of the spore's pool of free adenine nucleotides and the killing of the spores. The dodecylamine-germinated spores did not initiate metabolism, did not degrade their pool of small, acid-soluble spore proteins efficiently and had a significantly lower level of core water than did spores germinated by nutrients. As measured by DPA release, dodecylamine readily induced germination of B. subtilis spores that: (a) were decoated, (b) lacked all the receptors for nutrient germinants, (c) lacked both the lytic enzymes either of which is essential for cortex degradation, or (d) had a cortex that could not be attacked by the spore's cortex-lytic enzymes. The DNA in dodecylamine-germinated wild-type spores was readily stained, while the DNA in dodecylamine-germinated spores of strains that were incapable of spore cortex degradation was not. These latter germinated spores also did not release their pool of free adenine nucleotides. CONCLUSIONS: These results indicate that: (a) the spore preparation method is very important in determining the rate of spore germination with dodecylamine, (b) wild-type spores germinated by dodecylamine progress only part way through the germination process, (c) dodecylamine may trigger spore germination by a novel mechanism involving the activation of neither the spore's nutrient germinant receptors nor the cortex-lytic enzymes, and (d) dodecylamine may trigger spore germination by directly or indirectly activating release of DPA from the spore core, through the opening of channels for DPA in the spore's inner membrane. SIGNIFICANCE AND IMPACT OF THE STUDY: These results provide new insight into the mechanism of spore germination with the cationic surfactant dodecylamine, and also into the mechanism of spore germination in general. New knowledge of mechanisms to stimulate spore germination may have applied utility, as germinated spores are much more sensitive to processing treatments than are dormant spores.  相似文献   

10.
Aims:  To determine roles of cortex lytic enzymes (CLEs) in Bacillus megaterium spore germination.
Methods and Results:  Genes for B. megaterium CLEs CwlJ and SleB were inactivated and effects of loss of one or both on germination were assessed. Loss of CwlJ or SleB did not prevent completion of germination with agents that activate the spore's germinant receptors, but loss of CwlJ slowed the release of dipicolinic acid (DPA). Loss of both CLEs also did not prevent release of DPA and glutamate during germination with KBr. However, cwlJ sleB spores had decreased viability, and could not complete germination. Loss of CwlJ eliminated spore germination with Ca2+ chelated to DPA (Ca-DPA), but loss of CwlJ and SleB did not affect DPA release in dodecylamine germination.
Conclusions:  CwlJ and SleB play redundant roles in cortex degradation during B. megaterium spore germination, and CwlJ accelerates DPA release and is essential for Ca-DPA germination. The roles of these CLEs are similar in germination of B. megaterium and Bacillus subtilis spores.
Significance and Impact of the Study:  These results indicate that redundant roles of CwlJ and SleB in cortex degradation during germination are similar in spores of Bacillus species; consequently, inhibition of these enzymes will prevent germination of Bacillus spores.  相似文献   

11.
The paradigm gerA operon is required for endospore germination in response to c-alanine as the sole germinant, and the three protein products, GerAA, GerAB, and GerAC are predicted to form a receptor complex in the spore inner membrane. GerAB shows homology to the amino acid-polyamine-organocation (APC) family of single-component transporters and is predicted to be an integral membrane protein with 10 membrane-spanning helices. Site-directed mutations were introduced into the gerAB gene at its natural location on the chromosome. Alterations to some charged or potential helix-breaking residues within membrane spans affected receptor function dramatically. In some cases, this is likely to reflect the complete loss of the GerA receptor complex, as judged by the absence of the germinant receptor protein GerAC, which suggests that the altered GerAB protein itself may be unstable or that the altered structure destabilizes the complex. Mutants that have a null phenotype for Instituto de Biotecnología de León, INBIOTEC, Parque Científico de León, Av. Real, 1, 24006 León, Spain-alanine germination but retain GerAC protein at near-normal levels are more likely to define amino acid residues of functional, rather than structural, importance. Single-amino-acid substitutions in each of the GerAB and GerAA proteins can prevent incorporation of GerAC protein into the spore; this provides strong evidence that the proteins within a specific receptor interact and that these interactions are required for receptor assembly. The lipoprotein nature of the GerAC receptor subunit is also important; an amino acid change in the prelipoprotein signal sequence in the gerAC1 mutant results in the absence of GerAC protein from the spore.  相似文献   

12.
《Anaerobe》2002,8(3):89-100
Germination is the first step in the development of dormant spores into exponentially dividing cells. Spore germination in proteolytic Clostridium botulinum type B and in C. sporogenes was triggered strongly byL -alanine/L -lactate/NaHCO3, less well by L-alanine/NaHCO3, but not by inosine or the AGFK mixture (asparagine, glucose, fructose and potassium ions). This suggests the presence of a functional equivalent of the L-alanine receptor encoded by the gerA operon in Bacillus subtilis, while germination genes that respond to inosine (gerI in Bacillus cereus) and AGFK mixture (gerB/gerK in B. subtilis) appear to be absent. Putative gerA operons of proteolytic C. botulinum type B and C. sporogenes have been identified using PCR with degenerate primers and show a similar genetic arrangement with the gerAA and gerAB genes, encoding the GerAA and GerAB proteins. In both species, a third partial ORF may encode a GerAC homologue. The GerAA and GerAB proteins have homology with GerAA and GerAB proteins from other Clostridium and Bacillus species with the highest homology between the C. botulinum and C. sporogenes proteins. The GerAA proteins of these species have six putative transmembrane α -helices similar to other L -alanine-dependent germination GerAA proteins suggesting a membrane location. Expression studies in C. botulinum showed that the gerAA and gerAB genes are co-transcribed during sporulation.  相似文献   

13.
A variant strain that produced spores lacking exosporium was isolated from a culture of Bacillus megaterium QM-B1551. Two additional spore morphotypes were obtained from the parent and variant strains by chemical removal of the complex of coat and outer membrane. Among the four morphotype spores, heat resistance did not correlate with total water content, wet density, refractive index, or dipicolinate or cation content, but did correlate with the volume ratio of protoplast to protoplast plus cortex. The divestment of integument layers exterior to the cortex had little influence on heat resistance. Moreover, the divestment did not change the response of either the parent or the variant spores to various germination-initiating agents, except for making the spores susceptible to germination by lysozyme. The primary permeability barrier to glucose for the intact parent and variant spores was found to be the outer membrane, whereas the barrier for the divested spores was the inner membrane.  相似文献   

14.
AIMS: To determine the mechanisms of Bacillus subtilis spore killing by and resistance to the general biological decontamination agents, Decon and Oxone. METHODS AND RESULTS: Spores of B. subtilis treated with Decon or Oxone did not accumulate DNA damage and were not mutagenized. Spore killing by these agents was increased if spores were decoated. Spores prepared at higher temperatures were more resistant to these agents, consistent with a major role for spore coats in this resistance. Neither Decon nor Oxone released the spore core's depot of dipicolinic acid (DPA), but Decon- and Oxone-treated spores more readily released DPA upon a subsequent normally sublethal heat treatment. Decon- and Oxone-killed spores initiated germination with dodecylamine more rapidly than untreated spores, but could not complete germination triggered by nutrients or Ca(2+)-DPA and did not degrade their peptidoglycan cortex. However, lysozyme treatment did not recover these spores. CONCLUSIONS: Decon and Oxone do not kill B. subtilis spores by DNA damage, and a major factor in spore resistance to these agents is the spore coat. Spore killing by both agents renders spores defective in germination, possibly because of damage to the inner membrane of spore. SIGNIFICANCE AND IMPACT OF STUDY: These results provide information on the mechanisms of the killing of bacterial spores by Decon and Oxone.  相似文献   

15.
Abstract To clarify the molecular mechanisms that trigger spore germination of Bacillus subtilis , the location of GerA proteins (GerAA, GerAB and GerAC), which were reported to be putative gene products of a receptor for one of the germinants, l-alanine, was investigated by immunological techniques using anti-GerA peptide antibodies. Four antibodies were raised against the corresponding epitopes, two in GerAA, one in GerAB and the other in GerAC molecules. The binding of all four antibodies to the inner surface of the cortex-less spore coat fragments could be seen by scanning immunoelectron microscopy with colloidal gold particles. The result agreed with the fact, previously reported, that the colloidal gold particles were visualized just inside the spore coat layer by transmission immunoelectron microscopy using another anti-GerAB peptide antibody.  相似文献   

16.
Spores of Bacillus species can remain dormant and resistant for years, but can rapidly ‘come back to life’ in germination triggered by agents, such as specific nutrients, and non‐nutrients, such as CaDPA, dodecylamine and hydrostatic pressure. Major events in germination include release of spore core monovalent cations and CaDPA, hydrolysis of the spore cortex peptidoglycan (PG) and expansion of the spore core. This leads to a well‐hydrated spore protoplast in which metabolism and macromolecular synthesis begin. Proteins essential for germination include the GerP proteins that facilitate germinant access to spores' inner layers, germinant receptors (GRs) that recognize and respond to nutrient germinants, GerD important in rapid GR‐dependent germination, SpoVA proteins important in CaDPA release and cortex‐lytic enzymes that degrade cortex PG. Rates of germination of individuals in spore populations are heterogeneous, and methods have been developed recently to simultaneously analyse the germination of multiple individual spores. Spore germination heterogeneity is due primarily to large variations in GR levels among individual spores, with spores that germinate extremely slowly and termed superdormant having very low GR levels. These and other aspects of spore germination will be discussed in this review, and major unanswered questions will also be discussed.  相似文献   

17.
The Bacillus anthracis endospore loses resistance properties during germination when its cortex peptidoglycan is degraded by germination-specific lytic enzymes (GSLEs). Although this event normally employs several GSLEs for complete cortex removal, the SleB protein alone can facilitate enough cortex hydrolysis to produce vulnerable spores. As a means to better understand its enzymatic function, SleB was overexpressed, purified, and tested in vitro for depolymerization of cortex by measurement of optical density loss and the solubilization of substrate. Its ability to bind peptidoglycan was also investigated. SleB functions independently as a lytic transglycosylase on both intact and fragmented cortex. Most of the muropeptide products that SleB generates are large and are potential substrates for other GSLEs present in the spore. Study of a truncated protein revealed that SleB has two domains. The N-terminal domain is required for stable peptidoglycan binding, while the C-terminal domain is the region of peptidoglycan hydrolytic activity. The C-terminal domain also exhibits dependence on cortex containing muramic-δ-lactam in order to carry out hydrolysis. As the conditions and limitations for SleB activity are further elucidated, they will enable the development of treatments that stimulate premature germination of B. anthracis spores, greatly simplifying decontamination measures.  相似文献   

18.
Germination of Single Bacterial Spores   总被引:4,自引:1,他引:3       下载免费PDF全文
Changes in refractility and optical density occurring in individual spores of Bacillus cereus T and B. megaterium QM B1551 during germination were investigated by use of a Zeiss microscope photometer. The curves revealed that the germination process in single spores had two distinct phases; an initial rapid phase was followed by a second slower phase. Under the experimental condition employed, the first phase of germination of B. cereus spores lasted for approximately 75 +/- 15 sec, whereas the second phase lasted for 3 to 4.5 min. In B. megaterium spores, the first phase was observed to last for approximately 2 min and the second phase for more than 7 min. The duration of the second phase was dependent on conditions employed for germination. The kinetics of the first phase were strikingly similar under all conditions of physiological germination. Time-lapse phase-contrast microscopy of germinating spores also revealed the biphasic nature of germination. It was postulated that the first phase represents changes induced by an initial partial hydration of the spore and release into the medium of dipicolinic acid, whereas the second phase reflects degradation of the cortex and hydration of the core.  相似文献   

19.
Bacillus anthracis spores, the infectious agents of anthrax, are notoriously difficult to remove from contaminated areas because they are resistant to many eradication methods. These resistance properties are due to the spore's dehydration and dormancy and to the multiple protective layers surrounding the spore core, one of which is the cortex. In order for B. anthracis spores to germinate and resume growth, the cortex peptidoglycan must be depolymerized. This study reports on analyses of sleL (yaaH), which encodes a cortex-lytic enzyme. The inactivation of sleL does not affect vegetative growth, spore viability, or the initial stages of germination, including dipicolinic acid release. However, mutant spores exhibit a slight delay in the loss of optical density compared to that of wild-type spores. Mutants also retain more diaminopimelic acid and N-acetylmuramic acid during germination than wild-type spores, suggesting that the cortex peptidoglycan is not being hydrolyzed as rapidly. This finding is supported by high-pressure liquid chromatography analysis of the peptidoglycan structure used to confirm that SleL acts as an N-acetylglucosaminidase. When sleL is inactivated, the cortex peptidoglycan is not depolymerized into small muropeptides but instead is retained within the spore as large fragments. In the absence of the sleL-encoded N-acetylglucosaminidase, other cortex-lytic enzymes break down the cortex peptidoglycan sufficiently to allow rapid germination and outgrowth.  相似文献   

20.
Bacterial endospore germination is powerfully influenced by inorganic salts, cations having especially important effects. Spores of Clostridium perfringens 8-6 are unusual in lacking a spore coat; these spores germinate only in the presence of lysozyme, which readily digests the exposed cortex. Lysozyme-induced germination showed the same response to ionic strength and valence of cations as does lysozyme hydrolysis of peptidoglycan, and close parallels are evident in the influence of inorganic cations on germination of normal spores. La3+ and transition element cations inhibited lysozyme-induced germination at low concentration, again demonstrating parallels with their action on lysozyme digestion of peptidoglycan and on the germination of normal spores. The poly-cations poly(L-lysine) and Ruthenium Red inhibited at extremely low concentrations. Mn2+ and Co2+, at appropriately low concentrations, stimulated lysozyme germination of 8-6 spores and also lysis of Micrococcus lysodeikticus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号