首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human papillomavirus (HPV) is the causative agent of cervical cancer (CxCa) and the most commonly sexually transmitted pathogen worldwide. HPV type 16 (HPV-16) E7 oncoprotein is constitutively produced in CxCa and considered as a good antigen candidate for the development of new therapeutic CxCa vaccines. Here, we report the use of non-genetically modified, E7-expressing lactic acid bacteria (LAB) by using the cell-binding domain from Lactobacillus casei A2 phage lysin as a cell wall anchor. The versatility of this system was validated by investigating E7 stability at the surface of Lactococcus lactis and L. casei, two major species of LAB. Moreover, we demonstrated the successful use of these LAB displaying E7 antigen as a mucosal live vaccine in mice. Altogether, these results show the feasibility of using non-genetically modified LAB for low-cost mucosal immunotherapy against HPV-related CxCa in humans.  相似文献   

2.
Summary Human papillomavirus (HPV) E6 and E7 are consistently expressed and are responsible for the malignant transformation of HPV-associated lesions. Thus, E6 and E7 represent ideal targets for therapeutic HPV vaccine development. We have previously used the gene gun approach to test several intracellular targeting and intercellular spreading strategies targeting HPV-16 E7. These strategies include the use of the sorting signal of lysosome-associated membrane protein (LAMP-1), Mycobacterium tuberculosis heat shock protein 70 (HSP70), calreticulin (CRT) and herpes simplex virus type 1 (HSV-1) VP22 proteins. All of these strategies have been shown to be capable of enhancing E7-DNA vaccine potency. In the current study, we have characterized DNA vaccines employing these intracellular targeting or intercellular spreading strategies targeting HPV-16 E6 for their ability to generate E6-specific CD8+ T cell immune responses and antitumor effects against an E6-expressing tumor cell line, TC-1, in C57BL/6 mice. We found that all the intracellular targeting strategies (CRT, LAMP-1, HSP70) as well as the intercellular spreading strategy (VP22) were able to enhance E6 DNA vaccine potency, although the orientation of HSP70 linked to E6 antigen in the E6 DNA vaccine appears to be important for the HSP70 strategy to work. The enhanced E6-specific CD8+ T cell immune response in vaccinated mice also translated into potent antitumor effects against TC-1 tumor cells. Our data indicate that all of the intracellular targeting and intercellular spreading strategies that have been shown to enhance E7 DNA vaccine potency were also able to enhance E6 DNA vaccine potency.  相似文献   

3.
Cervical cancer is a common type of cancer among women worldwide and infection with high-risk human papillomavirus (HPVs) types represents the major risk factor for the etiopathogenesis of the disease. HPV-16 is the most frequently identified HPV type in cervical lesions and expression of E6 and E7 oncoproteins is required for the uncontrolled cellular proliferation. In the present study we report the design and experimental testing of a recombinant multi-epitope protein containing immunogenic epitopes of HPV-16 E6 and E7. Tumor preventive assays, based on the engraftment of TC-1 cells in mice, showed that the E6E7 multi-epitope protein induced a full preventive anti-tumor protection in wild-type mice, as well as in mice deficient in expression of CD4+ T cells and TLR4 receptor. Nonetheless, no anti-tumor protection was observed in mice deficient in CD8+ T cells. Also, the vaccine promoted high activation of E6/E7-specific T cells and in a therapeutic-approach, E6E7 protein conferred full anti-tumor protection in mice. These results show a potential use of this E6E7 multi-epitope antigen as a new and promising antigen for the development of a therapeutic vaccine against tumors induced by HPV.  相似文献   

4.
Persistent infection with high-risk human papillomavirus (HPV) types, most often HPV16 and HPV18, causes all cervical and most anal cancers, and a subset of vulvar, vaginal, penile and oropharyngeal carcinomas. Two prophylactic virus-like particle (VLPs)-based vaccines, are available that protect against vaccine type-associated persistent infection and associated disease, yet have no therapeutic effect on existing lesions or infections. We have generated recombinant live-attenuated influenza A viruses expressing the HPV16 oncogenes E6 and E7 as experimental immunotherapeutic vaccine candidates. The influenza A virus life cycle lacks DNA intermediates as important safety feature. Different serotypes were generated to ensure efficient prime and boost immunizations. The immune response to vaccination in C57BL/6 mice was characterized by peptide ELISA and IFN-γ ELISpot, demonstrating induction of cell-mediated immunity to HPV16 E6 and E7 oncoproteins. Prophylactic and therapeutic vaccine efficacy was analyzed in the murine HPV16-positive TC-1 tumor challenge model. Subcutaneous (s.c.) prime and boost vaccinations of mice with recombinant influenza A serotypes H1N1 and H3N2, followed by challenge with TC-1 cells resulted in complete protection or significantly reduced tumor growth as compared to control animals. In a therapeutic setting, s.c. vaccination of mice with established TC-1 tumors decelerated tumor growth and significantly prolonged survival. Importantly, intralesional vaccine administration induced complete tumor regression in 25% of animals, and significantly reduced tumor growth in 50% of mice. These results suggest recombinant E6E7 influenza viruses as a promising new approach for the development of a therapeutic vaccine against HPV-induced disease.  相似文献   

5.
An optimized recombinant HPV16 E6E7 fusion gene (HPV16 ofE6E7) was constructed according to codon usage for mammalian cell expression, and a mutant of HPV16 ofE6E7 fusion gene (HPV16 omfE6E7) was generated by site-directed mutagenesis at L57G, C113R for the E6 protein and C24G, E26G for the E7 protein for HPV16 ofE6E7 [patent pending (CN 101100672)]. The HPV16 omfE6E7 gene constructed in this work not only lost the transformation capability to NIH 3T3 cells and tumorigenicity in SCID mice, but also maintain...  相似文献   

6.
An optimized recombinant HPV16 E6E7 fusion gene(HPV16 ofE6E7)was constructed according to codon usage for mammalian cell expression,and a mutant of HPV16 ofE6E7 fusion gene(HPV16 omfE6E7)was generated by site-directed mutagenesis at L57G,C113R for the E6 protein and C24G,E26G for the E7 protein for HPV16 ofE6E7 [patent pending(CN 101100672)].The HPV16 omfE6E7 gene constructed in this work not only lost the transformation capability to NIH 3T3 cells and tumorigenicity in SCID mice,but also maintained very good stability and antigenicity.These results suggests that the HPV16 omfE6E7 gene should undergo further study for application as a safe antigen-specific therapeutic vaccine for HPV16-associated tumors.  相似文献   

7.
Papillomavirus-like particles (VLPs) based on L1 capsid protein represent a promising prophylactic vaccine against human papillomavirus (HPV) infections. However, cell-mediated immune responses against this antigen are believed to be of limited therapeutic value in established HPV-infected cervical lesions and, for this reason, have not been intensively investigated in cervical cancer patients. In this study we analyzed and quantified by real-time PCR (RT-PCR) the RNA expression levels of E6, E7, and L1 genes in flash-frozen HPV-16 cervical carcinomas. In addition, the kinetics of expression of E6, E7, and L1 in HPV-16-infected primary cell lines established as long-term cultures in vitro was also evaluated at RNA and protein levels. Finally, in order to evaluate the therapeutic potential of L1-specific CD4+ and CD8+ T lymphocytes responses in cervical cancer patients, L1 VLP-loaded dendritic cells (DCs) were used to stimulate peripheral blood lymphocytes from cervical cancer patients and such responses were compared to those elicited by the E7 oncoprotein. We show that 22 of 22 (100%) flash-frozen cervical biopsy samples collected from HPV-16-positive cervical cancer patients harbor L1, in addition to E6 and E7 RNA, as detected by RT-PCR. E7 RNA copy number (mean, 176.2) was significantly higher in HPV-16-positive cervical cancers compared to the E6 RNA copy number (mean, 47.3) and the L1 copy number (mean, 58.3) (P < 0.0001 and P < 0.001, respectively). However, no significant differences in expression levels between E6 and L1 were found. Kinetic studies of E6, E7, and L1 RNA and protein expression levels in primary tumors showed a sharp reduction in L1 expression after multiple in vitro passages compared to E6 and E7. Autologous DCs pulsed with HPV-16 VLPs or recombinant full-length E7 elicited strong type 1 L1- and E7-specific responses in CD4+ and CD8+ T cells from cervical cancer patients. Importantly, L1 VLP-specific CD8+ T lymphocytes expressed strong cytolytic activity against autologous tumor cells and were as effective as E7-specific cytotoxic T lymphocytes in lysing naturally HPV-16-infected autologous tumor cells. Taken together, these data demonstrate a consistent expression of L1 in primary cervical tumors and the possibility of inducing effective L1/tumor-specific CD4+ and CD8+ T-lymphocyte responses in patients harboring HPV-infected cervical cancer. These results may have important implications for the treatment of patients harboring established HPV-infected lesions with L1 VLPs or combined E7/L1 DC-based vaccinations.Human papillomavirus (HPV) infection represents the most important risk factor for the development of cervical cancer. Although more than 100 distinct HPV genotypes have been described, and at least 20 are associated with cervical cancer, HPV type 16 (HPV-16) is by far the most frequently detected in cervical neoplasia regardless of the geographical origin of the patients (4). In the last few years significant advances have been made in the development of candidate prophylactic vaccine against cervical cancer and HPV-related infections. In several large prospective randomized studies, virus-like particles consisting of the HPV-16 and HPV-18 major capsid protein L1 (L1-VLPs) have shown promise in protecting young healthy females against persistent infection with HPV-16 and HPV-18 and their associated cervical intraepithelial neoplasia (reviewed in reference 12). These data strongly suggest that the implementation of large-scale L1-VLP-based prophylactic vaccinations have the potential to dramatically reduce worldwide cervical cancer rates in the years to come.Unfortunately, because HPV infection is endemic in humans and there is a long latency from HPV infection to the development of invasive cervical cancer in women, even if prophylactic L1-based vaccinations are implemented on a worldwide scale today it would take decades to perceive any significant benefit. Consistent with this view, an estimated 5 million cervical cancer deaths will occur in the next 20 years due to existing HPV infections (4, 12). Thus, the current development of therapeutic vaccines for protection against persistent HPV infections, cervical cancer, and its precursor lesions remains an area of great interest.Although the interactions between the host immune system and HPV-infected cells are still not completely understood, several lines of evidence suggest that protection against HPV-related infections by L1-VLP-based vaccines is likely conferred by the generation of high levels of neutralizing antibodies (12, 38). Nevertheless, a potential crucial role of L1-specific T-cell responses and the involvement of T cells in mediating the production of neutralizing antibodies and antiviral effect in infected hosts has been previously hypothesized (8, 24). This point may be particularly noteworthy in patients harboring HPV-infected cervical lesions because several studies have demonstrated the critical importance of both cytotoxic (CD8+) and helper (CD4+) T cells in achieving clinical responses (1, 5, 16-18, 20, 23). However, limited information is currently available to evaluate whether cell-mediated immune responses to L1-VLP may have any significant therapeutic effect in cervical cancer patients harboring HPV-16 positive tumors. Furthermore, to our knowledge, no direct comparison of the therapeutic efficacy of L1 and E7-specific immune responses against naturally HPV-16-infected cervical cancer have been yet reported in human patients.In the present study we have analyzed and quantified by highly sensitive real-time PCR (RT-PCR) the RNA levels of E6, E7, and L1 in flash-frozen biopsy specimens obtained from HPV-16-infected cervical carcinomas and in short- and long-term primary cultures of HPV-16-positive cervical tumors. In addition, we have studied the kinetics of expression of these genes and proteins during the establishment of HPV-16-positive primary tumors in vitro. Finally, using completely autologous systems of naturally infected HPV-16-positive human tumors, we have carefully studied the phenotype and function of L1-specific CD4+ and CD8+ T-lymphocyte responses generated by VLP-loaded dendritic cells (DCs) and compared their therapeutic potential to those elicited by DC loaded with the E7 oncoprotein.  相似文献   

8.
Summary The HPV oncoproteins E6 and E7 are consistently expressed in HPV-associated cancer cells and are responsible for their malignant transformation. Therefore, HPV E6 and E7 are ideal target antigens for developing vaccines and immunotherapeutic strategies against HPV-associated neoplasms. Recently, it has been demonstrated that codon optimization of the HPV-16 E7 gene resulted in highly efficient translation of E7 and increased the immunogenicity of E7-specific DNA vaccines. Since vaccines targeting E6 also represent an important strategy for controlling HPV-associated lesions, we developed a codon-optimized HPV-16 E6 DNA vaccine (pNGVL4a-E6/opt) and characterized the E6-specific CD8+ T cell immune responses as well as the protective and therapeutic anti-tumor effects in vaccinated C57BL/6 mice. Our data indicated that transfection of human embryonic kidney cells (293 cells) with pNGVL4a-E6/opt resulted in highly efficient translation of E6. In addition, vaccination with pNGVL4a-E6/opt significantly enhanced E6-specific CD8+ T cell immune responses in C57BL/6 mice. Mice vaccinated with pNGVL4a-E6/opt are able to generate potent protective and therapeutic antitumor effects against challenge with E6-expressing tumor cell line, TC-1. Thus, DNA vaccines encoding a codon-optimized HPV-16 E6 may be a promising strategy for improving the potency of prophylactic and therapeutic HPV vaccines with potential clinical implications.  相似文献   

9.
The safety and immunogenicity of the human papillomavirus type 16 (HPV16) or HPV18 (HPV16/18) E7 antigen-pulsed mature dendritic cell (DC) vaccination were evaluated for patients with stage IB or IIA cervical cancer. Escalating doses of autologous DC (5, 10, and 15 × 106 cells for injection) were pulsed with recombinant HPV16/18 E7 antigens and keyhole limpet hemocyanin (KLH; an immunological tracer molecule) and delivered in five subcutaneous injections at 21-day intervals to 10 cervical cancer patients with no evidence of disease after they underwent radical surgery. Safety, toxicity, delayed-type hypersensitivity (DTH) reaction, and induction of serological and cellular immunity against HPV16/18 E7 and KLH were monitored. DC vaccination was well tolerated, and no significant toxicities were recorded. All patients developed CD4+ T-cell and antibody responses to DC vaccination, as detected by enzyme-linked immunosorbent spot (ELISpot) and enzyme-linked immunosorbent assays (ELISA), respectively, and 8 out of 10 patients demonstrated levels of E7-specific CD8+ T-cell counts, detected by ELISpot during or immediately after immunization, that were increased compared to prevaccination baseline levels. The vaccine dose did not predict the magnitude of the antibody or T-cell response or the time to detection of HPV16/18 E7-specific immunity. DTH responses to intradermal injections of HPV E7 antigen and KLH were detected for all patients after vaccination. We conclude that HPV E7-loaded DC vaccination is safe and immunogenic for stage IB or IIA cervical cancer patients. Phase II E7-pulsed DC-based vaccination trials with cervical cancer patients harboring a limited tumor burden, or who are at significant risk of tumor recurrence, are warranted.  相似文献   

10.
 Human papillomaviruses (HPV) are present in approximately 95% of all cervical carcinomas and the HPV E6 and E7 genes are continuously expressed in these lesions. There is also circumstantial evidence that often natural immunity against HPV is generated and that this is of influence on HPV-induced lesions. Stimulation of the immune system by proper presentation of relevant HPV antigens might, therefore, lead to a prophylactic or therapeutic immunological intervention for HPV-induced lesions. For this purpose we have expressed the E6 and E7 protein of HPV 16 in an attenuated strain of Salmonella typhimurium (SL3261, aroA mutation), which has been used extensively as a live vector. Live recombinant Salmonella vaccines have the ability to elicit humoral, secretory and cell-mediated immune responses, including cytotoxic T cells, against the heterologous antigens they express. This report describes the construction of recombinant Salmonella strains expressing the HPV 16 E6 and E7 proteins, and the induction of an HPV-16-specific immune response in mice after immunization with these live vectors. Received: 25 June 1996 / Accepted: 6 August 1996  相似文献   

11.
Previous studies have shown that the PDZ-binding motif of the E6 oncoprotein from the mucosal high-risk (HR) human papillomavirus (HPV) types plays a key role in HPV-mediated cellular transformation in in vitro and in vivo experimental models. HR HPV E6 oncoproteins have the ability to efficiently degrade members of the PDZ motif-containing membrane-associated guanylate kinase (MAGUK) family; however, it is possible that other PDZ proteins are also targeted by E6. Here, we describe a novel interaction of HPV type 16 (HPV16) E6 with a PDZ protein, Na(+)/H(+) exchange regulatory factor 1 (NHERF-1), which is involved in a number of cellular processes, including signaling and transformation. HPV16 E6 associates with and promotes the degradation of NHERF-1, and this property is dependent on the C-terminal PDZ-binding motif of E6. Interestingly, HPV16 E7, via the activation of the cyclin-dependent kinase complexes, promoted the accumulation of a phosphorylated form of NHERF-1, which is preferentially targeted by E6. Thus, both oncoproteins appear to cooperate in targeting NHERF-1. Notably, HPV18 E6 is not able to induce NHERF-1 degradation, indicating that this property is not shared with E6 from all HR HPV types. Downregulation of NHERF-1 protein levels was also observed in HPV16-positive cervical cancer-derived cell lines, such as SiHa and CaSki, as well as HPV16-positive cervical intraepithelial neoplasia (CIN). Finally, our data show that HPV16-mediated NHERF-1 degradation correlates with the activation of the phosphatidylinositol-3'-OH kinase (PI3K)/AKT signaling pathway, which is known to play a key role in carcinogenesis.  相似文献   

12.
Kim SH  Kim KS  Lee EJ  Kim MO  Park JH  Cho KI  Imakawa K  Hyun BH  Chang KT  Lee HT  Ryoo ZY 《Life sciences》2004,75(25):3035-3042
Human papillomavirus type 16 (HPV16) has been known as a major causative factor for the development of uterine cervical carcinomas. To investigate the in vivo activity of HPV16 expressed in squamous epithelia, transgenic mice harboring HPV16 E6/E7 with human keratin 14 (hK14) promoter were generated. Grossly, hK14 driven HPV16 E6/E7 transgenic mice exhibited multiple phenotypes, including wrinkled skin that was apparent prior to the appearance of hair in neonates, thickened ears, and loss of hair in adults. Transgenic mice with phenotype exhibiting severe wrinkled skin and a lack of hair growth died at the age of 3-4 weeks. Histological analysis revealed that in transgenic mice survived beyond the initial 3-4 weeks, HPV16 E6/E7 causes epidermal hyperplasia in multiple transgenic lineages with high incidence of transgene penetration. This epithelial hyperplasia was characterized by an expansion of the proliferating compartment and keratinocytes, and was associated with hyperkeratosis. Such activities were significantly higher in the skin of transgenic mice than that of the normal mice. Thus, these transgenic mice appeared to be useful for the expression of HPV16 E6/E7 gene and subsequent analysis on hyperkeratosis.  相似文献   

13.
14.
15.
The E6 protein of cancer‐associated human papillomavirus type 16 (HPV16) binds to cellular p53 and promotes its degradation through the ubiquitin pathway. In an attempt to identify the regions of E6 that could be targetted for functional inhibition, we generated monoclonal antibodies to the HPV16 E6 oncoprotein (16E6) and analysed their effect on E6‐mediated p53 in vitro degradation. The isolated antibodies recognize the 16E6 oncoprotein expressed in the CaSki carcinoma cell line and strongly inhibit the proteolysis of p53 in vitro by binding specifically to a region of 10 residues located at the N‐terminal end of 16E6. The variable regions of these antibodies were cloned and expressed in E. coli as single chain Fvs (scFvs). Purified scFvs were present in monomeric form and totally abolished 16E6‐mediated p53 degradation by preventing the formation of E6/p53 protein complexes. Our results demonstrate that monovalent binding of scFvs to the N‐terminal end of 16E6 abrogates the biological mechanisms leading to the degradation of p53, and they suggest that this region of 16E6 may be a useful in vivo target for blocking the oncogenic activity of HPV16 E6 protein. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

16.
人乳头瘤病毒16型 E7蛋白在子宫颈癌细胞内的定位   总被引:1,自引:0,他引:1  
应用重组质粒在大肠杆菌中表达人乳头瘤病毒(HPV)16 型 E7 基因.以所产生的 E7 融合蛋白为抗原免疫家兔,制得抗 E7 蛋白抗血清.在子宫颈癌组织切片中用此抗血清作免疫组化染色(胶体金标记染色法).在光学显微镜下可观察到癌细胞中存在 E7 抗原黑色颗粒,位于细胞核内.主要附着于核膜,可证明 E7 基因在 HPV16 感染的子宫颈癌细胞中有强烈表达;提示 E7 基因可能即为 HPV16的癌基因.  相似文献   

17.
The viral oncoprotein E6 is an essential factor for cervical cancers induced by "high-risk" mucosal HPV. Among other oncogenic activities, E6 recruits the ubiquitin ligase E6AP to promote the ubiquitination and subsequent proteasomal degradation of p53. E6 is prone to self-association, which long precluded its structural analysis. Here we found that E6 specifically dimerizes through its N-terminal domain and that disruption of the dimer interface strongly increases E6 solubility. This allowed us to raise structural data covering the entire HPV16 E6 protein, including the high-resolution NMR structures of the two zinc-binding domains of E6 and a robust data-driven model structure of the N-terminal domain homodimer. Interestingly, homodimer interface mutations that disrupt E6 self-association also inactivate E6-mediated p53 degradation. These data suggest that E6 needs to self-associate via its N-terminal domain to promote the polyubiquitination of p53 by E6AP.  相似文献   

18.
Tumor cells utilize preferably glucose for energy production. They accomplish cellular glucose uptake in part through Na+-coupled glucose transport mediated by SGLT1 (SLC5A1). This study explored the possibility that the human papillomavirus 18 E6 protein HPV18 E6 (E6) participates in the stimulation of SGLT1 activity. E6 is one of the two major oncoproteins of high-risk human papillomaviruses, which are the causative agent for cervical carcinoma. According to Western blotting, SGLT1 is expressed in the HPV18-positive cervical carcinoma cell line HeLa. To explore whether E6 affects SGLT1 activity, SGLT1 was expressed in Xenopus oocytes with and without E6 and electrogenic glucose transport determined by dual electrode voltage clamp. In SGLT1-expressing oocytes, but not in oocytes injected with water or expressing E6 alone, glucose triggered a current (Ig). Ig was significantly increased by coexpression of E6 but not by coexpression of E2. According to chemiluminescence and confocal microscopy, coexpression of E6 significantly increased the SGLT1 protein abundance in the cell membrane. The decay of Ig following inhibition of carrier insertion by Brefeldine A (5 μM) was not significantly affected E6 coexpression. Accrodingly, E6 was not effective by increasing carrier protein stability in the membrane. In conclusion, HPV18 E6 oncoprotein participates in the upregulation of SGLT1.  相似文献   

19.
20.
田厚文  任皎  黄薇  范江涛  赵莉  阮力 《病毒学报》2006,22(5):358-363
采用基因工程方法将HPV16E6、E7基因融合后插入痘苗病毒载体,通过同源重组构建表达人乳头瘤病毒16型E6/E7融合蛋白的非复制型重组痘苗病毒疫苗,用C57BL/6小鼠观察其免疫原性和抗肿瘤移植情况。测序结果表明融合的HPV16E6、E7基因序列与设计相符;构建的非复制型重组痘苗病毒经Dot blot鉴定,显示有E6、E7融合基因的插入;Western blot检测表明该重组病毒在鸡胚成纤维细胞中能表达HPV16型E6/E7融合蛋白。动物免疫试验表明,该重组病毒在小鼠体内可诱发E6、E7特异性抗体;被免疫小鼠能抵抗TC-1肿瘤细胞的攻击。此结果为将来进一步研制HPV16、18型联合疫苗打下了基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号