首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Natural killer (NK) cells express an activating receptor, 2B4, that enhances cellular cytotoxicity. Upon NK cell activation by ligation of 2B4, the intracellular domain of 2B4 associates with the X-linked lymphoproliferative disease (XLP) gene product, signaling lymphocytic activation molecule-associated protein/SH2D1A (SAP/SH2D1A). Defective intracellular association of 2B4 with mutated SAP/SH2D1A is likely to underlie the defects in cytotoxicity observed in NK cells from patients with XLP. We report here a role for phosphoinositide 3-kinase (PI3K) in the recruitment and association of SAP/SH2D1A to 2B4 in human NK cells. The activation of normal NK cells by ligation of 2B4 leads to the phosphorylation of 2B4, recruitment of SAP/SH2D1A, and association of the p85 regulatory subunit of PI3K. The inhibition of PI3K enzymatic activity with either wortmannin or LY294002 prior to 2B4 ligation does not alter the association of 2B4 with the p85 subunit but prevents the recruitment of SAP/SH2D1A to 2B4. In addition, PI3K inhibitors significantly diminish the cytotoxic function of primary NK cells. This observed inhibition of cytotoxicity, present in normal NK cells, was less apparent or absent in NK cells derived from a patient with XLP. These data indicate that the cytotoxicity of activated NK cells is mediated by the association of 2B4 and SAP/SH2D1A, and that this association is dependent upon the activity of PI3K.  相似文献   

2.
X-linked lymphoproliferative syndrome (XLP) is an immunodeficiency characterized by life-threatening infectious mononucleosis and EBV-induced B cell lymphoma. The gene mutated in XLP encodes SLAM (signaling lymphocytic activation molecule-associated protein)-associated protein (SAP), a small SH2 domain-containing protein. SAP associates with 2B4 and SLAM, activating receptors expressed by NK and T cells, and prevents recruitment of SH2 domain-containing protein tyrosine phosphatase-2 SHP-2) to the cytoplasmic domains of these receptors. The phenotype of XLP may therefore result from perturbed signaling through SAP-associating receptors. We have addressed the functional consequence of SAP deficiency on 2B4-mediated NK cell activation. Ligating 2B4 on normal human NK cells with anti-2B4 mAb or interaction with transfectants bearing the 2B4 ligand CD48 induced NK cell cytotoxicity. In contrast, ligation of 2B4 on NK cells from a SAP-deficient XLP patient failed to initiate cytotoxicity. Despite this, CD2 or CD16-induced cytotoxicity of SAP-deficient NK cells was similar to that of normal NK cells. Thus, selective impairment of 2B4-mediated NK cell activation may contribute to the immunopathology of XLP.  相似文献   

3.
NK cells are an important component of the innate immune system that can also interact with B cells in a mutually productive manner. We have previously shown that activated B cells can induce NK cells to up-regulate their secretion of IFN-gamma. In this study, we show that B cells, and, particularly, marginal zone B cells, can, in addition, induce NK cells via direct cell-cell interactions to express mRNA encoding the Th2 cytokine IL-13. The induction of NK cell IL-13 mRNA expression requires the ligation of the CD244 receptor by the CD48 ligand on B cells via signaling pathways that depend upon expression of the X-linked lymphoproliferative disease gene product, SH2D1A/DSHP/SAP (SLAM-associated protein, or SAP) in NK cells. Thus, the positive signals attributed to the B cell activation of CD244 on murine NK cells appears to be more similar to the activity of CD244 on human cells. The induction of IL-13 mRNA by B cells may account for the effect of NK cells on the generation of Th2-type responses in the presence of some adjuvants.  相似文献   

4.
Cell surface receptors belonging to the CD2 subset of the Ig superfamily of molecules include CD2, CD48, CD58, 2B4, signaling lymphocytic activation molecule (SLAM), Ly9, CD84, and the recently identified molecules NTB-A/Ly108/SLAM family (SF) 2000, CD84H-1/SF2001, B lymphocyte activator macrophage expressed (BLAME), and CRACC (CD2-like receptor-activating cytotoxic cells)/CS-1. Some of these receptors, such as CD2, SLAM, 2B4, CRACC, and NTB-A, contribute to the activation and effector function of T cells and NK cells. Signaling pathways elicited via some of these receptors are believed to involve the Src homology 2 (SH2) domain-containing cytoplasmic adaptor protein SLAM-associated protein (SAP), as it is recruited to SLAM, 2B4, CD84, NTB-A, and Ly-9. Importantly, mutations in SAP cause the inherited human immunodeficiency X-linked lymphoproliferative syndrome (XLP), suggesting that XLP may result from perturbed signaling via one or more of these SAP-associating receptors. We have now studied the requirements for SAP recruitment to CD84 and lymphocyte activation elicited following ligation of CD84 on primary and transformed human T cells. CD84 was found to be rapidly tyrosine phosphorylated following receptor ligation on activated T cells, an event that involved the Src kinase Lck. Phosphorylation of CD84 was indispensable for the recruitment of SAP, which was mediated by Y(262) within the cytoplasmic domain of CD84 and by R(32) within the SH2 domain of SAP. Furthermore, ligating CD84 enhanced the proliferation of anti-CD3 mAb-stimulated human T cells. Strikingly, this effect was also apparent in SAP-deficient T cells obtained from patients with XLP. These results reveal a novel function of CD84 on human lymphocytes and suggest that CD84 can activate human T cells via a SAP-independent mechanism.  相似文献   

5.
SAP (SLAM-associated protein) is a small lymphocyte-specific signalling molecule that is defective or absent in patients with X-linked lymphoproliferative syndrome (XLP). Consistent with its single src homology 2 (SH2) domain architecture and unusually high affinity for SLAM (also called CD150), SAP has been suggested to function by blocking binding of SHP-2 or other SH2-containing signalling proteins to SLAM receptors. Additionally, SAP has recently been shown to be required for recruitment and activation of the Src-family kinase FynT after SLAM ligation. This signalling 'adaptor' function has been difficult to conceptualize, because unlike typical SH2-adaptor proteins, SAP contains only a single SH2 domain and lacks other recognized protein interaction domains or motifs. Here, we show that the SAP SH2 domain binds to the SH3 domain of FynT and directly couples FynT to SLAM. The crystal structure of a ternary SLAM-SAP-Fyn-SH3 complex reveals that SAP binds the FynT SH3 domain through a surface-surface interaction that does not involve canonical SH3 or SH2 binding interactions. The observed mode of binding to the Fyn-SH3 domain is expected to preclude the auto-inhibited conformation of Fyn, thereby promoting activation of the kinase after recruitment. These findings broaden our understanding of the functional repertoire of SH3 and SH2 domains.  相似文献   

6.
Ligation of the alpha(6)beta(4) integrin induces tyrosine phosphorylation of the beta(4) cytoplasmic domain, followed by recruitment of the adaptor protein Shc and activation of mitogen-activated protein kinase cascades. We have used Far Western analysis and phosphopeptide competition assays to map the sites in the cytoplasmic domain of beta(4) that are required for interaction with Shc. Our results indicate that, upon phosphorylation, Tyr(1440), or secondarily Tyr(1422), interacts with the SH2 domain of Shc, whereas Tyr(1526), or secondarily Tyr(1642), interacts with its phosphotyrosine binding (PTB) domain. An inactivating mutation in the PTB domain of Shc, but not one in its SH2 domain, suppresses the activation of Shc by alpha(6)beta(4). In addition, mutation of beta(4) Tyr(1526), which binds to the PTB domain of Shc, but not of Tyr(1422) and Tyr(1440), which interact with its SH2 domain, abolishes the activation of ERK by alpha(6)beta(4). Phenylalanine substitution of the beta(4) tyrosines able to interact with the SH2 or PTB domain of Shc does not affect incorporation of alpha(6)beta(4) in the hemidesmosomes of 804G cells. Exposure to the tyrosine phosphatase inhibitor orthovanadate increases tyrosine phosphorylation of beta4 and disrupts the hemidesmosomes of 804G cells expressing recombinant wild type beta(4). This treatment, however, exerts a decreasing degree of inhibition on the hemidesmosomes of cells expressing versions of beta(4) containing phenylalanine substitutions at Tyr(1422) and Tyr(1440), at Tyr(1526) and Tyr(1642), or at all four tyrosine phosphorylation sites. These results suggest that beta(4) Tyr(1526) interacts in a phosphorylation-dependent manner with the PTB domain of Shc. This event is required for subsequent tyrosine phosphorylation of Shc and signaling to ERK but not formation of hemidesmosomes.  相似文献   

7.
8.
9.
Some CD2 family receptors stimulate NK cell-mediated cytotoxicity through a signaling pathway, which is dependent on the recruitment of an adapter protein called SLAM-associated protein (SAP). In this work we identify a novel leukocyte cell surface receptor of the CD2 family called CD2-like receptor activating cytotoxic cells (CRACC). CRACC is expressed on cytotoxic lymphocytes, activated B cells, and mature dendritic cells, and activates NK cell-mediated cytotoxicity. Remarkably, although CRACC displays cytoplasmic motifs similar to those recruiting SAP, CRACC-mediated cytotoxicity occurs in the absence of SAP and requires activation of extracellular signal-regulated kinases-1/2. Thus, CRACC is a unique CD2-like receptor which mediates NK cell activation through a SAP-independent extracellular signal-regulated kinase-mediated pathway.  相似文献   

10.
X-linked lymphoproliferative disease is caused by mutations in the protein SAP, which consists almost entirely of a single SH2 domain. SAP interacts with the Tyr281 site of the T<-->B cell signaling protein SLAM via its SH2 domain. Interestingly, binding is not dependent on phosphorylation but does involve interactions with residues N-terminal to the Tyr. We have used 15N and 2H NMR relaxation experiments to investigate the motional properties of the SAP SH2 domain backbone amides and side-chain methyl groups in the free protein and complexes with phosphorylated and non-phosphorylated peptides derived from the Tyr281 site of SLAM. The most mobile methyl groups are in side-chains with large RMSD values between the three crystal structures of SAP, suggesting that fast time-scale dynamics in side-chains is associated with conformational plasticity. The backbone amides of two residues which interact with the C-terminal part of the peptides experience fast time-scale motions in the free SH2 domain that are quenched upon binding of either the phosphorylated or non-phosphorylated peptide. Of most importance, the mobility of methyl groups in and around the binding site for residues in the N-terminus of the peptide is significantly restricted in the complexes, underscoring the dominance of this interaction with SAP and demonstrating a correlation between changes in rapid side-chain motion upon binding with local binding energy.  相似文献   

11.
X-linked lymphoproliferative disease (XLP) is a primary immunodeficiency characterized by extreme susceptibility to Epstein-Barr virus. The XLP disease gene product SH2D1A (SAP) interacts via its SH2 domain with a motif (TIYXXV) present in the cytoplasmic tail of the cell-surface receptors CD150/SLAM, CD84, CD229/Ly-9, and CD244/2B4. Characteristically, the SH2D1A three-pronged interaction with Tyr(281) of CD150 can occur in absence of phosphorylation. Here we analyze the effect of SH2D1A protein missense mutations identified in 10 XLP families. Two sets of mutants were found: (i) mutants with a marked decreased protein half-life (e.g. Y7C, S28R, Q99P, P101L, V102G, and X129R) and (ii) mutants with structural changes that differently affect the interaction with the four receptors. In the second group, mutations that disrupt the interaction between the SH2D1A hydrophobic cleft and Val +3 of its binding motif (e.g. T68I) and mutations that interfere with the SH2D1A phosphotyrosine-binding pocket (e.g. C42W) abrogated SH2D1A binding to all four receptors. Surprisingly, a mutation in SH2D1A able to interfere with Thr -2 of the CD150 binding motif (mutant T53I) severely impaired non-phosphotyrosine interactions while preserving unaffected the binding of SH2D1A to phosphorylated CD150. Mutant T53I, however, did not bind to CD229 and CD224, suggesting that SH2D1A controls several critical signaling pathways in T and natural killer cells. Because no correlation is present between identified types of mutations and XLP patient clinical presentation, additional unidentified genetic or environmental factors must play a strong role in XLP disease manifestations.  相似文献   

12.
13.
W Lu  D Gong  D Bar-Sagi  P A Cole 《Molecular cell》2001,8(4):759-769
The regulation of protein tyrosine phosphatase (PTPase) SHP-2 is proposed to involve tyrosine phosphorylation on two tail tyrosine residues. Using "expressed protein ligation", nonhydrolyzable phosphotyrosine analogs were introduced at known phosphorylation sites in SHP-2. Biochemical analysis suggests that a phosphonate at Tyr542 interacts intramolecularly with the N-terminal SH2 domain to relieve basal inhibition of the PTPase, whereas a phosphonate at Tyr-580 stimulates the PTPase activity by interaction with the C-terminal SH2 domain. Microinjection experiments indicate that a single phosphorylation of Tyr-542 of SHP-2 is sufficient to activate the MAP kinase pathway in living cells. These studies support a novel mechanism explaining how tyrosine phosphorylation of a PTPase is important in signal transduction.  相似文献   

14.
Engagement of NTB-A on human NK cells by homophilic interaction with NTB-A-expressing target cells can trigger NK cell cytotoxicity, cytokine production, and proliferation. To better understand how NTB-A can activate NK cells, we analyzed the molecular mechanisms of NTB-A signaling. We show that NTB-A is tyrosine phosphorylated in unstimulated human NK cells and associates with SLAM-associated protein (SAP) and EAT-2. This phosphorylation of NTB-A is mediated by Src family kinases and is most likely a result of the homophilic interaction of NTB-A among neighboring NK cells. Stimulation of NK cells by NTB-A-positive targets results in increased NTB-A phosphorylation. The cytoplasmic tail of NTB-A contains three tyrosines, two of which are embedded within an immunoreceptor tyrosine-based switch motif. We generated a NTB-A-negative NK cell line, in which we expressed different mutants of NTB-A. Functional studies showed that the second tyrosine is sufficient and essential for NTB-A-mediated cytotoxicity. EAT-2, but not SAP, is recruited to this second tyrosine, indicating that SAP may be dispensable for this NTB-A function. To further investigate this, we silenced SAP expression in NK cell lines. Functional analysis of these cells showed that NTB-A can mediate NK cell cytotoxicity in the absence of SAP, probably via EAT-2. In contrast, NTB-A-mediated IFN-gamma production was greatly reduced in the absence of SAP, demonstrating that cytokine production and cytotoxicity are differentially dependent on SAP and possibly EAT-2.  相似文献   

15.
16.
Mutations altering the gene encoding the SLAM associated protein (SAP) are responsible for the X-linked lymphoproliferative disease or XLP1. Its absence is correlated with a defective NKT cells development, a decrease in B cell functions and a reduced T cells and NK cells cytotoxic activities, thus leading to an immunodeficiency syndrome. SAP is a small 128 amino-acid long protein that is almost exclusively composed of an SH2 domain. It has been shown to interact with the CD150/SLAM family of receptors, and in a non-canonical manner with SH3 containing proteins such as Fyn, βPIX, PKCθ and Nck1. It would thus play the role of a minimal adaptor protein. It has been shown that SAP plays an important function in the activation of T cells through its interaction with the SLAM family of receptors. Therefore SAP defective T cells display a reduced activation of signaling events downstream of the TCR-CD3 complex triggering. In the present work, we evidence that SAP is a direct interactor of the CD3ζ chain. This direct interaction occurs through the first ITAM of CD3ζ, proximal to the membrane. Additionally, we show that, in the context of the TCR-CD3 signaling, an Sh-RNA mediated silencing of SAP is responsible for a decrease of several canonical T cell signaling pathways including Erk, Akt and PLCγ1 and to a reduced induction of IL-2 and IL-4 mRNA. Altogether, we show that SAP plays a central function in the T cell activation processes through a direct association with the CD3 complex.  相似文献   

17.
SLP-76 (Src homology (SH) 2-domain-containing leukocyte protein of 76 kDa) and FYB/SLAP (FYN-T-binding protein/SLP-76-associated protein) are two hemopoietic cell-specific adaptor proteins downstream of TCR-activated protein tyrosine kinases. SLP-76 has been implicated as an essential component in T cell signaling. FYB is selectively phosphorylated by FYN-T, providing a template for the recruitment of FYN-T and SLP-76 SH2 domains. Coexpression of FYN-T, FYB, and SLP-76 can synergistically up-regulate IL-2 production in T cells upon TCR ligation. In this report, we show that two tyrosines, Tyr595 and Tyr651, of FYB are major sites of phosphorylation by FYN-T and mediate binding to SLP-76 in Jurkat T cells. Furthermore, the synergistic up-regulation of IL-2 promoter activity in the FYN-T-FYB-SLP-76 pathway is contingent upon the interaction between FYB and SLP-76, but not the interaction between FYB and FYN-T. These observations define a pathway by which SLP-76 interacts with downstream components in the up-regulation of T cell cytokine production.  相似文献   

18.
Ag recognition by the TCR determines the subsequent fate of the T cell and is regulated by the involvement of other cell surface molecules, termed coreceptors. CD229 is a lymphocyte cell surface molecule that belongs to the CD150 family of receptors. Upon tyrosine phosphorylation, CD229 recruits various signaling molecules to the membrane. One of these molecules is the signaling lymphocytic activation molecule-associated protein, of which a deficiency leads to the X-linked lymphoproliferative syndrome. We report that CD229 interacts in a phosphorylation-dependent manner with Grb2. We mapped this interaction showing that the Src homology 2 domain of Grb2 and the tyrosine residue Y606 in CD229 are required for CD229-Grb2 complex formation. The Grb2 motif in the cytoplasmic tail of CD229 is distinct and independent from the two tyrosines required for efficient signaling lymphocytic activation molecule-associated protein recruitment. CD229, but not other members of the CD150 family, directly bound Grb2. We also demonstrate that CD229 precipitates with Grb2 in T lymphocytes after pervanadate treatment, as well as CD229 or TCR ligation. Interestingly, the CD229 mutant lacking the Grb2 binding site is not internalized after CD229 engagement with specific Abs. Moreover, a dominant negative form of Grb2 (containing only Src homology 2 domain) impaired CD229 endocytosis. Unexpectedly, Erk phosphorylation was partially inhibited after activation of CD229 plus CD3. Consistent with this, CD229 ligation partially inhibited TCR signaling in peripheral blood cells and CD229-Jurkat cells transfected with the 3XNFAT-luciferase reporter construct. Altogether, the data suggest a model whereby CD229 ligation attenuates TCR signaling and Grb2 recruitment to CD229 controls its rate of internalization.  相似文献   

19.
In this study we have analyzed the interaction between in vitro cultured bone marrow stromal cells (BMSC) and NK cells. Ex vivo-isolated NK cells neoexpressed the activation Ag CD69 and released IFN-gamma and TNF-alpha upon binding with BMSC. Production of these proinflammatory cytokines was dependent on ligation of ICAM1 expressed on BMSC and its receptor LFA1 on NK cells. Furthermore, the NKp30, among natural cytotoxicity receptors, appeared to be primarily involved in triggering NK cells upon interaction with BMSC. Unexpectedly, autologous IL-2-activated NK cells killed BMSC. Again, LFA1/ICAM1 interaction plays a key role in NK/BMSC interaction; this interaction is followed by a strong intracellular calcium increase in NK cells. More importantly, NKG2D/MHC-I-related stress-inducible molecule A and/or NKG2D/UL-16 binding protein 3 engagement is responsible for the delivery of a lethal hit. It appears that HLA-I molecules do not protect BMSC from NK cell-mediated injury. Thus, NK cells, activated upon binding with BMSC, may regulate BMSC survival.  相似文献   

20.
SAP is an intracellular adaptor molecule composed almost exclusively of an SH2 domain. It is mutated in patients with X-linked lymphoproliferative disease, a human immunodeficiency. Several immune abnormalities were also identified in SAP-deficient mice. By way of its SH2 domain, SAP interacts with tyrosine-based motifs in the cytoplasmic domain of SLAM family receptors. SAP promotes SLAM family receptor-induced protein tyrosine phosphorylation, due to its capacity to recruit the Src-related kinase FynT. This unusual property relies on the existence of a second binding surface in the SAP SH2 domain, centered on arginine 78 of SAP, that binds directly to the FynT SH3 domain. Herein, we wanted to further understand the mechanisms controlling the interaction between SLAM-SAP and FynT. Our experiments showed that, unlike conventional associations mediated by SH3 domains, the interaction of the FynT SH3 domain with SLAM-SAP was strictly inducible. It was absolutely dependent on engagement of SLAM by extracellular ligands. We obtained evidence that this inducibility was not due to increased binding of SLAM to SAP following SLAM engagement. Furthermore, it could occur independently of any appreciable SLAM-dependent biochemical signal. In fact, our data indicated that the induced association of the FynT SH3 domain with SLAM-SAP was triggered by a change in the conformation of SLAM-associated SAP caused by SLAM engagement. Together, these data elucidate further the events initiating SLAM-SAP signaling in immune cells. Moreover, they identify a strictly inducible interaction mediated by an SH3 domain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号