首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Translocation of the alpha subunit of Gi2 from the membrane to the cytosol was studied in mouse mastocytoma P-815 cells. To monitor Gi2 alpha the membrane (300,000 x g pellet) was [32P]ADP-ribosylated with pertussis toxin. Incubation of the [32P]ADP-ribosylated membrane with guanosine 5'-O-(3-thiotriphosphate) (GTP gamma S) caused a small release (10%) of [32P]ADP-ribosylated Gi2 alpha from the membrane. Whereas cytosol (300,000 x g supernatant) alone had no ability to release the [32P]ADP-ribosylated Gi2 alpha from the membrane, it markedly augmented the release induced by GTP gamma S, about 50% of the total [32P]ADP-ribosylated Gi2 alpha being released by 30 min. The GTP gamma S-induced release and its enhancement by the cytosol were specific for GTP and GTP gamma S. When the cytosol was boiled this promoting activity was lost. The [32P]ADP-ribosylated Gi2 alpha released by the cytosol plus GTP gamma S from the membrane was eluted as a single peak corresponding to a molecular weight of about 100,000 from an Ultrogel AcA 44 column. In contrast, the [32P]ADP-ribosylated Gi2 alpha released by GTP gamma S alone was eluted at the position of Mr = 40,000, but it was eluted at the position of Mr = about 100,000 when it was incubated with the cytosol. Furthermore, Gi2 alpha purified from bovine lung also behaved in a similar way on gel filtration. The addition of thrombin, a stimulant of histamine secretion from mast cells, to mastocytoma cells drastically induced the translocation of Gi2 alpha from the membrane to the cytosol in a pertussis toxin-sensitive manner. These results taken together demonstrate that the cytosol contains some factor(s) that promotes the release of GTP-activated Gi2 alpha from the membrane and that the released Gi2 alpha exists in the cytosol as a soluble complex with unidentified component(s) in mastocytoma cells.  相似文献   

2.
3.
Treatment of platelets with a prostacyclin analogue, iloprost, decreased the cholera-toxin-induced ADP-ribosylation of membrane-bound Gs alpha (alpha-subunit of G-protein that stimulates adenylate cyclase; 42 kDa protein) and a cytosolic substrate (44 kDa protein) [Molina y Vedia, Reep & Lapetina (1988) Proc. Natl. Acad. Sci. U.S.A. 85, 5899-5902]. This decrease is apparently not correlated with a significant change in the quantity of membrane Gs alpha, as detected by two Gs alpha-specific antisera. This finding contrasts with the suggestion in a previous report [Edwards, MacDermot & Wilkins (1987) Br. J. Pharmacol. 90, 501-510], indicating that iloprost caused a loss of Gs alpha from the membrane. Our evidence points to a modification in the ability of the 42 kDa protein to be ADP-ribosylated by cholera toxin. This modification of Gs alpha might be related to its ADP-ribosylation by endogenous ADP-ribosyltransferase activity. Here we present evidence showing that Gs alpha was ADP-ribosylated in platelets that had been electropermeabilized and incubated with [alpha-32P]NAD+. This endogenous ADP-ribosylation of Gs alpha is inhibited by nicotinamide and stimulated by iloprost.  相似文献   

4.
The complexion of the adenylate cyclase system and in particular, the regulation of G-proteins was examined in 3T3-L1 cells during differentiation from a fibroblast-like to an adipocyte-like phenotype. Gs alpha (the identified regulatory component of hormone-sensitive adenylate cyclase that mediates stimulation), measured by cholera toxin-catalyzed ADP-ribosylation, increased by approximately 6-fold from day 0 to day 8. Gs alpha, measured by functional reconstitution, increased in specific activity by approximately 3-fold from day 0 to day 8. Both Gi alpha (the G-protein with alpha-subunit Mr 40,000-41,000 whose function is in part the mediation of inhibition of adenylate cyclase) and Go alpha (the highly abundant G-protein first isolated from bovine brain whose effector system remains to be established) measured by pertussis toxin-catalyzed ADP-ribosylation increased by approximately 4-fold over this same period. 3T3-L1 cells possess beta-subunits of G-proteins displaying Mr = 36,000 (beta 36) and Mr = 35,000 (beta 35). The increase in the beta 35 as well as beta 36 subunits was approximately 2-fold. Using quantitative immunoblotting techniques and specific antisera, the total amount of beta-subunits was determined to be 150 as compared to 70 pmol/mg of membrane protein, while the amount of Go alpha was 40 and 10 pmol/mg of membrane protein in adipocytes and fibroblasts, respectively. Since Go alpha is the most abundant G-protein alpha-subunit observed to date in both phenotypes, the overall ratio of beta- to alpha-subunits of G-proteins appears to decrease from approximately 4.7 in fibroblasts to 2.5 in adipocytes. These data suggest that in differentiation not only is the complexion of G-proteins altered but more importantly, the relative amounts of alpha- to beta-subunits are regulated.  相似文献   

5.
Purification of the catalyst of adenylate cyclase   总被引:12,自引:0,他引:12  
The catalytic moiety of hormone-sensitive adenylate cyclase has been purified from bovine brain. It is isolated largely without its guanine nucleotide-binding regulatory protein, Gs, by affinity chromatography on 7-O-hemisuccinyldeacetylforskolin-agarose. It appears to be a single polypeptide which migrates on sodium dodecyl sulfate-polyacrylamide gels with an apparent Mr of approximately 120,000. When subjected to electrophoresis on gradient (5-10%) sodium dodecyl sulfate-polyacrylamide gels, it displays a larger apparent Mr of 150,000. The adenylate cyclase activity of the preparation can be stimulated by the addition of Gs, forskolin, or calcium-calmodulin. The preparation has been reconstituted with purified beta-adrenergic receptors and Gs to form a hormone-stimulated adenylate cyclase system (May, D., Ross, E.M., Gilman, A.G., and Smigel, M.D. (1985) J. Biol. Chem. 260, 15829-15833). In contrast to its stimulation by Gs, inhibition by the alpha subunits of Gi and Go, G proteins known to be coupled to inhibitory receptors (Sternweis, P., and Florio, V. (1985) J. Biol. Chem. 260, 3477-3483), is not seen. Preparations of adenylate cyclase show varying degrees of inhibition by added G protein beta . gamma subunit. This inhibition can be explained as reflecting a variable, small (under 5%) contamination of the preparation by Gs alpha which would be deactivated by complexing with the added beta . gamma subunit.  相似文献   

6.
An antibody (RM) raised against the carboxyl-terminal decapeptide of the alpha subunit of the stimulatory guanine nucleotide regulatory protein (Gs alpha) has been used to study the interaction of Gs alpha with bovine brain adenylate cyclase [ATP pyrophosphate-lyase (cyclizing), EC 4.6.1.1]. RM antibody immunoprecipitated about 60% of the solubilized adenylate cyclase preactivated with either GTP-gamma-S or AlF4-. In contrast, RM antibody immunoprecipitated about 5% of the adenylate cyclase not preactivated (control) and 15% of the adenylate cyclase pretreated with forskolin. Adenylate cyclase solubilized from control membranes or GTP-gamma-S preactivated membranes was partially purified by using forskolin-agarose affinity chromatography. The amount of Gs alpha protein in the partially purified preparations was determined by immunoblotting with RM antibody. There was 3-fold more Gs alpha detected in partially purified adenylate cyclase from preactivated membranes than in the partially purified adenylate cyclase from control membranes. Partially purified adenylate cyclase from preactivated membranes was immunoprecipitated with RM antibody and the amount of adenylate cyclase activity immunoprecipitated (65% of total) corresponded to the amount of Gs alpha protein immunoprecipitated. Only 15% of the partially purified adenylate cyclase from control membranes was immunoprecipitated. The presence of other G proteins in the partially purified preparations of adenylate cyclase was investigated by using specific antisera that detect Go alpha, Gi alpha, and G beta. The G beta protein was the only subunit detected in the partially purified preparations of adenylate cyclase and the amount of G beta was about the same in adenylate cyclase from preactivated membranes and from control membranes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Most cells contain two forms of the alpha subunit of the G protein (Gs) that stimulates adenylate cyclase; their apparent molecular weights are 45,000 and 52,000. Two cDNAs that correspond to distinct mRNAs for the alpha subunit of Gs have been cloned from a bovine adrenal library and sequenced. The sequences of the two cDNAs, designated pGs-l and pGs-S, are identical except for a single stretch of 46 nucleotides in the coding region, where four are altered and 42 are deleted in pGs-S. Expression of pGs-S and pGs-l in COS-m6 cells yields protein products with apparent molecular weights of 45,000 and 52,000, respectively, based on their mobility in sodium dodecyl sulfate-polyacrylamide gels. We conclude that pGs-S and pGs-l encode the 45- and 52-kDa forms of Gs alpha, respectively, and propose that the mRNAs encoding these proteins arise from a single gene by internal alternative RNA splicing.  相似文献   

8.
Two peptides (Mr = 40,000 and 41,000) in membranes of rabbit heart are radiolabeled when the membranes are incubated in the presence of activated pertussis toxin and [32P]NAD+. The 41,000-Mr peptide appears to be the alpha subunit of the inhibitory regulatory protein of adenylate cyclase, Ni. The 40,000-Mr substrate for pertussis toxin in the heart was investigated. Purification of the stimulatory regulatory protein of adenylate cyclase, Ns, results in the co-purification of the alpha subunits of both Ns and Ni, the putative beta- (Mr = 35,000) and gamma- (Mr approximately equal to 15,000) subunits of Ns and Ni, and the additional 40,000-Mr peptide that is ADP-ribosylated by pertussis toxin. This 40,000-Mr substrate for pertussis toxin action appears to be a major N-protein of mammalian heart.  相似文献   

9.
A stable analogue of prostacyclin, iloprost, specifically bound to 30,000 x g pellet (the membrane fraction) prepared from mouse mastocytoma P-815 cells. The binding was dependent on time, temperature and pH, and absolutely required a divalent cation. The equilibrium dissociation constant and the maximal concentration of the binding site as determined by Scatchard plot analysis were 10.4 nM and 1.12 pmol/mg of protein, respectively. The Hill coefficient was 1.0, indicating a single entity of binding site and no cooperativity. The binding site was highly specific for iloprost among PGs tested (iloprost much greater than PGE1 greater than carbacyclin greater than PGE2). In contrast, the membrane fraction had the binding site specific for PGE2 and PGE1, which was distinct from the prostacyclin receptor. The dissociation of bound [3H]iloprost from the membrane fraction was specifically enhanced by guanine nucleotides. Furthermore, iloprost dose-dependently enhanced the activity of adenylate cyclase in a GTP-dependent manner. These results indicate that a specific prostacyclin receptor is coupled to the adenylate cyclase system via a stimulatory GTP-binding protein in mastocytoma cells.  相似文献   

10.
We report that compartmentalisation of the stimulatory guanine-nucleotide-binding regulatory protein (Gs) exists in S49 lymphoma cells. In addition to the previously reported cytosolic form of the alpha subunit of Gs (Gs alpha) [Ransn?s, L. A., Svoboda P., Jasper, J. R. & Insel, P. A. (1989) Proc. Natl Acad. Sci. USA 86, 7900-7903], three membrane-bound forms of Gs alpha were identified through rate-zonal centrifugation in sucrose density gradients, Gs alpha-specific anti-peptide serum and an adenylate cyclase complementation assay. The sedimentation profile of the first pool of Gs alpha in the high-density portion of the gradient (1.13-1.16 g/cm3) is identical with that of beta-adrenergic-receptor binding, Na/K-ATPase and adenylate cyclase activity, and may therefore be identified as plasma-membrane fragments. The second pool, which was recovered in the middle portion of the gradient (1.09-1.11 g/cm3), contains a much lower total amount of Gs alpha and correlates with the endoplasmic reticulum (microsomal) enzyme markers, NADPH-cytochrome-c reductase and glucose-6-phosphatase. The identity of the third pool of Gs alpha located at the top of the gradient (1.06-1.08 g/cm3), is unknown. The Golgi apparatus marker, UDPgalactose:N-acetylglucosamine glycosyltransferase, was partially recovered in this area; however, this enzyme was also present in the high-density portion of the gradient. Complete absence of specific adenylate cyclase and Na/K-ATPase activity indicates that this low-density (light) membrane form of Gs alpha is distinct from any plasma-membrane fragments. Furthermore, sedimentation at 100,000 x g proves its particulate (membrane) character. The light membrane form of Gs alpha subunit is functionally active in an adenylate cyclase complementation assay using cyc- membranes devoid of Gs alpha. Overall, our data indicates that a substantial portion of Gs alpha is localized in membrane pools other than plasma membrane.  相似文献   

11.
The prostacyclin (PGI2) analogues, TEI-9063 and its methyl ester, TEI-1324, have been compared with another stable analogue, iloprost, with respect to binding to the PGI2 receptor, stimulation of adenylate cyclase activity and inhibition of thrombin-induced Ca2+ mobilization in mastocytoma P-815 cells. TEI-9063 displaced the [3H]iloprost binding to the membrane fraction, the IC50 value being 3 nM, but showed very low affinity for the PGE receptor. TEI-9063 dose dependently stimulated cAMP formation in the cells and GTP-dependent adenylate cyclase activity in the membrane fraction, the EC50 value being 50 and 10 nM, respectively. Furthermore, TEI-9063 prevented the thrombin-induced increase in the intracellular Ca2+ concentration, the IC50 value being 50 nM. These IC50 and EC50 values are lower than those obtained for iloprost. On the other hand, those of TEI-1324 were about two-orders higher. Although PGI2 lost its ability to stimulate cAMP formation by preincubation for 20 min at 37 degrees C, TEI-9063 completely retained its ability after 60-min preincubation. These results demonstrate that TEI-9063 is a stable and stronger agonist for the PGI2 receptor than iloprost, and that it prevents thrombin-induced Ca2+ mobilization through stimulation of the adenylate cyclase system in mastocytoma cells.  相似文献   

12.
This study examines the influence of cholera toxin (CT) on T lymphocyte activation by the mitogenic lectin phytohaemagglutinin (PHA). CT suppressed lectin-induced [3H]thymidine uptake in a dose-dependent fashion and acted synergistically with PHA in the generation of intracellular cyclic AMP. The toxin was assumed to act on Gs, because it also stimulated ADP-ribosylation of a 45 kDa membrane protein in vitro; no additional substrates were seen. The inhibitory effect of the adenylate cyclase/cyclic AMP pathway was shown to be directed at a concomitant stimulatory pathway, namely inositol phospholipid turnover. Lectin-stimulated 32P incorporation into both phosphatidylinositol as well as its 4,5-biphosphate derivative was depressed in the presence of CT or exogenous dibutyryl cyclic AMP. This, in turn, was associated with reduced activation of C-kinase as determined by decreased lectin-induced translocation from the cytosol to the surface membrane. These results indicate that Gs probably acts as a transducer between the PHA receptor and adenylate cyclase and may give rise to an exaggerated adenylate cyclase response in the presence of CT. It would seem as if reduction in inositol phospholipid turnover is related to the elevation of cyclic AMP rather than a CT effect on a putative transducer which acts directly on phospholipase C. Our study does not exclude the existence of non-CT-sensitive transducers in this capacity.  相似文献   

13.
A factor (ARF) that is required for the cholera toxin-dependent ADP-ribosylation of the stimulatory, GTP-binding regulatory component (Gs) of adenylate cyclase has been purified about 2000-fold from cholate extracts of rabbit liver membranes. ARF is an intrinsic membrane protein with Mr = 21,000. The final product can be resolved into two polypeptides with very similar molecular weights; each of these has ARF activity. The ADP-ribosylation of Gs can now be studied with defined components. GTP and ARF are both necessary cofactors. The data imply that the substrates for the activated toxin are NAD and a GTP X Gs X ARF complex, and the reaction proceeds in a lipid environment. The apparent ability of ARF to bind to the alpha subunit of Gs suggests that it may play another, unknown role in the regulation of adenylate cyclase activity.  相似文献   

14.
15.
Hormonal stimulation of adenylate cyclase from bovine cerebral cortex is mediated by a guanine-nucleotide regulatory protein (Gs). This protein contains at least three polypeptides: a guanine nucleotide-binding alpha s component and a beta X gamma component, which modulates the function of alpha s. The alpha s component from many tissues can be ADP-ribosylated with cholera toxin, but has been unusually difficult to modify in brain. We have improved incorporation of ADP-ribose by including isonicotinic acid hydrazide to inhibit the potent NAD glycohydrolase activity of brain. ADP-ribosylation is further improved by addition of detergent to render the substrates accessible and 20 mM-EDTA to chelate metal ions. Although Mg2+ is absolutely required for activation of adenylate cyclase by the GTP analogue guanosine 5'-[beta gamma-imido]triphosphate (p[NH]ppG), it is not obligatory for p[NH]ppG-stimulated ADP-ribosylation by cholera toxin. Under these conditions, the ADP-ribosylation of brain membranes is not enhanced by a cytosolic protein. We find that there are two major sizes of brain alpha s, which we have named 'alpha sL', with an apparent Mr of 42,000-45,000, and 'alpha sH' with an apparent Mr of 46,000-51,000 depending on the gel-electrophoretic system used. The alpha sL and alpha sH components can incorporate different amounts of ADP-ribose depending on the reaction conditions, so that one or the other may appear to predominate. Thus we show that incomplete ADP-ribosylation by cholera toxin is not a good indication of the relative amounts of alpha s units. Functionally, however, both forms of alpha s appear to be similar. Both forms associate with the catalytic unit of adenylate cyclase, but neither of them does so preferentially. There is an excess of each of them over the amount associated with catalytic unit. We have now substantially purified Gs from brain by a modification of the method of Sternweis et al. [(1981) J. Biol. Chem. 256, 11517-11526] as well as by a new, simplified, procedure. On SDS/polyacrylamide-gel electrophoresis, the purified brain Gs contains both the 45 and 51 kDa alpha s polypeptides revealed by ADP-ribosylation and a beta X gamma component. Activation of purified alpha s by guanine nucleotides or fluoride can be reversed by addition of purified beta X gamma component. The activated form of purified brain Gs has an Mr of 49,000 as determined by hydrodynamic measurements, which is consistent with the idea that the active form of brain Gs is the dissociated one.  相似文献   

16.
The 45-kDa alpha subunit of the signal transducing Gs protein complex, which stimulates receptor-coupled adenylate cyclase, incorporated less of the photoaffinity probe, 8N3-[gamma-32P]GTP, in extracts from tumorigenic cell lines in comparison with nontumorigenic cell lines derived from mouse lung epithelium. Immunoblotting experiments using anti-Gs alpha antibodies demonstrated that tumor cells do not have a decreased amount of Gs alpha and photolabeling of tumor cell Gs alpha increased when the rate of nucleotide exchange was promoted. Therefore, tumor cell Gs alpha function may be altered. Consistent with this hypothesis is the observation that the tumor cells exhibited decreased responsiveness to the beta-adrenergic agonist, isoproterenol. Gs alpha photolabeling in growing nontumorigenic cells was reduced to a level resembling that observed in tumor cells, but photolabeling increased when cells became contact-inhibited. This increase in 8N3-[gamma-32P]GTP incorporation into Gs alpha by normal cells at confluence was not seen in the tumorigenic cells. Since Gs alpha photolabeling was inversely proportional to the percentage of [3H]thymidine-labeled nuclei at confluence, we suggest that the altered Gs alpha in tumor cells is involved in the loss of cell growth regulation.  相似文献   

17.
Recently, we reported that in mouse mastocytoma P-815 cells the cytosol contains some factor(s) which promotes the release of GTP-activated Gi2 alpha from the membrane, and that thrombin induces the translocation of Gi2 alpha from the membrane to the cytosol (Takahashi, S., Negishi, M. and Ichikawa, A. (1991) J. Biol. Chem. 266, 5367-5370). Here we investigated the mechanism underlying the thrombin-induced translocation of Gi2 alpha in mastocytoma cells. Thrombin induced a rapid and transient increase in the intracellular Ca2+ concentration ([Ca2+]i) within 1 min, attenuated pertussis toxin-catalyzed ADP-ribosylation of Gi2 in the membrane, and caused the subsequent translocation of Gi2 alpha. Thrombin induced the translocation of protein kinase C from the cytosol to the membrane, and a protein kinase C inhibitor, staurosporine, completely inhibited the thrombin-induced translocation of Gi2 alpha. When cells were treated with thrombin, the ability of the cytosol to release Gi2 alpha from the membrane in the presence of GTP gamma S markedly increased. This stimulatory effect of thrombin on the ability of the cytosol was mimicked by 12-O-tetradecanoylphorbol 13-acetate (TPA), but not by the Ca2+ ionophore, ionomycin. The thrombin- and TPA-induced potentiation of the ability of the cytosol to release Gi2 alpha was completely abolished by staurosporine. Furthermore, phosphorylation of the cytosol by protein kinase C markedly potentiated the ability of the cytosol to release Gi2 alpha. These results together demonstrate that the thrombin-induced translocation of Gi2 alpha is due to enhancement of the ability of the cytosol to release Gi2 alpha via activation of protein kinase C.  相似文献   

18.
Human platelet membrane proteins were phosphorylated by exogenous, partially purified Ca2+-activated phospholipid-dependent protein kinase (protein kinase C). The phosphorylation of one of the major substrates for protein kinase C (Mr = 41 000) was specifically suppressed by the beta subunit of the inhibitory guanine-nucleotide-binding regulatory component (Gi, Ni) of adenylate cyclase. The free alpha subunit of Gi (Mr = 41 000) also served as an excellent substrate for the kinase (greater than 0.5 mol phosphate incorporated per mol of subunit), but the Gi oligomer (alpha X beta X gamma) did not. Treatment of cyc- S49 lymphoma cells, which are deficient in Gs/Ns (the stimulatory component) but contain functional Gi/Ni, with the phorbol ester, 12-O-tetradecanoylphorbol 13-acetate, a potent activator of protein kinase C, did not alter stimulation of adenylate cyclase catalytic activity by forskolin, whereas the Gi/Ni-mediated inhibition of the cyclase by the hormone, somatostatin, was impaired in these membranes. The results suggest that the alpha subunit of the inhibitory guanine-nucleotide-binding regulatory component of adenylate cyclase may be a physiological substrate for protein kinase C and that the function of the component in transducing inhibitory hormonal signals to adenylate cyclase is altered by its phosphorylation.  相似文献   

19.
Regulation of adenylate cyclase coincident with transformation of chicken embryo fibroblasts by Rous sarcoma virus is manifest as a 10-50% decrease in basal, Mg2+-, and forskolin-stimulated activities; activities elicited by fluoride and guanosine 5'-O-(3-thiotriphosphate) are unaltered. The level of the catalytic component of adenylate cyclase, assessed with activated stimulatory guanine nucleotide-binding protein (Gs), increases approximately 1.5-fold. The level of the beta subunit common to Gs and the inhibitory regulatory protein assessed by enzyme-linked immunotransfer blotting, increases 2.7-fold. The isoelectric behavior of the beta subunit is unaltered. The amount of radiolabel incorporated into the alpha subunit of Gs (Mr = 45,000) upon incubation of membranes with 32P-labeled NAD and cholera toxin increases 3-fold upon transformation. Detergent extracts prepared from membranes of untransformed and transformed fibroblasts nevertheless exhibit equivalent abilities to reconstitute fluoride-stimulated activities to membranes of the cyc-variant of mouse S49 lymphoma cells. Islet-activating protein catalyzes incorporation of radiolabel from 32P-labeled NAD into 39,000- and 41,000-dalton proteins; the extent of radiolabel incorporation does not change upon transformation. Modest alterations in the isoelectric behaviors of substrates for cholera toxin and islet-activating protein occur.  相似文献   

20.
The insect prothoracic gland produces ecdysteroids that elicit molting and metamorphosis, and neurohormone stimulation of steroidogenesis by this gland involves both Ca2+ and cyclic adenosine monophosphate second messengers. Prothoracic gland adenylate cyclase exhibits a complex Ca2+/calmodulin (CaM) dependence, a component of which requires an activated Gs alpha for expression. A developmental switch in this system has been identified that correlates with a change in both regulation and function of the gland and involves the loss of sensitivity to extracellular Ca2+ at a time approximately concurrent with the loss of Ca2+/CaM sensitivity by the adenylate cyclase. The extent of cholera toxin activation of gland Gs alpha is lowered before this developmental switch. However, no alterations in Gs alpha levels or mobility are detected, suggesting that Gs alpha interaction with another component in the signaling pathway, perhaps adenylate cyclase itself, produces the apparent Ca2+/CaM dependence and influences the ability of toxin to modify Gs alpha.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号