首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ca(2+)-independent or novel protein kinase Cs (nPKCs) contain an N-terminal C2 domain of unknown function. Removal of the C2 domain of the Aplysia nPKC Apl II allows activation of the enzyme at lower concentrations of phosphatidylserine, suggesting an inhibitory role for the C2 domain in enzyme activation. However, the mechanism for C2 domain-mediated inhibition is not known. Mapping of the autophosphorylation sites for protein kinase C (PKC) Apl II reveals four phosphopeptides in the regulatory domain of PKC Apl II, two of which are in the C2 domain at serine 2 and serine 36. Unlike most PKC autophosphorylation sites, these serines could be phosphorylated in trans. Interestingly, phosphorylation of serine 36 increased binding of the C2 domain to phosphatidylserine membranes in vitro. In cells, PKC Apl II phosphorylation at serine 36 was increased by PKC activators, and PKC phosphorylated at this position translocated more efficiently to membranes. Moreover, mutation of serine 36 to alanine significantly reduced membrane translocation of PKC Apl II. We suggest that translocation of nPKCs is regulated by phosphorylation of the C2 domain.  相似文献   

2.
Signal transduction via protein kinase C (PKC) is closely regulated by its subcellular localization. To map the molecular determinants mediating the C2 domain-dependent translocation of PKCalpha to the plasma membrane, full-length native protein and several point mutants in the Ca(2+)/phosphatidylserine-binding site were tagged with green fluorescent protein and transiently expressed in rat basophilic leukemia cells (RBL-2H3). Substitution of several aspartate residues by asparagine completely abolished Ca(2+)-dependent membrane targeting of PKCalpha. Strikingly, these mutations enabled the mutant proteins to translocate in a diacylglycerol-dependent manner, suggesting that neutralization of charges in the Ca(2+) binding region enables the C1 domain to bind diacylglycerol. In addition, it was demonstrated that the protein residues involved in direct interactions with acidic phospholipids play differential and pivotal roles in the membrane targeting of the enzyme. These findings provide new information on how the C2 domain-dependent membrane targeting of PKCalpha occurs in the presence of physiological stimuli.  相似文献   

3.
The inhibition of phorbol ester activation of phospholipase D1 (PLD1) by protein kinase C (PKC) inhibitors has been considered proof of phosphorylation-dependent activation of PLD1 by PKCalpha. We studied the effect of the PKC inhibitors Ro-31-8220 and bisindolylmaleimide I on PLD1 activation and found that they inhibited the activation by interfering with PKCalpha binding to PLD1. Further studies showed that only unphosphorylated PKCalpha could bind to and activate PLD1 and that both inhibitors induced phosphorylation of PKCalpha. The phosphorylation status of either PLD1 or PKCalpha per se did not affect PLD1 activation in vitro. Immunofluorescence studies showed that PLD1 remained in the perinuclear region after phorbol ester treatment, whereas PKCalpha translocated from cytosol to both plasma membrane and perinuclear regions. Both Ro-31-8220 and bisindolylmaleimide I blocked the translocation of PKCalpha to the perinuclear region but not to the plasma membrane. Studies with okadaic acid suggested that phosphorylation regulated the relocation of PKCalpha from the plasma membrane to the perinuclear region. It is proposed that localization and interaction of PKCalpha with PLD1 in the perinuclear region is required for PLD1 activation and that PKC inhibitors inhibit this through phosphorylation of PKCalpha, which blocks its translocation.  相似文献   

4.
Protein kinase C (PKC), upon activation, translocates from the cytosol to the plasma membrane. Phorbol 12-myristate 13-acetate (PMA), a potent PKC activator, is known to induce irreversible translocation of PKC to the plasma membrane, in contrast to the reversible translocation resulting from physiological stimuli and subsequent rapid return to the cytosol (reverse translocation). However, we have previously shown that tyrosine phosphatase (PTPase) inhibitors induce reverse translocation of PMA-stimulated PKCbetaII in porcine polymorphonuclear leukocytes (PMNs). In the present study, we showed that pervanadate, a potent PTPase inhibitor, also induces tyrosine phosphorylation of PMA-stimulated PKCbetaII in porcine PMNs. Furthermore, PP2, a specific inhibitor of Src-family tyrosine kinases (PTKs), was found to inhibit both pervanadate-induced reverse translocation and tyrosine phosphorylation of PMA-stimulated PKCbetaII, suggesting that these two pervanadate-induced responses are mediated by Src-family PTKs. Our findings provide novel insight into the relationship between the subcellular localization and tyrosine phosphorylation of PKC.  相似文献   

5.
The intracellular localization of protein kinase C (PKC) is important for the regulation of its biological activity. Recently, it was reported that, whereas phorbol esters such as PMA induce prolonged translocation of PKC to the plasma membrane, with physiological stimuli, the translocation of PKC is transient and followed by rapid return to the cytoplasm. In addition, this membrane dissociation of PKC was shown to require both the kinase activity of PKC and the phosphorylation of its carboxyl terminus autophosphorylation sites. However, the detailed molecular mechanism of PKC reverse translocation remains obscure. We demonstrated that in porcine polymorphonuclear leucocytes (PMNs), phenylarsine oxide (PAO), a putative protein tyrosine phosphatase (PTPase) inhibitor, induced reverse translocation of PMA-stimulated PKCbetaII. Hydrogen peroxide (H(2)O(2)) in combination with vanadate, both of which are PTPase inhibitors, also induced reverse translocation of PKCbetaII. H(2)O(2) or vanadate alone had little effect on PMA-induced PKCbetaII translocation. Furthermore, genistein and ethanol, which are inhibitors of tyrosine kinase and phospholipase D, respectively, prevented the PKCbetaII reverse translocation induced by the PTPase inhibitors. These results indicate, for the first time, that the tyrosine phosphorylation/phospholipase D pathway may be involved in the process of membrane dissociation of PKC.  相似文献   

6.
We examined the precise intracellular translocation of gamma subtype of protein kinase C (gammaPKC) after various extracellular stimuli using confocal laser-scanning fluorescent microscopy (CLSM) and immunogold electron microscopy. By CLSM, treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA) resulted in a slow and irreversible accumulation of green fluorescent protein (GFP)-tagged gammaPKC (gammaPKC-GFP) on the plasma membrane. In contrast, treatment with Ca(2+) ionophore and activation of purinergic or NMDA receptors induced a rapid and transient membrane translocation of gammaPKC-GFP. Although each stimulus resulted in PKC localization at the plasma membrane, electron microscopy revealed that gammaPKC showed a subtle but significantly different localization depending on stimulation. Whereas TPA and UTP induced a sustained localization of gammaPKC-GFP on the plasma membrane, Ca(2+) ionophore and NMDA rapidly translocated gammaPKC-GFP to the plasma membrane and then restricted gammaPKC-GFP in submembranous area (<500 nm from the plasma membrane). These results suggest that Ca(2+) influx alone induced the association of gammaPKC with the plasma membrane for only a moment and then located this enzyme at a proper distance in a touch-and-go manner, whereas diacylglycerol or TPA tightly anchored this enzyme on the plasma membrane. The distinct subcellular targeting of gammaPKC in response to various stimuli suggests a novel mechanism for PKC activation.  相似文献   

7.
Enzyme localization often plays a controlling role in determining its activity and specificity. Protein kinase C (PKC) has long been known to translocate in response to physiological stimuli as well as to exogenous ligands such as the phorbol esters. We report here that different phorbol derivatives and related ligands, selected for differences in chemical structure and profile of biological activity, induce distinct patterns of redistribution of PKC delta. Localization of a PKC delta-green fluorescent protein (GFP) fusion construct was monitored in living Chinese hamster ovary cells as a function of ligand, concentration, and time using confocal laser scanning microscopy. delta-PKC-GFP was expressed predominantly in the cytoplasm, with some in the nucleus and perinuclear region. Phorbol 12-myristate 13-acetate (PMA) induced plasma membrane translocation followed by slower nuclear membrane translocation. As the concentration of PMA increased, the proportion of nuclear to plasma membrane localization increased markedly. In contrast to PMA, bryostatin 1, a unique activator of PKC that induces a subset of PMA-mediated responses while antagonizing others, at all doses induced almost exclusively nuclear membrane translocation. Like PMA, the complete tumor promoter 12-deoxyphorbol 13-tetradecanoate induced plasma membrane and slower nuclear membrane translocation, whereas the inhibitor of tumor promotion 12-deoxyphorbol 13-phenylacetate, which differs only in its side chain, induced a distinctive distribution of PKC delta-GFP. Finally, the novel constrained diacylglycerol derivative B8-DL-B8 induced a slow Golgi localization. We speculate that differential control of PKC delta localization may provide an interesting strategy for producing ligands with differential biological consequences.  相似文献   

8.
The angiotensin II type 1A receptor (AT(1A)R) plays an important role in cardiovascular function and as such represents a primary target for therapeutic intervention. The AT(1A)R is coupled via G(q) to the activation of phospholipase C, the hydrolysis of phosphoinositides, release of calcium from intracellular stores, and the activation of protein kinase C (PKC). We show here that PKCbetaI and PKCbetaII exhibit different membrane translocation patterns in response to AT(1A)R agonist activation. Whereas PKCbetaII translocation to the membrane is transient, PKCbetaI displays additional translocation responses: persistent membrane localization and oscillations between the membrane and cytosol following agonist removal. The initial translocation of PKCbetaI requires the release of calcium from intracellular stores and the activation of phospholipase C, but persistent membrane localization is dependent upon extracellular calcium influx. The mutation of any of the three PKC phosphorylation consensus sites (Ser-331, Ser-338, and Ser-348) localized within the AT(1A)R C-tail significantly increases the probability that persistent increases in diacylglycerol levels and PKCbetaI translocation responses will be observed. The persistent increase in AT(1A)R-mediated diacylglycerol formation is mediated by the activation of phospholipase D. Although the persistent PKCbetaI membrane translocation response is absolutely dependent upon the PKC activity-dependent recruitment of an extracellular calcium current, it does not require the activation of phospholipase D. Taken together, we show that the patterning of AT(1A)R second messenger response patterns is regulated by heterologous desensitization and PKC isoform substrate specificity.  相似文献   

9.
Protein kinase Cs (PKCs) are critical signaling molecules controlled by complex regulatory pathways. Herein, we describe an important regulatory role for C2 domain phosphorylation. Novel PKCs (nPKCs) contain an N‐terminal C2 domain that cannot bind to calcium. Previously, we described an autophosphorylation site in the Aplysia novel PKC Apl II that increased the binding of the C2 domain to lipids. In this study, we show that the function of this phosphorylation is to inhibit PKC translocation. Indeed, a phosphomimetic serine‐glutamic acid mutation reduced translocation of PKC Apl II while blocking phosphorylation with a serine‐alanine mutation enhanced translocation and led to the persistence of the kinase at the membrane longer after the end of the stimulation. Consistent with a role for autophosphorylation in regulating kinase translocation, inhibiting PKC activity using bisindolymaleimide 1 increased physiological translocation of PKC Apl II, whereas inhibiting phosphatase activity using calyculin A inhibited physiological translocation of PKC Apl II in neurons. Our results suggest a major role for autophosphorylation‐dependent regulation of translocation.  相似文献   

10.
Protein kinase C (PKC) represents a family of serin/threonine kinases, playing a central role in the regulation of cell growth, differentiation and transformation. These enzymes differ in their primary structure, biochemical properties, tissue distribution and subcellular localization. The specific cellular functions of PKC isoforms are largely controlled by their localization. PKCeta, a member of the novel subfamily, is expressed predominantly in epithelial tissues. However, not much is known with respect to its mechanism of activation and regulation. Our recent studies suggest its role in cell cycle control. Here we show that PKCeta is localized at the Golgi apparatus, ER and the nuclear envelope. Furthermore, using GFP-fusion proteins of the different functional domains of PKCeta we deciphered the specific structural domains of the protein responsible for its apparent localization. We show that the cysteine-rich repeat C1b is responsible for its Golgi localization, while for its presence at the ER/nuclear envelope the pseudosubstrate containing fragment coupled to the C1 domain is required. In response to short-term activation by PMA we show translocation of PKCeta to the plasma membrane and the nuclear envelope. We demonstrate that the C1b is sufficient for its translocation to the plasma membrane. Interestingly, accumulation of PKCeta at the nuclear envelope also occurred in response to serum-starvation. It should be noted that interaction of PKCeta with the cyclin E/Cdk2 complex at the perinuclear region was recently reported by us in response to serum-starvation. Thus, our studies demonstrate translocation of PKCeta to the nuclear envelope, and suggest that the spatial regulation of PKCeta could be important for its cellular functions including effects on cell cycle control and involvement in tumor promotion.  相似文献   

11.
Metabotropic glutamate receptors (mGluRs) coupled via Gq to the hydrolysis of phosphoinositides stimulate Ca(2+) and PKCbetaII oscillations in both excitable and non-excitable cells. In the present study, we show that mGluR1a activation stimulates the repetitive plasma membrane translocation of each of the conventional and novel, but not atypical, PKC isozymes. However, despite similarities in sequence and cofactor regulation by diacyglycerol and Ca(2+), conventional PKCs exhibit isoform-specific oscillation patterns. PKCalpha and PKCbetaI display three distinct patterns of activity: (1) agonist-independent oscillations, (2) agonist-stimulated oscillations, and (3) persistent plasma membrane localization in response to mGluR1a activation. In contrast, only agonist-stimulated PKCbetaII translocation responses are observed in mGluR1a-expressing cells. PKCbetaI expression also promotes persistent increases in intracellular diacyglycerol concentrations in response to mGluR1a stimulation without affecting PKCbetaII oscillation patterns in the same cell. PKCbetaII isoform-specific translocation patterns are regulated by specific amino acid residues localized within the C-terminal PKC V5 domain. Specifically, Asn-625 and Lys-668 localized within the V5 domain of PKCbetaII cooperatively suppress PKCbetaI-like response patterns for PKCbetaII. Thus, redundancy in PKC isoform expression and differential decoding of second messenger response provides a novel mechanism for generating cell type-specific responses to the same signal.  相似文献   

12.
Diacylglycerol kinase (DGK) phosphorylates the second messenger diacylglycerol (DAG) to phosphatidic acid. We previously identified DGK as one of nine mammalian DGK isoforms and reported on its regulation by interaction with RhoA and by translocation to the plasma membrane in response to noradrenaline. Here, we have investigated how the localization of DGK, fused to green fluorescent protein, is controlled upon activation of G protein-coupled receptors in A431 cells. Extracellular ATP, bradykinin, or thrombin induced DGK translocation from the cytoplasm to the plasma membrane within 2-6 min. This translocation, independent of DGK activity, was preceded by protein kinase C (PKC) translocation and was blocked by PKC inhibitors. Conversely, activation of PKC by 12-O-tetradecanoylphorbol-13-acetate induced DGK translocation. Membrane-permeable DAG (dioctanoylglycerol) also induced DGK translocation but in a PKC (staurosporin)-independent fashion. Mutations in the cysteine-rich domains of DGK abrogated its hormone- and DAG-induced translocation, suggesting that these domains are essential for DAG binding and DGK recruitment to the membrane. We show that DGK interacts selectively with and is phosphorylated by PKCepsilon and -eta and that peptide agonist-induced selective activation of PKCepsilon directly leads to DGK translocation. Our data are consistent with the concept that hormone-induced PKC activation regulates the intracellular localization of DGK, which may be important in the negative regulation of PKCepsilon and/or PKCeta activity.  相似文献   

13.
Cyclic AMP stimulates translocation of Na(+)/taurocholate cotransporting polypeptide (NTCP) from the cytosol to the sinusoidal membrane and multidrug resistance-associated protein 2 (MRP2) to the canalicular membrane. A recent study suggested that protein kinase Cδ (PKCδ) may mediate cAMP-induced translocation of Ntcp and Mrp2. In addition, cAMP has been shown to stimulate NTCP translocation in part via Rab4. The aim of this study was to determine whether cAMP-induced translocation of NTCP and MRP2 require kinase activity of PKCδ and to test the hypothesis that cAMP-induced activation of Rab4 is mediated via PKCδ. Studies were conducted in HuH-NTCP cells (HuH-7 cells stably transfected with NTCP). Transfection of cells with wild-type PKCδ increased plasma membrane PKCδ and NTCP and increased Rab4 activity. Paradoxically, overexpression of kinase-dead dominant-negative PKCδ also increased plasma membrane PKCδ and NTCP as well as Rab4 activity. Similar results were obtained in PKCδ knockdown experiments, despite a decrease in total PKCδ. These results raised the possibility that plasma membrane localization rather than kinase activity of PKCδ is necessary for NTCP translocation and Rab4 activity. This hypothesis was supported by results showing that rottlerin, which has previously been shown to inhibit cAMP-induced membrane translocation of PKCδ and NTCP, inhibited cAMP-induced Rab4 activity. In addition, LY294002 (a phosphoinositide-3-kinase inhibitor), which has been shown to inhibit cAMP-induced NTCP translocation, also inhibited cAMP-induced PKCδ translocation. In contrast to the results with NTCP, cAMP-induced MRP2 translocation was inhibited in cells transfected with DN-PKCδ and small interfering RNA PKCδ. Taken together, these results suggest that the plasma membrane localization rather than kinase activity of PKCδ plays an important role in cAMP-induced NTCP translocation and Rab4 activity, whereas the kinase activity of PKCδ is necessary for cAMP-induced MRP2 translocation.  相似文献   

14.
Previous research showed that protein kinase C alpha (PKC alpha) translocated to the perinuclear region and activated phospholipase D1, but the mechanism involved was not clear. Here, we provide evidence that Phe 663 (the 10th amino acid from C-terminus) of PKC alpha is essential for its translocation. A point mutation (F663D) completely blocked PKC alpha's binding to and activation of phospholipase D1. Further studies showed that deletion of the C-terminal nine amino acids of PKC alpha did not alter its translocation to the perinuclear region but deletion of the C-terminal 10 amino acids and the F663D mutation abolished this translocation. The F663D mutant was found to be resistant to dephosphorylation, which might account for its inability to translocate to the perinuclear region and activate PLD1, since dephosphorylation of PKC alpha is required for its relocation from plasma membrane to the perinuclear region.  相似文献   

15.
Sphingosine-1-phosphate (S1P) is a highly bioactive sphingolipid involved in diverse biological processes leading to changes in cell growth, differentiation, motility, and survival. S1P generation is regulated via sphingosine kinase (SK), and many of its effects are mediated through extracelluar action on G-protein-coupled receptors. In this study, we have investigated the mechanisms regulating SK, where this occurs in the cell, and whether this leads to release of S1P extracellularly. The protein kinase C (PKC) activator, phorbol 12-myristate 13-acetate (PMA), induced early activation of SK in HEK 293 cells, and this activation was more specific to the membrane-associated SK. Therefore, we next investigated whether PMA induced translocation of SK to the plasma membrane. PMA induced translocation of both endogenous and green fluorescent protein (GFP)-tagged human SK1 (hSK1) to the plasma membrane. PMA also induced phosphorylation of GFP-hSK1. The PMA-induced translocation was abrogated by preincubation with known PKC inhibitors (bisindoylmaleimide and calphostin-c) as well as by the indirect inhibitor of PKC, C(6)-ceramide, supporting a role for PKC in mediating translocation of SK to the plasma membrane. SK activity was not necessary for translocation, because a dominant negative G82D mutation also translocated in response to PMA. Importantly, PKC regulation of SK was accompanied by a 4-fold increase in S1P in the media. These results demonstrate a novel mechanism by which PKC regulates SK and increases secretion of S1P, allowing for autocrine/paracrine signaling.  相似文献   

16.
We have seen that protein kinase Calpha (PKCalpha) is transiently translocated to the plasma membrane by carbachol stimulation of neuroblastoma cells. This is induced by the Ca2+ increase, and PKCalpha does not respond to diacylglycerol (DAG). The unresponsiveness is dependent on structures in the catalytic domain of PKCalpha. This study was designed to investigate if and how the kinase activity and autophosphorylation are involved in regulating the translocation. PKCalpha enhanced green fluorescent protein translocation was studied in living neuroblastoma cells by confocal microscopy. Carbachol stimulation induced a transient translocation of PKCalpha to the plasma membrane and a sustained translocation of kinase-dead PKCalpha. In cells treated with the PKC inhibitor GF109203X, wild-type PKCalpha also showed a sustained translocation. The same effects were seen with PKCbetaI, PKCbetaII, and PKCdelta. Only kinase-dead and not wild-type PKCalpha translocated in response to 1,2-dioctanoylglycerol. To examine whether autophosphorylation regulates relocation to the cytosol, the autophosphorylation sites in PKCalpha were mutated to glutamate, to mimic phosphorylation, or alanine, to mimic the non-phosphorylated protein. After stimulation with carbachol, glutamate mutants behaved like wild-type PKCalpha, whereas alanine mutants behaved like kinase-dead PKCalpha. When the alanine mutants were treated with 1,2-dioctanoylglycerol, all cells showed a sustained translocation of the protein. However, neither carbachol nor GF109203X had any major effects on the level of autophosphorylation, and GF109203X potentiated the translocation of the glutamate mutants. We, therefore, hypothesize that 1) autophosphorylation of PKCalpha limits its sensitivity to DAG and 2) that kinase inhibitors augment the DAG sensitivity of PKCalpha, perhaps by destabilizing the closed conformation.  相似文献   

17.
Protein kinase C (PKC)1 isozymes comprise a family of related cytosolic kinases that translocate to the cell particulate fraction on stimulation. The activated enzyme is thought to be on the plasma membrane. However, phosphorylation of protein substrates occurs throughout the cell and is inconsistent with plasma membrane localization. Using an isozyme-specific monoclonal antibody we found that, on activation, this PKC isozyme translocates to myofibrils in cardiac myocytes and to microfilaments in fibroblasts. Translocation of this activated PKC isozyme to cytoskeletal elements may explain some of the effects of PKC on cell contractility and morphology. In addition, differences in the translocation site of individual isozymes--and, therefore, phosphorylation of different substrates localized at these sites--may explain the diverse biological effects of PKC.  相似文献   

18.
Our previous study showed differential subcellular localization of protein kinase C (PKC) delta by phorbol esters and related ligands, using a green fluorescent protein-tagged construct in living cells. Here we compared the abilities of a series of symmetrically substituted phorbol 12,13-diesters to translocate PKC delta. In vitro, the derivatives bound to PKC with similar potencies but differed in rate of equilibration. In vivo, the phorbol diesters with short, intermediate, and long chain fatty acids induced distinct patterns of translocation. Phorbol 12,13-dioctanoate and phorbol 12,13-nonanoate, the intermediate derivatives and most potent tumor promoters, showed patterns of translocation typical of phorbol 12-myristate 13-acetate, with plasma membrane and subsequent nuclear membrane translocation. The more hydrophilic compounds (phorbol 12,13-dibutyrate and phorbol 12,13-dihexanoate) induced a patchy distribution in the cytoplasm, more prominent nuclear membrane translocation, and little plasma membrane localization at all concentrations examined (100 nM to 10 microM). The highly lipophilic derivatives, phorbol 12,13-didecanoate and phorbol 12, 13-diundecanoate, at 1 microM caused either plasma membrane translocation only or no translocation at incubation times up to 60 min. Our results indicate that lipophilicity of phorbol esters is a critical factor contributing to differential PKC delta localization and thereby potentially to their different biological activities.  相似文献   

19.
Anderson G  Chen J  Wang QJ 《Cellular signalling》2005,17(11):1397-1411
Protein kinase D3 is a novel member of the serine/threonine kinase family PKD. The regulatory region of PKD contains a tandem repeat of C1 domains designated C1a and C1b that bind diacylglycerol and phorbol esters, and are important membrane targeting modules. Here, we investigate the activities of individual C1 domains of PKD3 and their roles in phorbol ester-induced plasma membrane translocation of PKD3. Truncated C1a of PKD3 binds [(3)H]phorbol 12, 13-dibutyrate with high affinity, but no binding activity is detected for C1b. Meanwhile, mutations in C1a of truncated C1ab of PKD3 lead to the loss of binding affinity, while these mutations in C1b have little impact, indicating that C1a is responsible for most of the phorbol ester-binding activities of PKD3. C1a and C1b of the GFP-tagged full length PKD3 are then mutated to assess their roles in phorbol ester-induced plasma membrane translocation in intact cells. At low concentration of phorbol 12-myristate 13-acetate (PMA), the plasma membrane translocations of the C1a and C1ab mutants are significantly impaired, reflecting an important role of C1a in this process. However, at higher PMA concentrations, all C1 mutants exhibit increased rates of translocation as compared to that of wild-type PKD3, which parallel their enhanced activation by PMA, implying that PKD3 kinase activity affects membrane targeting. In line with this, a constitutive active PKD3-GFP translocates similarly as wild-type PKD3, while a kinase-inactive PKD3 shows little translocation up to 2 muM PMA. In addition, RO 31-8220, a potent PKC inhibitor that blocks PMA-induced PKD3 activation in vivo, significantly attenuates the plasma membrane translocation of wild-type PKD3 at different doses of PMA. Taken together, our results indicate that both C1a and the kinase activity of PKD3 are necessary for the phorbol ester-induced plasma membrane translocation of PKD3. PKC, by directly activating PKD3, regulates its plasma membrane localization in intact cells.  相似文献   

20.
Protein kinase D (PKD)/protein kinase C (PKC) mu is a serine/threonine protein kinase that can be activated by physiological stimuli like growth factors, antigen-receptor engagement and G protein-coupled receptor (GPCR) agonists via a phosphorylation-dependent mechanism that requires PKC activity. In order to investigate the dynamic mechanisms associated with GPCR signaling, the intracellular translocation of a green fluorescent protein-tagged PKD was analyzed by real-time visualization in fibroblasts and epithelial cells stimulated with bombesin, a GPCR agonist. We found that bombesin induced a rapidly reversible plasma membrane translocation of green fluorescent protein-tagged PKD, an event that can be divided into two distinct mechanistic steps. The first step, which is exclusively mediated by the cysteine-rich domain in the N terminus of PKD, involved its translocation from the cytosol to the plasma membrane. The second step, i.e. the rapid reverse translocation of PKD from the plasma membrane to the cytosol, required its catalytic domain and surprisingly PKC activity. These findings provide evidence for a novel mechanism by which PKC coordinates the translocation and activation of PKD in response to bombesin-induced GPCR activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号