首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Several studies are currently ongoing to construct synthetic bone-like materials with composites of natural and polymeric materials with HA (hydroxyapatite). The present study aims to fabricate composite nanofibrous substrate of Chit/HA (chitosan/HA - 80:25) prepared by dissolving in TFA/DCM (trifluoroacetic acid/dichloromethane) (70:30, w/w) for 5 days and electrospun to fabricate a scaffold for bone tissue engineering. HA (25 wt %) was sonicated for 30 min to obtain a homogenous dispersion of nanoparticles within the Chit (80 wt %) matrix for fabricating composite nanofibrous scaffold (Chit/HA). The nanofibres of Chit and Chit/HA were obtained with fibre diameters of 274 ± 75 and 510 ± 198 nm, respectively, and characterized by FESEM (field emission scanning electron microscopy) and FTIR (Fourier transform infrared). The interaction of hFOBs (human fetal osteoblasts) and nanofibrous substrates were analysed for cell morphology (FESEM), mineralization [ARS (Alizarin Red-S) staining], quantification of minerals and finally identified the elements present in Chit/HA/osteoblasts by EDX (energy-dispersive X-ray) analysis. EDX analysis confirmed that the spherulites contain calcium and phosphorus, the major constituents in calcium phosphate apatite, the mineral phase of the bone. Mineralization was increased significantly (P<0.001) up to 108% in Chit/HA compared with Chit nanofibres. These results confirmed that the electrospun composite Chit/HA nanofibrous substrate is a potential biocomposite material for the proliferation and mineralization of hFOBs required for enhanced bone tissue regeneration.  相似文献   

2.
Electrospun natural polymer membranes were fabricated from collagen or gelatin coated with a bioactive recombinant fragment of perlecan, a natural heparan sulfate proteoglycan. The electrospinning process allowed the facile processing of a three-dimensional, porous fibril (2-6 microm in diameter) matrix suitable for tissue engineering. Laser scanning confocal microscopy revealed that osteoblast-like MG63 cells infiltrated the depth of the electrospun membrane evenly without visible apoptosis. Tissue engineering scaffolds ideally mimic the extracellular matrix; therefore, the electrospun membrane must contain both structural and functional matrix features. Fibers were coated, after processing, with perlecan domain I (PlnDI) to improve binding of basic fibroblast growth factor (FGF-2), which binds to native heparan sulfate chains on PlnDI. PlnDI-coated electrospun collagen fibers were ten times more effective than heparin-BSA collagen fibers at binding FGF-2. Because FGF-2 modulates cell growth, differentiation, migration and survival, the ability to effectively bind FGF-2 to an electrospun matrix is a key improvement in creating a successful tissue engineering scaffold.  相似文献   

3.
4.
组织工程技术为修复病损的组织和器官提供了一种新的途径,在组织工程中,细胞支架起着支撑细胞生长、引导组织再生、控制组织结构和释放活性因子等作用。针对电纺技术的新发展和细胞支架的新理念,综述了国内外利用电纺技术制备细胞支架的工艺条件、制备方法、组织细胞培养等方面的研究进展,并结合作者所在研究团队的研究工作提出了对未来电纺技术在组织工程中应用的研究重点和发展方向的认识。  相似文献   

5.
关节软骨损伤后的自我修复是医学界一直在研究和探讨的难题。3D生物打印技术可以精准的分配载细胞生物材料,构建复杂的三维活体组织,在优化软骨缺损修复组织的内部结构、机械性能以及生物相容性上有很大优势,因此近年来成为软骨修复组织工程领域的研究热点。重点介绍了软骨生物3D生物打印的最新进展,包括软骨生物打印“墨水”材料的选择、种子细胞的来源以及3D生物打印技术的发展。此外,还阐述了3D生物打印技术在组织工程学应用上的部分局限性,并对其在软骨修复领域的发展与应用进行了预测。  相似文献   

6.
Damage to cartilage is of great clinical consequence given the tissue's limited intrinsic potential for healing. Current treatments for cartilage repair are less than satisfactory, and rarely restore full function or return the tissue to its native normal state. The rapidly emerging field of tissue engineering holds great promise for the generation of functional cartilage tissue substitutes. The general approach involves a biocompatible, structurally and mechanically sound scaffold, with an appropriate cell source, which is loaded with bioactive molecules that promote cellular differentiation and/or maturation. This review highlights aspects of current progress in cartilage tissue engineering.  相似文献   

7.
The natural extracellular matrix (ECM) is a complex structure that is built to meet the specific requirements of the tissue and organ. Primarily consisting of nanometer diameter fibrils, ECM may contain other vital substances such as proteoglycans, glycosaminoglycan and various minerals. Current research in tissue engineering involves trying to replicate the ECM such that it provides the environment for tissue regeneration. Electrospinning is a versatile process that results in nanofibers by applying a high voltage to electrically charge a liquid. A variety of polymers and other substances have been incorporated into the artificial nanofibrous scaffold. Surface modification and cross-linking of the nanofibers are some ways to improve the biocompatibility and stability of the scaffold. Electrospun scaffolds with oriented nanofibers and other assemblies can be constructed by modifying the electrospinning setup. Using electrospinning, researchers are able to specifically tailor the electrospun scaffold to meet the requirements of the tissue that they seek to regenerate. In vitro and in vivo experiments demonstrate that electrospun scaffolds hold great potential for tissue engineering applications.  相似文献   

8.
There are many variables to be considered in studying how cells interact with 3D scaffolds used in tissue engineering. In this study we investigated the influence of the fiber diameter and interfiber spaces of 3D electrospun fiber scaffolds on the behavior of human dermal fibroblasts. Fibers of two dissimilar model materials, polystyrene and poly-L-lactic acid, with a broad range of diameters were constructed in a specifically developed 3D cell culture system. When fibroblasts were introduced to freestanding fibers, and encouraged to "walk the plank," a minimum fiber diameter of 10 microm was observed for cell adhesion and migration, irrespective of fiber material chemistry. A distance between fibers of up to 200 microm was also observed to be the maximum gap that could be bridged by cell aggregates--a behavior not seen in conventional 2D culture. This approach has identified some basic micro-architectural parameters for electrospun scaffold design and some key differences in fibroblast growth in 3D. We suggest the findings will be of value for optimizing the integration of cells in these scaffolds for skin tissue engineering.  相似文献   

9.
Kim M  Hong B  Lee J  Kim SE  Kang SS  Kim YH  Tae G 《Biomacromolecules》2012,13(8):2287-2298
Delivering isolated chondrocytes with matrix is a promising approach to promote the cartilage repair. The present study attempted to combine the advantages of porous scaffold and hydrogel in delivering chondrocytes to partial-thickness cartilage defects. An electrospun, gelatin-incorporated PLCL scaffold mechanically similar to natural cartilage was fabricated, and chondrocytes were seeded using an injectable heparin-based hydrogel for efficient cell seeding. The scaffold/hydrogel composite showed more enhanced expression of chondrogenic genes and production of GAGs than those prepared without hydrogel. In addition, significant cartilage formation showing good integration with surrounding, similar to natural cartilage, was observed by scaffold/hydrogel composite system in partial-thickness defects of rabbit knees while no regeneration was observed in control defects. Although no exogenous chondrogenic factors were added, it was evident that the scaffold/hydrogel composite system was highly effective and better than the scaffold alone system without hydrogel for cartilage regeneration both in vitro and in vivo.  相似文献   

10.
The term tissue engineering is the technology that combines cells, engineering and biological/synthetic material in order to repair, replace or regenerate biological tissues such as bone, muscle, tendons and cartilage. The major human applications of tissue engineering are: skin, bone, cartilage, corneas, blood vessels, left mainstem bronchus and urinary structures. In this systematic review several criteria were identified as the most desirable characteristics of an ideal scaffold. These state that an ideal scaffolds needs to be biodegradable, possess mechanical strength, be highly porous, biocompatible, non-cytotoxic, non antigentic, stuitable for cell attachment, proliferation and differentiation, flexible and elastic, three dimensional, osteoconductive and support the transport of nutrients and metabolic waste. Subsequently, studies reporting on the various advantages and disadvantages of using collagen based scaffolds in musculoskeletal and cartilage tissue engineering were identified. The purpose of this review is to 1) provide a list of ideal characteristics of a scaffold as identified in the literature 2) identify different types of biological protein-based collagen scaffolds used in musculoskeletal and cartilage tissue engineering 3) assess how many of the criteria each scaffold type meets 4) weigh different scaffolds against each other according to their relative properties and shortcomings. The rationale behind this approach is that the ideal scaffold material has not yet been identified. Hence, this review will define how many of the identified ideal characteristics are fulfilled by natural collagen-based scaffolds and address the shortcomings of its use as found in the literature.  相似文献   

11.
A simplified 2D mathematical model for tissue growth within a cyclically-loaded tissue engineering scaffold is presented and analyzed. Such cyclic loading has the potential to improve yield and functionality of tissue such as bone and cartilage when grown on a scaffold within a perfusion bioreactor. The cyclic compression affects the flow of the perfused nutrient, leading to flow properties that are inherently unsteady, though periodic, on a timescale short compared with that of tissue proliferation. A two-timescale analysis based on these well-separated timescales is exploited to derive a closed model for the tissue growth on the long timescale of proliferation. Some sample numerical results are given for the final model, and discussed.  相似文献   

12.
This study demonstrated a newly developed method using adipose tissue-derived stromal cells (ADSCs) and hydroxypropylmethylcellulose (HPMC) in building injectable tissue engineered cartilage in vivo. ADSCs from rabbit subcutaneous fatty tissue were cultured in chondrogenic differentiation medium and supplemented with transforming growth factor-β1 (TGF-β1) and basic fibroblast growth factor (bFGF). Histological, immunohistochemistry and RT-PCR analysis confirmed that the ADSCs differentiated into chondrocytes following induction. Induced ADSCs mixed with 15 % HPMC were injected into the subcutaneous tissue of nude mice and, after a period of 8 weeks, newly formed cartilage was observed at the site of injection. The ability of ADSCs cultured in the induction medium with TGF-β1 and bFGF to differentiate into chondrocytes and construct new cartilage indicates that ADSCs are suitable for use as seed cells in cartilage tissue engineering. HPMC, according to its good water solubility and being able to transform from liquid to solid at body temperature, was found to be an ideal scaffold for tissue engineering.  相似文献   

13.
Osteochondral tissue engineering aims to regenerate functional tissue-mimicking physiological properties of injured cartilage and its subchondral bone. Given the distinct structural and biochemical difference between bone and cartilage, bilayered scaffolds, and bioreactors are commonly employed. We present an osteochondral culture system which cocultured ATDC5 and MC3T3-E1 cells on an additive manufactured bilayered scaffold in a dual-chamber perfusion bioreactor. Also, finite element models (FEM) based on the microcomputed tomography image of the manufactured scaffold as well as on the computer-aided design (CAD) were constructed; the microenvironment inside the two FEM was studied and compared. In vitro results showed that the coculture system supported osteochondral tissue growth in terms of cell viability, proliferation, distribution, and attachment. In silico results showed that the CAD and the actual manufactured scaffold had significant differences in the flow velocity, differentiation media mixing in the bioreactor and fluid-induced shear stress experienced by the cells. This system was shown to have the desired microenvironment for osteochondral tissue engineering and it can potentially be used as an inexpensive tool for testing newly developed pharmaceutical products for osteochondral defects.  相似文献   

14.
关节软骨自我修复能力有限,目前临床用于治疗关节软骨损伤的方法和药物均难以达到满意的效果.间充质干细胞具有分化潜力大、增殖能力强、免疫原性低、取材方便等特点,可能成为软骨组织工程的理想种子细胞之一.就间充质干细胞在软骨表型分化方面的研究进展进行了综述.系统地介绍了影响间充质干细胞向软骨细胞分化的诸多因素,如:生长因子、氧...  相似文献   

15.
Repair and regeneration of osteochondral defects in the articular joints   总被引:6,自引:0,他引:6  
People suffering from pain due to osteoarthritic or rheumatoidal changes in the joints are still waiting for a better treatment. Although some studies have achieved success in repairing small cartilage defects, there is no widely accepted method for complete repair of osteochondral defects. Also joint replacements have not yet succeeded in replacing of natural cartilage without complications. Therefore, there is room for a new medical approach, which outperforms currently used methods. The aim of this study is to show potential of using a tissue engineering approach for regeneration of osteochondral defects. The critical review of currently used methods for treatment of osteochondral defects is also provided. In this study, two kinds of hybrid scaffolds developed in Hutmacher's group have been analysed. The first biphasic scaffold consists of fibrin and PCL. The fibrin serves as a cartilage phase while the porous PCL scaffold acts as the subchondral phase. The second system comprises of PCL and PCL-TCP. The scaffolds were fabricated via fused deposition modeling which is a rapid prototyping system. Bone marrow-derived mesenchymal cells were isolated from New Zealand White rabbits, cultured in vitro and seeded into the scaffolds. Bone regenerations of the subchondral phases were quantified via micro CT analysis and the results demonstrated the potential of the porous PCL and PCL-TCP scaffolds in promoting bone healing. Fibrin was found to be lacking in this aspect as it degrades rapidly. On the other hand, the porous PCL scaffold degrades slowly hence it provides an effective mechanical support. This study shows that in the field of cartilage repair or replacement, tissue engineering may have big impact in the future. In vivo bone and cartilage engineering via combining a novel composite, biphasic scaffold technology with a MSC has been shown a high potential in the knee defect regeneration in the animal models. However, the clinical application of tissue engineering requires the future research work due to several problems, such as scaffold design, cellular delivery and implantation strategies.  相似文献   

16.
Neurite outgrowth from endogenous or transplanted cells is important for neural regeneration following nerve tissue injury. Modified substrates often provide better environments for cell adhesion and neurite outgrowth. This study was conducted to determine if MWCNT (multiwalled carbon nanotube)-coated electrospun PLCL [poly (l-lactic acid-co-3-caprolactone)] nanofibres improved the neurite outgrowth of PC-12 cells. To accomplish this, two groups, PC-12 cells in either uncoated PLCL scaffolds or MWCNT-coated PLCL scaffolds were cultured for 9 days. MWCNT-coated PLCL scaffolds showed improved adhesion, proliferation and neurite outgrowth of PC-12 cells. These findings suggest that MWCNT-coated nanofibrous scaffolds may be an attractive platform for cell transplantation application in neural tissue engineering.  相似文献   

17.
Tissue engineering of cartilage consists of two steps. Firstly, the cells from a small biopsy of patient's own tissue have to be multiplied. During this multiplication process they lose their cartilage phenotype. In the second step, these cells have to be stimulated to re-express their cartilage phenotype and produce cartilage matrix. Growth factors can be used to improve cell multiplication, redifferentiation and production of matrix. The choice of growth factors should be made for each phase of the tissue engineering process separately, taking into account cell phenotype and the presence of extracellular matrix. This paper demonstrates some examples of the use of growth factors to increase the amount, the quality and the assembly of the matrix components produced for cartilage tissue engineering. In addition it shows that the "culture history" (e.g., addition of growth factors during cell multiplication or preculture period in a 3-dimensional environment) of the cells influences the effect of growth factor addition. The data demonstrate the potency as well as the limitations of the use of growth factors in cartilage tissue engineering.  相似文献   

18.
Tissue engineering is a multidisciplinary field of research in which the cells, biomaterials, and processes can be optimized to develop a tissue substitute. Three-dimensional (3D) architectural features from electrospun scaffolds, such as porosity, tortuosity, fiber diameter, pore size, and interconnectivity have a great impact on cell behavior. Regarding tissue development in vitro, culture conditions such as pH, osmolality, temperature, nutrient, and metabolite concentrations dictate cell viability inside the constructs. The effect of different electrospun scaffold properties, bioreactor designs, mesenchymal stem cell culture parameters, and seeding techniques on cell behavior can be studied individually or combined with phenomenological modeling techniques. This work reviews the main culture and scaffold factors that affect tissue development in vitro regarding the culture of cells inside 3D matrices. The mathematical modeling of the relationship between these factors and cell behavior inside 3D constructs has also been critically reviewed, focusing on mesenchymal stem cell culture in electrospun scaffolds.  相似文献   

19.
The field of tissue engineering integrates the principles of engineering, cell biology and medicine towards the regeneration of specific cells and functional tissue. Matrix associated stem cell implants (MASI) aim to regenerate cartilage defects due to arthritic or traumatic joint injuries. Adult mesenchymal stem cells (MSCs) have the ability to differentiate into cells of the chondrogenic lineage and have shown promising results for cell-based articular cartilage repair technologies. Autologous MSCs can be isolated from a variety of tissues, can be expanded in cell cultures without losing their differentiation potential, and have demonstrated chondrogenic differentiation in vitro and in vivo1, 2.In order to provide local retention and viability of transplanted MSCs in cartilage defects, a scaffold is needed, which also supports subsequent differentiation and proliferation. The architecture of the scaffold guides tissue formation and permits the extracellular matrix, produced by the stem cells, to expand. Previous investigations have shown that a 2% agarose scaffold may support the development of stable hyaline cartilage and does not induce immune responses3.Long term retention of transplanted stem cells in MASI is critical for cartilage regeneration. Labeling of MSCs with iron oxide nanoparticles allows for long-term in vivo tracking with non-invasive MR imaging techniques4.This presentation will demonstrate techniques for labeling MSCs with iron oxide nanoparticles, the generation of cell-agarose constructs and implantation of these constructs into cartilage defects. The labeled constructs can be tracked non-invasively with MR-Imaging.Open in a separate windowClick here to view.(27M, flv)  相似文献   

20.
Bioprinting, which is based on thermal inkjet printing, is one of the most attractive enabling technologies in the field of tissue engineering and regenerative medicine. With digital control cells, scaffolds, and growth factors can be precisely deposited to the desired two-dimensional (2D) and three-dimensional (3D) locations rapidly. Therefore, this technology is an ideal approach to fabricate tissues mimicking their native anatomic structures. In order to engineer cartilage with native zonal organization, extracellular matrix composition (ECM), and mechanical properties, we developed a bioprinting platform using a commercial inkjet printer with simultaneous photopolymerization capable for 3D cartilage tissue engineering. Human chondrocytes suspended in poly(ethylene glycol) diacrylate (PEGDA) were printed for 3D neocartilage construction via layer-by-layer assembly. The printed cells were fixed at their original deposited positions, supported by the surrounding scaffold in simultaneous photopolymerization. The mechanical properties of the printed tissue were similar to the native cartilage. Compared to conventional tissue fabrication, which requires longer UV exposure, the viability of the printed cells with simultaneous photopolymerization was significantly higher. Printed neocartilage demonstrated excellent glycosaminoglycan (GAG) and collagen type II production, which was consistent with gene expression. Therefore, this platform is ideal for accurate cell distribution and arrangement for anatomic tissue engineering.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号