首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Developing enzyme cocktails for cellulosic biomass hydrolysis complementary to current cellulase systems is a critical step needed for economically viable biofuels production. Recent genomic analysis indicates that some plant pathogenic fungi are likely a largely untapped resource in which to prospect for novel hydrolytic enzymes for biomass conversion. In order to develop high throughput screening assays for enzyme bioprospecting, a standardized microplate assay was developed for rapid analysis of polysaccharide hydrolysis by fungal extracts, incorporating biomass substrates. Fungi were grown for 10 days on cellulose- or switchgrass-containing media to produce enzyme extracts for analysis. Reducing sugar released from filter paper, Avicel, corn stalk, switchgrass, carboxymethylcellulose, and arabinoxylan was quantified using a miniaturized colorimetric assay based on 3,5-dinitrosalicylic acid. Significant interactions were identified among fungal species, growth media composition, assay substrate, and temperature. Within a small sampling of plant pathogenic fungi, some extracts had crude activities comparable to or greater than T. reesei, particularly when assayed at lower temperatures and on biomass substrates. This microplate assay system should prove useful for high-throughput bioprospecting for new sources of novel enzymes for biofuel production.  相似文献   

3.
The exploitation of renewable resources for the production of biofuels relies on efficient processes for the enzymatic hydrolysis of lignocellulosic materials. The development of enzymes and strains for these processes requires reliable and fast activity-based screening assays. Additionally, these assays are also required to operate on the microscale and on the high-throughput level. Herein, we report the development of a highly sensitive reducing-sugar assay in a 96-well microplate screening format. The assay is based on the formation of osazones from reducing sugars and para-hydroxybenzoic acid hydrazide. By using this sensitive assay, the enzyme loads and conversion times during lignocellulose hydrolysis can be reduced, thus allowing higher throughput. The assay is about five times more sensitive than the widely applied dinitrosalicylic acid based assay and can reliably detect reducing sugars down to 10 μM. The assay-specific variation over one microplate was determined for three different lignocellulolytic enzymes and ranges from 2 to 8%. Furthermore, the assay was combined with a microscale cultivation procedure for the activity-based screening of Pichia pastoris strains expressing functional Thermomyces lanuginosus xylanase A, Trichoderma reesei β-mannanase, or T. reesei cellobiohydrolase 2.  相似文献   

4.
A fluorescence-based microplate assay was developed to quantify cell death based upon the measurement of glucose-6-phosphate dehydrogenase (G6PD) activity. G6PD is a cytosolic enzyme and leaks from cells when plasma membrane integrity is compromised. In this assay, cell death is measured by correlating the activity of extracellular G6PD to the reduction of resazurin to the fluorescent product, resorufin, via a coupled-enzyme reaction. The coupled-enzyme reaction permits rapid signal amplification from small amounts of G6PD, an advantage over assays based on resazurin alone. This assay is rapid, nontoxic, and amenable to high-throughput screening. The assay has a Z' factor of 0.78.  相似文献   

5.
Chemiluminescent assays have been used to quantify phagocytic activity since 1972. In recent years these assays have been adapted to the 96-well microplate format as new luminometers have been developed. In this report we describe the optimization of a lucugenin enhanced phagocyte chemiluminescent assay using a Titertek Luminoskan. Factors such as cell concentration, serum concentration in the opsonization of the zymosan used and lucigenin concentration were all optimized in our assay. In addition we have found that some of the unique features of the Luminoskan, continuous microplate agitation during the assay and microplate temperature control up to 43°C, also significantly enhanced the chemiluminescent response.  相似文献   

6.
Lactate dehydrogenase and the diagnosis of malaria   总被引:6,自引:0,他引:6  
Over the past five years, several methods have been developed that exploit the differences between Plasmodium lactate dehydrogenase (pLDH) and the human LDH isoforms for the purposes of measuring pLDH in blood and in in vitro cultures. These methods have been incorporated into an easy screening method for the identification and quantitation of parasite growth in in vitro cultures using a Malstattrade mark reagent. In addition, another quantitative microplate method, the immunocapture pLDH (IcpLDH) assay, has been developed that utilizes monoclonal antibodies (mAbs) to capture the pLDH and then to measure the captured enzyme by its ability to reduce 3 acetyl pyridine adenine dinucleotide (APAD). In addition, a rapid immunochromatographic method, the OptiMAL(R) assay, has been formatted to capture pLDH as an antigen, and then to signal the presence of this captured antigen (enzyme) with a colloid conjugated antibody. The microplate IcpLDH assay, and the dipstick OptiMAL(R) assays, are both being used for the diagnosis and monitoring of malaria infections, as described here by Michael Makler, Rob Piper and Wil Milhous.  相似文献   

7.
Reporter assays are commonly used for high-throughput cell-based screening of compounds, cDNAs, and siRNAs due to robust signal, ease of miniaturization, and simple detection and analysis. Among the most widely used reporter genes is the bioluminescent enzyme luciferase, which, when exposed to its substrate luciferin upon cell lysis, yields linear signal over a dynamic range of several orders of magnitude. Commercially available luciferase assay formulations have been developed permitting homogeneous, single-step cell lysis and reporter activity measurements. Assay conditions employed with these formulations are typically designed to minimize well-to-well luminescence variability due to variability in dispensing, evaporation, and incomplete sample mixing. The authors demonstrate that incorporating a microplate orbital mixing step into 96- and 384-well microplate cell-based luciferase reporter assays can greatly improve reporter readouts. They have found that orbital mixing using commercially available mixers facilitates maximal luciferase signal generation from high cell density-containing samples while minimizing variability due to partial cell lysis, thereby improving assay precision. The authors fully expect that widespread availability of mixers with sufficiently small orbits and higher speed settings will permit gains in signal and precision in the 1536-well format as well.  相似文献   

8.
The molecular mechanisms regulating hemicelluloses and pectin biosynthesis are poorly understood. An important question in this regard is how glycosyltransferases are oriented in the Golgi cisternae, and how nucleotide sugars are made available for the synthesis of the polymers. Here we show that the branching enzyme xyloglucan alpha,1-2 fucosyltransferase (XG-FucTase) from growing pea (Pisum sativum) epicotyls was latent and protected against proteolytic inactivation on intact, right-side-in pea stem Golgi vesicles. Moreover, much of the XG-FucTase activity was membrane associated. These data indicate that XG-FucTase is a membrane-bound luminal enzyme. GDP-Fuc uptake studies demonstrated that GDP-Fuc was taken up into Golgi vesicles in a protein-mediated process, and that this uptake was not competed by UDP-Glc, suggesting that a specific GDP-Fuc transporter is involved in xyloglucan biosynthesis. Once in the lumen, Fuc was transferred onto endogenous acceptors, including xyloglucan. GDPase activity was detected in the lumen of the vesicles, suggesting than the GDP produced upon transfer of Fuc was hydrolyzed to GMP and inorganic phosphate. We suggest than the GDP-Fuc transporter and GDPase may be regulators of xyloglucan fucosylation in the Golgi apparatus from pea epicotyls.  相似文献   

9.
To assess the cytotoxic activity of immune cells, we have developed a51Cr-retention assay in which the radioactivity retained by51Cr-labeled target cells, following coincubation with cytotoxic cells, is monitored using the automated Matrix 96 beta counter. The Matrix 96 is designed for simultaneously counting 96 samples isolated from a 96-well microplate. It uses 96 uniform and independent detectors operating on the principle of avalanche gas ionization in the Geiger-Muller mode. Samples must be dry because the detectors are of the open-window type. Therefore, samples from the 96 wells of the microplate are simultaneously harvested onto a filter using the MicroMate 196, a 96-well cell harvester, dried and quantified in the Matrix 96. Usually the51Cr isotope is measured by the detection of gamma radiation in gamma counters. The Matrix 96, however, monitors Auger electrons, which are also emitted by51Cr. We have shown that the retention assay can be used to monitor the cytotoxic activity of activated lymphocytes including lymphokine-activated killer cells and tumor-infiltrating lymphocytes against various tumor cell lines. This assay is most suitable for experiments in which low E/T ratios are sufficient to detect highly cytotoxic cells, such as clone screening in cloning assays or in limiting-dilution analysis assays. These assays involve processing and reading large numbers of microplates. In this case, the retention assay monitored in the Matrix 96 will improve the work flow and decrease the amount of radioactive waste.This work was supported by the American Cancer Society grant IN-162-C  相似文献   

10.
Lipoxygenases are non-heme iron-containing dioxygenases, capable of catalyzing the oxidation of unsaturated fatty acids. The enzyme has the potential to degrade problematic wood extractives in the paper-making process. However, commercially available lipoxygenase is currently too expensive for this application. A 96-well UV microplate assay was developed to screen enzymes from fungal sources for a more cost-effective alternative lipoxygenase. The substrate used for this assay was linoleic acid, a predominant fatty acid in wood. The enzyme activity and reaction kinetics determined by this microplate assay were compared to those obtained from a conventional bench scale assay. A number of hydrolytic enzymes and other oxidases were also tested using this protocol, to examine the specificity of the assay. The results show that the microplate assay developed can provide an inexpensive method for accelerated screening of a large number of enzymes to identify potential oxidative enzymes with specific action in degrading wood extractives.  相似文献   

11.
Lipoxygenases are non-heme iron-containing dioxygenases, capable of catalyzing the oxidation of unsaturated fatty acids. The enzyme has the potential to degrade problematic wood extractives in the paper-making process. However, commercially available lipoxygenase is currently too expensive for this application. A 96-well UV microplate assay was developed to screen enzymes from fungal sources for a more cost-effective alternative lipoxygenase. The substrate used for this assay was linoleic acid, a predominant fatty acid in wood. The enzyme activity and reaction kinetics determined by this microplate assay were compared to those obtained from a conventional bench scale assay. A number of hydrolytic enzymes and other oxidases were also tested using this protocol, to examine the specificity of the assay. The results show that the microplate assay developed can provide an inexpensive method for accelerated screening of a large number of enzymes to identify potential oxidative enzymes with specific action in degrading wood extractives.  相似文献   

12.
Traditional methods that follow receptor ligand interactions are competitive assays in which the test compound displaces a radiolabeled molecule. These assays require either a time-consuming step for separation of free ligands from bound ligands or immobilization of receptors and the scintillant on a solid-phase support. In this report, we describe the development of a homogeneous binding assay for a G protein-coupled receptor in the fluorescence polarization format. This homogeneous fluorescence polarization binding assay format is superior to the traditional binding methods because no radioisotope, separation step, or solid-phase support is required. The elimination of the separation step enhances detection of low-affinity ligands and enables a real-time, continuous readout of the binding activity in a high throughput 384-well microplate format.  相似文献   

13.
Sensitive microplate‐based assays to determine low levels of key enzyme activities in mammalian cells are presented. The enzyme platform consists of four cycling assays to measure the activity of 28 enzymes involved in central carbon and glutamine metabolism. The sensitivity limit of all cycling assays was between 0.025 and 0.4 nmol product. For the detection of glutaminase activity, a new glutamate cycle system involving the enzymes glutamate dehydrogenase and aspartate transaminase was established. The relative standard deviation of the method was found to be 1.7% with a limit of detection of 8.2 pmol and a limit of quantitation of 24.8 pmol. Hence, cell extracts could be highly diluted to reduce interferences caused by other components in the extract, which in addition minimized underestimates or overestimates of actual enzyme activities. Since substrate concentrations could be maintained at a nearly constant level throughout the assay product accumulation during the reaction was low, which minimized product inhibition. As an example, the enzyme platform was used to investigate maximum enzyme activities of stationary‐phase MDCK cells grown in serum‐containing GMEM medium as typically used in influenza vaccine production. Biotechnol. Bioeng. 2010;107: 566–581. © 2010 Wiley Periodicals, Inc.  相似文献   

14.
A continuous assay is proposed for the screening of acidic, neutral, or alkaline lipases using microtiter plates, emulsified short- and medium-chain TGs, and a pH indicator. The lipase activity measurement is based on the decrease of the pH indicator optical density due to protonation which is caused by the release of FFAs during the hydrolysis of TGs and thus acidification. Purified lipases with distinct pH optima and an esterase were used to validate the method. The rate of lipolysis was found to be linear with time and proportional to the amount of enzyme added in each case. Specific activities measured with this microplate assay method were lower than those obtained by the pH-stat technique. Nevertheless, the pH-dependent profiles of enzymatic activity were similar with both assays. In addition, the substrate preference of each enzyme tested was not modified and this allowed discriminating lipase and esterase activities using tributyrin (low water solubility) and tricaprylin (not water soluble) as substrates. This continuous lipase assay is compatible with a high sample throughput and can be applied for the screening of lipases and lipase inhibitors from biological samples.  相似文献   

15.
Skeletal muscle mitochondria play a specific role in many disease pathologies. As such, the measurement of oxygen consumption as an indicator of mitochondrial function in this tissue has become more prevalent. Although many technologies and assays exist that measure mitochondrial respiratory pathways in a variety of cells, tissue and species, there is currently a void in the literature in regards to the compilation of these assays using isolated mitochondria from mouse skeletal muscle for use in microplate based technologies. Importantly, the use of microplate based respirometric assays is growing among mitochondrial biologists as it allows for high throughput measurements using minimal quantities of isolated mitochondria. Therefore, a collection of microplate based respirometric assays were developed that are able to assess mechanistic changes/adaptations in oxygen consumption in a commonly used animal model. The methods presented herein provide step-by-step instructions to perform these assays with an optimal amount of mitochondrial protein and reagents, and high precision as evidenced by the minimal variance across the dynamic range of each assay.  相似文献   

16.
An assay is described to measure methylation of biotinylated oligonucleotide substrates by DNA methyltransferases using [methyl-3H]-AdoMet. After the methylation reaction the oligonucleotides are immobilized on an avidin-coated microplate. The incorporation of [3H] into the DNA is quenched by addition of unlabeled AdoMet to the binding buffer. Unreacted AdoMet and enzyme are removed by washing. To release the radioactivity incorporated into the DNA, the wells are incubated with a non-specific endonuclease and the radioactivity determined by liquid scintillation counting. As an example, we have studied methylation of DNA by the EcoRV DNA methyltransferase. The reaction progress curves measured with this assay are linear with respect to time. Methylation rates linearly increase with enzyme concentration. The rates are comparable to results obtained with the same enzyme using a different assay. The biotin-avidin assay is inexpensive, convenient, quantitative, fast and well suited to process many samples in parallel. The accuracy of the assay is high, allowing to reproduce results within +/- 10%. The assay is very sensitive as demonstrated by the detection of incorporation of 0.8 fmol methyl groups into the DNA. Under the experimental conditions, this corresponds to methylation of only 0.03% of all target sites of the substrate. Using this assay, the DNA methylation activity of some M.EcoRV variants could be detected that was not visible by other in vitro methylation assays.  相似文献   

17.
p56(lck) is a lymphocyte-specific tyrosine kinase that plays an important role in both T-cell maturation and activation. We have developed a homogeneous assay in which p56(lck) catalyzes the transfer of the gamma-phosphate group from [gamma-(33)P]ATP to a biotinylated peptide substrate. The labeled peptide is then captured on a streptavidin-coated scintillation proximity assay (SPA) bead or imaging proximity bead. The SPA is counted in a microplate scintillation counter and the imaging proximity assay is counted in a charge-coupled device-based imaging system called LEADseekertrade mark, recently launched as a homogeneous imaging system by Amersham Pharmacia Biotech. We show, via time-dependence assays and inhibitor studies, that this assay can be performed in 1536-well microplate format using imaging proximity as the method of detection. The results compare favorably with the same assay performed in 384-well microplate format using both SPA and imaging proximity as the detection methods. From this study, we conclude that a kinase assay can be performed in 384- and 1536-well format using imaging as the detection method, with significant time savings over standard scintillation counting. In addition, we show cost saving advantages of 1536- over 384-well format in terms of reagent usage, higher throughput, and waste disposal.  相似文献   

18.
3-Hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase catalyzes the first physiologically irreversible step in biosynthesis of isoprenoids and sterols from acetyl-CoA. Inhibition of enzyme activity by β-lactone-containing natural products correlates with substantial diminution of sterol synthesis, identifying HMG-CoA synthase as a potential drug target and suggesting that identification of effective inhibitors would be valuable. A visible wavelength spectrophotometric assay for HMG-CoA synthase has been developed. The assay uses dithiobisnitrobenzoic acid (DTNB) to detect coenzyme A (CoASH) release on acetylation of enzyme by the substrate acetyl-CoA, which precedes condensation with acetoacetyl-CoA to form the HMG-CoA product. The assay method takes advantage of the stability of recombinant enzyme in the absence of a reducing agent. It can be scaled down to a 60 μl volume to allow the use of 384-well microplates, facilitating high-throughput screening of compound libraries. Enzyme activity measured in the microplate assay is comparable to values measured by using conventional scale spectrophotometric assays with the DTNB method (412 nm) for CoASH production or by monitoring the use of a second substrate, acetoacetyl-CoA (300 nm). The high-throughput assay method has been successfully used to screen a library of more than 100,000 drug-like compounds and has identified both reversible and irreversible inhibitors of the human enzyme.  相似文献   

19.
Cell viability in probiotic preparations is traditionally assessed by the plate count technique. Additionally, fluorescent staining combined with epifluorescence microscopy or flow cytometry has been developed for the viability assessment, but the currently available assays are either laborious or require highly sophisticated equipment. The aim of this study was to investigate the applicability of a microplate scale fluorochrome assay for predicting the cell state of freeze-dried Lactobacillus rhamnosus and Bifidobacterium animalis subsp. lactis preparations. In addition to viability assessment with LIVE/DEAD BacLight Bacterial Viability Kit, DiBAC(4)3 stain was used for the kinetic measurement of changes in bifidobacterial cell membrane functions during exposure to low pH. The microplate scale fluorochrome assay results on the viability and cell numbers of probiotic preparations correlated well with the results obtained with the culture-based technique and (with few exceptions) with epifluorescence microscopy. The assay was applicable also for the viability assessment of stressed (acid-treated) cells provided that the cell density in treatments was adjusted to the optimal measurement level of the fluorometer. The microplate scale fluorochrome assay offers a rapid and robust tool for the viability assessment of probiotic preparations, and enables also kinetic measurements.  相似文献   

20.
微孔比色法采用合成的磷脂类似物2-硫代十六酰乙基磷酸胆碱作底物,在多孔聚苯乙烯板的小孔中反应,并用酶联免疫检测器连续测定和记录吸收值.同时应用此法及滴定法检测酶活力,从猪胰腺中制备了一种分子量低(14.3kD),对热、酸稳定,活性依赖Ca2+的PLA2.两种方法检测结果具有可比性,而微孔比色法同时可测多个样品,有节约样品,灵敏度较高等优点.微孔比色法特别适用于大量的样品测定,如拮抗剂筛选、临床样品及制备酶时层析级分的检测等.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号