首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influenza B virus protein, NB, was expressed in Escherichia coli, either with a C-terminal polyhistidine tag or with NB fused to the C-terminus of glutathione S-transferase (GST), and purified by affinity chromatography. NB produced ion channel activity when added to artificial lipid bilayers separating NaCl solutions with unequal concentrations (150–500 mm cis, 50 mm trans). An antibody to a peptide mimicking the 25 residues at the C-terminal end of NB, and amantadine at high concentration (2–3 mm), both depressed ion channel activity. Ion channels had a variable conductance, the lowest conductance observed being approximately 10 picosiemens. At a pH of 5.5 to 6.5, currents reversed at positive potentials indicating that the channel was more permeable to sodium than to chloride ions (PNa/PCl∼ 9). In asymmetrical NaCl solutions at a pH of 2.5, currents reversed closer to the chloride than to the sodium equilibrium potential indicating that the channel had become more permeable to chloride than to sodium ions (PCl/PNa∼ 4). It was concluded that, at normal pHs, NB forms cation-selective channels. Received: 6 March 1995/Revised: 17 November 1995  相似文献   

2.
Inward currents in root cap protoplasts of the aluminum-tolerant cultivar, Dade, of Phaseolus vulgaris L. were investigated using the whole-cell patch-clamp technique. The properties of these currents were similar to those seen in inward rectifying K+ channels in other plant tissues. Replacing bath K+ with Na+ nearly abolished the observed currents. Higher bath K+ concentrations increased inward currents. AlCl3 in pH 4.7 bath solutions caused inward K+ currents to activate more rapidly and at more positive voltages when compared with AlCl3 free solutions. In 10 μM AlCl3 the activated inward K+ currents were significantly larger than in the AlCl3-free solution at all voltages except at the most negative voltage of −174 mV and the least negative of −74 mV. In contrast, in 80 μM Al3+, when hyperpolarizing voltages were most negative, the inward K+ currents were inhibited relative to the currents in 10 μM AlCl3. Enhancement of inward K+ currents by AlCl3 is consistent with Al3+ binding to the external surface of the root cap protoplast, decreasing the surface charge, thus causing the channels to sense a more negative membrane potential. Inhibition of inward K+ currents with higher AlCl3 concentrations and more negative voltages is consistent with Al3+ block of K+ channels.This revised version was published online in August 2005 with a corrected cover date.  相似文献   

3.
The effects of long-term depolarization on frog skeletal muscle Cav1.1 channels were assessed. Voltage-clamp and Western-blot experiments revealed that long-term depolarization brings about a drastic reduction in the amplitude of currents flowing through Cav1.1 channels and in the levels of the α1s subunit, the main subunit of muscle L-type channels. The decline of both phenomena was prevented by the action of the protease inhibitors E64 (50 μM) and leupeptin (50 μM). In contrast, long-term depolarization had no effect on β1, the auxiliary subunit of α1s. The levels of mRNAs coding the α1s and the β1 subunits were measured by RNase protection assays. Neither the content of the α1s nor the β1 subunit mRNAs were affected by long-term depolarization, indicating that the synthesis of Cav1.1 channels remained unaffected. Taken together, our experiments suggest that the reduction in the amplitude of membrane currents and in the α1s subunit levels is caused by increased degradation of this subunit by a Ca2+-dependent protease.  相似文献   

4.
Self-referencing ion - selective electrodes (ISEs), made with Chloride Ionophore I-Cocktail A (Fluka), were positioned 1–3 μm from human embryonic kidney cells (tsA201a) and used to record chloride flux during a sustained hyposmotic challenge. The ISE response was close to Nernstian when comparing potentials (VN) measured in 100 and 10 mM NaCl (ΔVN = 57 ± 2 mV), but was slightly greater than ideal when comparing 1 and 10 mm NaCl (ΔVN = 70 ± 3 mV). The response was also linear in the presence of 1 mm glutamate, gluconate, or acetate, 10 μm tamoxifen, or 0.1, 1, or 10 mm HEPES at pH 7.0. The ISE was ∼3 orders of magnitude more selective for Cl over glutamate or gluconate but less than 2 orders of magnitude move selective for Cl over bicarbonate, acetate, citrate or thiosulfate. As a result this ISE is best described as an anion sensor. The ISE was ‘poisoned’ by 50 μm 5−nitro-2-(3phenylpropyl-amino)-benzoic acid (NPPB), but not by tamoxifen. An outward anion efflux was recorded from cells challenged with hypotonic (250 ± 5 mOsm) solution. The increase in efflux peaked 7–8 min before decreasing, consistent with regulatory volume decreases observed in separate experiments using a similar osmotic protocol. This anion efflux was blocked by 10 μm tamoxifen. These results establish the feasibility of using the modulation of electrochemical, anion-selective, electrodes to monitor anions and, in this case, chloride movement during volume regulatory events. The approach provides a real-time measure of anion movement during regulated volume decrease at the single-cell level.  相似文献   

5.
The mitochondrial ATP-regulated potassium (mitoKATP) channel has been suggested as trigger and effector in myocardial ischemic preconditioning. However, molecular and pharmacological properties of the mitoKATP channel remain unclear. In the present study, single-channel activity was measured after reconstitution of the inner mitochondrial membrane from bovine ventricular myocardium into bilayer lipid membrane. After incorporation, a potassium-selective current was recorded with mean conductance of 103 ± 9 pS in symmetrical 150 mM KCl. Single-channel activity of this reconstituted protein showed properties of the mitoKATP channel: it was blocked by 500 μM ATP/Mg, activated by the potassium-channel opener diazoxide at 30 μM, inhibited by 50 μM glibenclamide or 150 μM 5-hydroxydecanoic acid, and was not affected by the plasma membrane ATP-regulated potassium-channel blocker HMR1098 at 100 μM. We observed that the mitoKATP channel was blocked by quinine in the micromolar concentration range. The inhibition by quinine was additionally verified with the use of 86Rb+ flux experiments and submitochondrial particles. Quinine inhibited binding of the sulfonylurea derivative [3H]glibenclamide to the inner mitochondrial membrane. We conclude that quinine inhibits the cardiac mitoKATP channel by acting on the mitochondrial sulfonylurea receptor.(P. Bednarczyk and A. Kicińska) These authors contributed equally to this work.This revised version was published online in August 2005 with a corrected cover date.  相似文献   

6.
Many mammalian cells regulate their volume by the osmotic movement of water directed by anion and cation flux. Ubiquitous volume-dependent anion currents permit cells to recover volume after swelling in response to a hypotonic environment. This study addressed competition between glutamate (Glu) and Cl permeation in volume-activated anion currents in order to provide insight into the ionic requirements for volume regulation, volume-dependent anion channel activity and to the architecture of the channel pore. The effect of changing the intracellular molar fraction (MF) of Glu and Cl on conductance and relative anion permeability was evaluated as a function of the extracellular permeant anion and/or the ionic strength. Relative permeability of Glu to Cl was determined by measuring reversal potentials under defined ionic conditions. Under conditions with high (150 mM) or low (50 mM) ionic strength solutions on both sides of the membrane, Cl was always more permeable than Glu. When a transmembrane ionic strength gradient (150 mM extracellular: 50 mM intracellular) was set to drive water into the cell, and in the presence of extracellular Cl, Glu became up to 16-fold more permeable than Cl. Replacement of extracellular Cl with Glu abolished this effect. These results indicate that it is possible for Glu to move into the extracellular environment during volume-regulatory events and they support the emerging role of glutamate as a modulator of anion channel activity.  相似文献   

7.
The TRK proteins—Trk1p and Trk2p— are the main agents responsible for “active” accumulation of potassium by the yeast Saccharomyces cerevisiae. In previous studies, inward currents measured through those proteins by whole-cell patch-clamping proved very unresponsive to changes of extracellular potassium concentration, although they did increase with extracellular proton concentration—qualitatively as expected for H+ coupling to K+ uptake. These puzzling observations have now been explored in greater detail, with the following major findings: a) the large inward TRK currents are not carried by influx of either K+ or H+, but rather by an efflux of chloride ions; b) with normal expression levels for Trk1p and Trk2p in potassium-replete cells, the inward TRK currents are contributed approximately half by Trk1p and half by Trk2p; but c) strain background strongly influences the absolute magnitude of these currents, which are nearly twice as large in W303-derived spheroplasts as in S288c-derived cells (same cell-size and identical recording conditions); d) incorporation of mutations that increase cell size (deletion of the Golgi calcium pump, Pmr1p) or that upregulate the TRK2 promoter, can further substantially increase the TRK currents; e) removal of intracellular chloride (e.g., replacement by sulfate or gluconate) reveals small inward currents that are K+-dependent and can be enhanced by K+ starvation; and f) finally, the latter currents display two saturating kinetic components, with preliminary estimates of K0.5 at 46 μM [K+]out and 6.8 mM [K+]out, and saturating fluxes of ∼5 mM/min and ∼10 mM/min (referred to intracellular water). These numbers are compatible with the normal K+-transport properties of Trk1p and Trk2p, respectively.This revised version was published online in August 2005 with a corrected cover date.  相似文献   

8.
Volume-sensitive chloride and potassium currents were studied, using the whole-cell clamp technique, in cultured wild-type mouse proximal convoluted tubule (PCT) epithelial cells and compared with those measured in PCT cells from null mutant kcne1 –/– mice. In wild-type PCT cells in primary culture, a Cl conductance activated by cell swelling was identified. The initial current exhibited an outwardly rectifying current-voltage (I-V) relationship, whereas steady-state current showed decay at depolarized membrane potentials. The ion selectivity was I > Br > Cl >> gluconate. This conductance was sensitive to 1 mM 4,4-Diisothiocyanostilbene-2,2-disulfonic acid (DIDS), 0.1 mM 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB) and 1 mM diphenylamine-2-carboxylate (DPC). Osmotic stress also activated K+ currents. These currents are time-independent, activated at depolarized potentials, and inhibited by 0.5 mM quinidine, 5 mM barium, and 10 µM clofilium but are insensitive to 1 mM tetraethylammonium (TEA), 10 nM charybdotoxin (CTX), and 10 µM 293B. In contrast, the null mutation of kcne1 completely impaired volume-sensitive chloride and potassium currents in PCT. The transitory transfection of kcne1 restores both Cl and K+ swelling-activated currents, confirming the implication of KCNE1 protein in the cell-volume regulation in PCT cells in primary cultures.  相似文献   

9.
The present study analyzed iNOS and eNOS mRNA expression and NO production during development of hepatic abscess caused by Entamoeba histolytica trophozoites. One 374-bp sequence, which displayed 88% identity to mammalian iNOS protein, was isolated from LPS-stimulated peritoneal hamster macrophages. A separate 365-bp cDNA sequence showed 99% identity with eNOS protein. iNOS mRNA was detected in hamsters during formation of amoebic liver abscesses, but not in control hamsters. eNOS mRNA expression was not modified. Serum nitrite concentration in hamsters infected with E. histolytica was 33 ± 6 μM, in control hamsters was 20 ± 3 μM. The study shows that iNOS mRNA expression and NO production are induced by E. histolytica trophozoites during amoebic liver abscess formation. However, in spite of iNOS mRNA expression and NO production, E. histolytica trophozoites induced liver abscess formation in hamster.  相似文献   

10.
Summary Single-channel recordings from outside-out patches ofAplysia neurones in K-free solutions revealed the presence in most membrane patches of ionic channels showing surprising selectivity properties, as deduced from reversal potential measurements. After complete substitution of external NaCl by mannitol (in the presence of internal CsCl), these channels are more permeable to Cl than to Cs, but are also slightly permeable to Cs:P Cl/P Cs=4. Furthermore, in the presence of external NaCl, their ability to discriminate cations from anions seems lower than in external mannitol. Substitutions of external Cl by various anions showed that the channels are more permeable to NO3 than to Cl, and that they are appreciably permeable to isethionate, SO4 and methanesulfonate. Their elementary conductance is about 100 pS in 600mm symmetrical Cl. However, different conductance states (usually 2 or 3) can often be detected in the same membrane patch. By using voltage ramps, we established theI–V curves corresponding to each of these states and found small but significant differences between the reversal potentials of each state.  相似文献   

11.
Alginate is produced as an exopolysaccharide by many fluorescent pseudomonads. However, pseudomonads often have a nonmucoid phenotype in standard laboratory media. Growth in the presence of 0.3M sodium chloride or 3–5% ethanol reportedly can lead to the generation of mucoid variants of nonmucoid strains ofPseudomonas aeruginosa. We wished to determine whether alginate production by other fluorescent pseudomonads is affected by sodium chloride and ethanol. Eight alginate-producing strains of saprophytic and phytopathogenic pseudomonads were grown as broth cultures containing 0–0.7M sodium chloride or 0–5% ethanol for 24–30 h at 28° or 35°C. Culture supernatant fluids were subjected to ethanol precipitation, and the amount of alginate present was estimated by measuring the uronic acid content. The presence of sodium chloride and ethanol caused significant stimulation of alginate production by all strains tested exceptP. viridiflava ATCC 13223 andP. fluorescens W4F1080. The optimal concentration of sodium chloride ranged from 0.2 to 0.5M; that for ethanol ranged from 1 to 3%. Moreover, inclusion of the nonmetabolizable, nonionic solute sorbitol showed a similar stimulation of alginate production. The stimulation of alginate production by high medium osmolarity and dehydration appears to be a trait shared by fluorescent pseudomonads.Reference to brand or firm name does not constitute endorsement by the U.S. Department of Agriculture overothers of a similar nature not mentioned.  相似文献   

12.
Cultured mouse MTAL cells contain more mRNA encoding the Cl channel mcClC-Ka, which mediates CTAL Cl absorption, than mRNA encoding the Cl channel mmClC-Ka, which mediates MTAL Cl absorption. mmClC-Ka and mcClC-Ka have three functional differences: 1) mmClC-Ka open time probability, P o, increases with increasing cytosolic Cl, but variations in cytosolic Cl do not affect P o in mcClC-Ka; 2) mmClC-Ka is gated by (ATP + PKA), while (ATP + PKA) have no effect on P o in mcClC-Ka; and 3) mmClC-Ka channels have single-ion occupancy, while mcClC-Ka channels have multi-ion occupancy. Using basolateral vesicles from MTAL cells fused into bilayers, we evaluated the effects of 1 mM cytosolic phenylglyoxal (PGO), which binds covalently to lysine or arginine, on Cl channels. With PGO pretreatment, Cl channels were uniformly not gated either with increases in cytosolic-face Cl or with (ATP + PKA) at 2 mm cytosolic-face Cl; and they exhibited multi-ion occupancy kinetics typical for mcClC-Ka channels. Thus, in basolateral MTAL membranes, blockade of Cl access to arginine or lysine residues on mmClC-Ka by PGO results in Cl channels having the functional characteristics of mcClC-Ka channels.  相似文献   

13.
Summary In giant neurons of subesophageal ganglion of the Japanese land snail,Euhadra quaestia Deshayes, permeation of Zn ions through Ca channels were investigated with a conventional current clamp method.All-or-none action potentials of long duration (90 to 120 sec) were evoked in 24mm Zn containing salines. The overshoots were about +10 mV and the maximum rate of rises (MRRs) was about 2.9 V/sec. The amplitudes and the MRRs of the action potentials depended on external Zn ion concentrations.The action potentials were suppressed by specific Ca-channel inhibitors such as Co2+, La3+ and Verapamil, but they were resistant to Na-channel inhibitor, tetrodotoxin, even at 30 m.It is concluded that these action potentials are generated by Zn ions permeating Ca channels in snail neuronal membrane.On the basis of Hagiwara and Takahashi's (S. Hagiwara & K. Takahashi, 1967,J. Gen. Physiol. 50:583) model of Ca channels, it is inferred that Zn ions are 5 to 10 times stronger in affinity to Ca channels than Ca ions, but 10 to 20 times less permeable.  相似文献   

14.
We developed a simple capillary electrophoresis (CE) method to measure nitrite and nitrate concentrations in sub-microliter samples of rat airway surface liquid (ASL), a thin (10–30 μm) layer of liquid covering the epithelial cells lining the airways of the lung. The composition of ASL has been poorly defined, in large part because of the small sample volume (1–3 μl per cm2 of epithelium) and difficulty of harvesting ASL. We have used capillary tubes for ASL sample collection, with microanalysis by CE using a 50 mM phosphate buffer (pH 3), with 0.5 mM spermine as a dynamic flow modifier, and direct UV detection at 214 nm. The limit of detections (LODs), under conditions used, for ASL analysis were 10 μM for nitrate and 30 μM for nitrite (S/N=3). Nitrate and nitrite were also measured in rat plasma. The concentration of nitrate was 102±12 μM in rat ASL and 70±1.0 μM in rat plasma, whereas nitrite was 83±28 μM in rat ASL and below the LOD in rat plasma. After instilling lipopolysaccharide intratracheally to induce increased NO production, the nitrate concentration in ASL increased to 387±16 μM, and to 377±88 μM in plasma. The concentration of nitrite increased to 103±7.0 μM for ASL and 138±17 μM for plasma.  相似文献   

15.
Suspension culture of gametophytes of transgenic kelp in a photobioreactor   总被引:5,自引:0,他引:5  
Gao J  Zhang Y  Wang H  Qin S 《Biotechnology letters》2005,27(14):1025-1028
Transgenic Laminaria japonica gametophytes producing a recombinant tissue-type plasminogen activator (rtPA) protein, which is an effective third-generation thrombolytic agent for acute myocardial infarction (AMI), were cultured in an illuminated bubble column bioreactor. A maximum final dry cell weight of 1120 mg l−1 was obtained in batch culture with an initial dry cell weight of 126 mg l−1 and with aeration rate of 1.2 l air min−1 l−1 culture, nitrate at 1.5 mM and phosphate at 0.17 mM. The yield of rtPA was 56 μg g−1 dry cell wt. This is the first report regarding cultivation of a transgenic macroalga in a bioreactor.Revisions requested 27 January 2005 and 14 April 2005; Revisions received 6 April 2005 and 17 May 2005  相似文献   

16.
Summary Patch-clamp measurements were made on osteoblast-like cells isolated from embryonic chick calvaria. Cell-attachedpatch measurements revealed two types of high conductance (100–250 pS) channels, which rapidly activated upon 50–100 mV depolarization. One type showed sustained and the other transient activation over a 10-sec period of depolarization. The single-channel conductances of these channel types were about 100 or 250 pS, depending on whether the pipettes were filled with a low K+ (3mm) or high K+ (143mm) saline, respectively. The different reversal potentials under these conditions were consistent with at least K+ conduction. Whole-cell measurements revealed the existence of two types of outward rectifying conductances. The first type conducts K+ ions and activates within 20–200 msec (depending on the stimulus) upon depolarizing voltage steps from <–60 mV to >–30 mV. It inactivates almost completely with a time constant of 2–3 sec. Recovery from inactivation is biphasic with an initial rapid phase (1–2 sec) followed by a slow phase (>20 sec). The second whole-cell conductance activates at positive membrane potentials of >+50 mV. It also rapidly turns on upon depolarizing voltage steps. Activation may partly disappear at the higher voltages. Its single channels of 140 pS conductance were identified in the whole cell and did conduct K+ ions but were not highly Cl or Na+ selective. The results show that osteoblasts may express various types of voltage controlled ionic channels. We predict a role for such channels in mineral metabolism of bone tissue and its control by osteoblasts.  相似文献   

17.
Summary Ca2+- and Ba2+-permeable channel activity from adult rat ventricular myocytes, spontaneously appeared in the three single-channel recording configurations: cell-attached, and excised inside-out or outside-out membrane patches. Single-channel activity was recorded at steady-state applied membrane potentials including the entire range of physiologic values, and displayed no rundown in excised patches. This activity occurred in irregular bursts separated by quiescent periods of 5 to 20 min in cell-attached membrane patches, whereas in excised patch experiments, this period was reduced to 2 to 10 min. During activity, a variety of kinetic behaviors could be observed with more or less complex gating patterns. Three conductance levels: 22, 45 and 78 pS were routinely observed in the same excised membrane patch, sometimes combining to give a larger level. These channels were significantly permeable to divalent cations and showed little or no permeability to potassium or sodium ions. The inorganic blockers of voltage-gated Ca channels, cobalt (2mm), cadmium (0.5mm) or nickel (3mm), had no apparent effect on these spontaneous unitary currents carried by barium ions. Under 10–5 m bay K 8644 or nitrendipine, the activity was clearly increased in about half of the tested excised inside-out membrane patches. Both dihydropyridines enhanced openings of the larger conductance level, which was only very occasionally seen under control conditions. When the single-channel activity became sustained under 5×10–6 m Bay K 8644, it was possible to calculate the mean unitary current at different membrane potentials and show that the mean current value increased with membrane potential.  相似文献   

18.
We examined the effects of Ca ions on the gliding movement of Tetrahymena ciliary doublet microtubules induced by 14S or 22S dyneins in an in vitro motility assay system. The doublet microtubule appeared as circular-arc in solution, about 5 to 6 μm in length [1]. The doublet microtubules glided distal-end first on a 14S or 22S dynein-coated glass surface either clockwise or counterclockwise following the addition of ATP. The diameter of the circular path changed according to Ca concentration in the solution. Gliding velocity was from 1 to 5 μm/s. The addition of 0.1% Nonidet P-4O was necessary to induce the gliding movement on 22S dynein. This movement on 22S dynein was strongly inhibited above 0.5 mM ATP in the presence of 10−9 M Ca, and at 0.05 to 1 mM ATP in the presence of 10−3 M Ca. Many studies have indicated that Ca ions regulate ciliary movement [2–8] in which dyneins and doublet microtubule in the axoneme may play an essential role. The inhibition of the gliding movement of doublet microtubule on dyneins at appropriate concentrations of Ca and ATP as observed in this study may be the key for understanding Ca regulation of ciliary motility.  相似文献   

19.
Six different expression cassettes of hepatitis B surface antigen (HBsAg) were used to transform tobacco cell suspension cultures. The transgenic nature of the cells was confirmed by PCR. The secreted HBsAg was assayed by ELISA and analyzed by Western blotting. A maximum of 31 μg antigen/l was obtained in the spent medium from the transformed cells. The use of an ethylene-forming enzyme promoter and incorporation of C-terminal endoplasmic-reticulum-retention signal enhanced the secretion of HBsAg. Salicylic or jasmonic acid at 10 μM increased secretion of HBsAg by six fold.  相似文献   

20.
A scale model of an in situ permeable barrier, formed by injecting vegetable oil onto laboratory soil columns, was used to remove chlorate and perchlorate from flowing groundwater. The hypothesis that trapped oil would serve as a substrate enabling native microorganisms to reduce chlorate or perchlorate to chloride as water flowed through the oil-rich zone had merit. Approximately 96% of the 0.2 mM chlorate and 99% of the 0.2 mM perchlorate present in the water was removed as water was pumped through columns containing vegetable oil barriers. The product formed was chloride. When nitrate at 1.4 mM was added to the water, both nitrate and chlorate were removed. High concentrations of chlorate or perchlorate can be treated; 24 mM chlorate and 6 mM perchlorate were completely reduced to chloride during microcosm incubations. Microorganisms capable of reducing perchlorate are plentiful in the environment. Received: 19 December 2001 / Accepted: 25 January 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号