首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Skin barrier disruption plays a role in the pathogenesis of atopic dermatitis (AD) in humans. However, little is known about skin barrier (dys-) function in Canine Atopic Dermatitis. The properties of lipids located in the outermost layer of the skin, the stratum corneum (SC) are considered to be important for the barrier. In the present study the lipid composition and lipid organization of the SC of AD dogs and control dogs were examined. The lipid composition of lesional AD skin as compared to control skin, showed a reduced free fatty acid level and a decreased ratio of ceramide[NS] C44/C34, in which C44 and C34 are the total numbers of carbon atoms of the sphingosine (S) and non-hydroxy (N) acyl chains. As a consequence of the observed changes in lipid composition in AD lesional skin the lamellar organization of lipids altered and a shift from orthorhombic to hexagonal lipid packing was monitored. Simultaneously an increased conformational disordering occurred. These changes are expected to compromise the integrity of the skin barrier. The C44/C34 chain length ratio of ceramide[NS] also showed a decreasing nonlinear relationship with the AD severity score (CADESI). Taken together, canine atopic skin showed alterations in SC lipid properties, similar to the changes observed in atopic dermatitis in humans, that correlated with a disruption of the skin barrier. Hence lipids play an important role in the pathogenesis of Canine Atopic Dermatitis.  相似文献   

2.
A hallmark of atopic eczema (AE) is skin barrier dysfunction. Lipids in the stratum corneum (SC), primarily ceramides, fatty acids, and cholesterol, are crucial for the barrier function, but their role in relation to AE is indistinct. Filaggrin is an epithelial barrier protein with a central role in the pathogenesis of AE. Nevertheless, the precise causes of AE-associated barrier dysfunction are largely unknown. In this study, a comprehensive analysis of ceramide composition and lipid organization in nonlesional SC of AE patients and control subjects was performed by means of mass spectrometry, infrared spectroscopy, and X-ray diffraction. In addition, the skin barrier and clinical state of the disease were examined. The level of ceramides with an extreme short chain length is drastically increased in SC of AE patients, which leads to an aberrant lipid organization and a decreased skin barrier function. Changes in SC lipid properties correlate with disease severity but are independent of filaggrin mutations. We demonstrate for the first time that changes in ceramide chain length and lipid organization are directly correlated with the skin barrier defects in nonlesional skin of AE patients. We envisage that these insights will provide a new therapeutic entry in therapy and prevention of AE.  相似文献   

3.
Coordinated lipid metabolism contributes to maintaining skin homeostasis by regulating skin barrier formation, immune reactions, thermogenesis, and perception. Several reports have documented the changes in lipid composition in dermatitis, including in atopic dermatitis (AD); however, the specific mechanism by which these lipid profiles are altered during AD pathogenesis remains unknown. Here, we performed untargeted and targeted lipidomic analyses of an AD-like dermatitis model resulting from constitutive activation of Janus kinase 1 (Spade mice) to capture the comprehensive lipidome profile during dermatitis onset and progression. We successfully annotated over 700 skin lipids, including glycerophospholipids, ceramides, neutral lipids, and fatty acids, many of which were found to be present at significantly changed levels after dermatitis onset, as determined by the pruritus and erythema. Among them, we found the levels of ceramides composed of nonhydroxy fatty acid and dihydrosphingosine containing very long-chain (C22 or more) fatty acids were significantly downregulated before AD onset. Furthermore, in vitro enzyme assays using the skin of Spade mice demonstrated the enhancement of ceramide desaturation. Finally, we revealed topical application of ceramides composed of nonhydroxy fatty acid and dihydrosphingosine before AD onset effectively ameliorated the progression of AD symptoms in Spade mice. Our results suggest that the disruption in epidermal ceramide composition is caused by boosting ceramide desaturation in the initiation phase of AD, which regulates AD pathogenesis.  相似文献   

4.
Plasmalogen (Pls) is a glycerophospholipid derived from alkyl phospholipid (Alk) with antioxidant functions in vivo. The present study investigated the effects of ether phospholipids, such as Pls and Alk, on intercellular lipid barriers in the skin of NC/Nga mice, a model of atopic dermatitis (AD). NC/Nga mice fed Alk showed increased plasma levels of Alk and Pls. The AD-related changes in ceramide composition in the skin were abrogated by oral administration of Alk. Moreover, Alk suppressed skin inflammation in AD mice. These results indicate that Alk partially fortifies the stratum corneum lipid barrier and may be an effective treatment for AD.

Abbreviations: Pls: plasmalogen; PlsCho: choline plasmalogen; PlsEtn: ethanolamine plasmalogen; Alk: alkyl phospholipid; TJ: tight junction; FA: fatty acid; AD: atopic dermatitis; SO: soybean oil; FO: fish oil; DHA: docosahexaenoic acid; EPA: eicosapentaenoic acid; TG: triglyceride; PL: phospholipid; RF: retention factor; AlkCho: choline-type alkyl phospholipid; AlkEtn: ethanolamine-type alkyl phospholipid; LC-MS/MS: liquid chromatography-tandem mass spectrometry; FAR1: fatty acyl-coenzyme (Co)A reductase 1  相似文献   


5.
Ceramides provide a major component of the barrier function of skin. An understanding of barrier organization requires a detailed characterization of ceramide phase behavior and molecular interactions. Toward this end, Fourier transform infrared (FTIR) and differential scanning calorimetry (DSC) studies of ceramide 2 analogues (non-hydroxylated fatty acid N-acyl sphingosines) of specific chain lengths (C(14), C(16), C(18), C(20)) are presented. In addition, the molecular interactions of the individual chains in each molecule are elucidated through thermotropic FTIR studies of derivatives possessing perdeuterated fatty acid chains. DSC data showed a much smaller chain length variation (for the C(16), C(18), C(20) derivatives) in the main order-disorder transition temperature (approx. 93+/-1 degrees C) than is observed in the corresponding series of phosphatidylcholines, consistent with minimal ceramide hydration. The temperature dependence of the methylene stretching and scissoring modes revealed a solid-solid phase transition at 20-25 degrees C below the main order-disorder transition accompanied by chain packing alterations from orthorhombic-->hexagonal subcells. The chain packing transition was accompanied by enhanced penetration of water into the polar region. This was deduced from the temperature dependence of the amide I and II modes, which provide direct evidence for H-->D exchange. The CD(2) scissoring mode splitting of the deuterated fatty acid constituent of the C(16), C(18), C(20) chains revealed preferential segregation of microdomains (3-5 chains) of this species within the orthorhombic phase. In contrast, the sphingosine base chains appeared to be sufficiently separated so as to inhibit interchain vibrational coupling between them. FTIR spectroscopy provides a convenient means for characterizing domain formation, chain packing, and hydration sites of these phases, which are highly ordered under physiological conditions.  相似文献   

6.
The conversion of sphingomyelin (SM) to a ceramide (Cer) by acid sphingomyelinase (aSMase) is an important event in skin barrier development. A deficiency in aSMase in diseases such as Niemann–Pick disease and atopic dermatitis coincides with impaired skin barrier recovery after disruption. We studied how an increased SM/Cer ratio influences the barrier function and microstructure of model stratum corneum (SC) lipid membranes. In the membranes composed of isolated human SC Cer (hCer)/cholesterol/free fatty acids/cholesteryl sulfate, partial or full replacement of hCer by SM increased water loss. Partial replacement of 25% and 50% of hCer by SM also increased the membrane permeability to theophylline and alternating electric current, while a higher SM content either did not alter or even decreased the membrane permeability. In contrast, in a simple membrane model with only one type of Cer (nonhydroxyacyl sphingosine, CerNS), an increased SM/Cer ratio provided a similar or better barrier against the permeation of various markers. X-ray powder diffraction revealed that the replacement of hCer by SM interferes with the formation of the long periodicity lamellar phase with a repeat distance of d = 12.7 nm. Our results suggest that SM-to-Cer processing in the human epidermis is essential for preventing excessive water loss, while the permeability barrier to exogenous compounds is less sensitive to the presence of sphingomyelin.  相似文献   

7.
The lipids found in the bilayers of the stratum corneum fulfill the vital barrier role of mammalian bodies. The main classes of lipids found in stratum corneum are ceramides, cholesterol, and free fatty acids. For an investigation of their phase behavior, mixed Langmuir-Blodgett monolayers of these lipids were prepared. Atomic force microscopy was used to investigate the structure of the monolayers as a function of the monolayer composition. Three different types of ceramide were used: ceramide extracted from pigskin, a commercially available ceramide with several fatty acid chain lengths, and two synthetic ceramides that have only one fatty acid chain length. In pigskin ceramide-cholesterol mixed monolayers phase separation was observed. This phase separation was also found for the commercially available type III Sigma ceramide-cholesterol mixed monolayers with molar ratios ranging from 1:0.1 to 1:1. These monolayers separated into two phases, one composed of the long fatty acid chain fraction of Sigma ceramide III and the other of the short fatty acid chain fraction of Sigma ceramide III mixed with cholesterol. Mixtures with a higher cholesterol content consisted of only one phase. These observations were confirmed by the results obtained with synthetic ceramides, which have only one fatty acid chain length. The synthetic ceramide with a palmitic acid (16:0) chain mixed with cholesterol, and the synthetic ceramide with a lignoceric acid (24:0) chain did not. Free fatty acids showed a preference to mix with one of these phases, depending on their fatty acid chain lengths. The results of this investigation suggest that the model system used in this study is in good agreement with those of other studies concerning the phase behavior of the stratum corneum lipids. By varying the composition of the monolayers one can study the role of each lipid class in detail.  相似文献   

8.

Introduction

Ceramides play a key role in skin barrier function in homeostatic and pathological conditions and can be sampled non-invasively through stratum corneum collection.

Objectives

To develop a novel UHPLC/Scheduled MRM method for the identification and relative distribution of eleven classes of ceramides, which are separated by UHPLC and determined by their specific retention times. The precise composition of the fatty acid and sphingoid base parts of each individual ceramide is determined via mass fragmentation.

Methods

More than 1000 human and pig ceramides were identified. Three human and minipig ceramide classes, CER[AS], CER[NS] and CER[EOS] have been investigated in depth.

Results

Sphingoid bases were characterized by a prevalence of chain lengths with sizes from C16 to C22, whereas fatty acids were mainly observed in the range of C22–C26. Overall, the ceramide profiles between human and minipig stratum corneum were similar. Differences in the CER[AS] and CER[NS] classes included a more homogeneous distribution of fatty acids (16–30 carbon atoms) in minipig, whereas in human longer fatty acid chains (>?24 carbon atoms) predominated.

Conclusion

The method will be useful for the analysis of healthy and pathological skin in various specie, and the measurement of the relative distribution of ceramides as biomarkers for pharmacodynamic studies.
  相似文献   

9.
Ceramides are essential lipids for skin permeability barrier function, and a wide variety of ceramide species exist in the stratum corneum (SC). Although ceramides with long-chain bases (LCBs) of various lengths have been identified in the human SC, a quantitative analysis that distinguishes ceramide species with different LCB chain lengths has not been yet published. Therefore, the whole picture of human SC ceramides remains unclear. Here, we conducted LC/MS/MS analyses to detect individual ceramide species differing in both the LCB and FA chain lengths and quantified 1,327 unbound ceramides and 254 protein-bound ceramides: the largest number of ceramide species reported to date. Ceramides containing an LCB whose chain length was C16–26 were present in the human SC. Of these, C18 (28.6%) was the most abundant, followed by C20 (24.8%) and C22 (12.8%). Each ceramide class had a characteristic distribution of LCB chain lengths and was divided into five groups according to this distribution. There was almost no difference in FA composition between the ceramide species containing LCBs of different chain lengths. Furthermore, we demonstrated that one of the serine palmitoyltransferase (SPT) complexes, SPTLC1/SPTLC3/SPTSSB, was able to produce C16–24 LCBs. The expression levels of all subunits constituting the SPT complexes increased during keratinocyte differentiation, resulting in the observed chain-length diversity of LCBs in the human SC. This study provides a molecular basis for elucidating human SC ceramide diversity and the pathogenesis of skin disorders.  相似文献   

10.
Free ceramide, glucosylceramide, and sphingomyelin were isolated from mature cells of adult rat small intestine. Free ceramide and ceramide cleaved from sphingomyelin by enzymatic hydrolysis were fractionated by thin-layer chromatography on borate-impregnated silica gel plates. Sphingoid bases were characterized by gas-liquid chromatography of aldehydes formed upon periodate oxidation. Fatty acids were quantified as methyl esters. Ceramide structures were confirmed by direct-inlet mass spectrometry. Free ceramide was found to contain two major long-chain bases in nearly equal quantity: sphingosine, mainly linked to palmitic acid, and 4D-hydroxysphinganine associated with C20 to C24 fatty acids, 22% being hydroxylated. Sphinganine occurred as a minor component linked to nonhydroxy fatty acids. Sphingomyelin contained the three long-chain bases and 63% of its ceramide was N-palmitoyl-sphingosine. Mass spectrometry of glucosylceramide confirmed 4D-hydroxyshingamine as the major sphingoid base associated preferentially with longer chain hydroxy fatty acids.  相似文献   

11.
The three main lipid components of the stratum corneum, namely ceramides, free fatty acids and cholesterol, play a fundamental role in the maintenance of the skin barrier. The current investigation is aimed toward understanding the miscibility and intermolecular interactions of these lipids. Toward this end, Fourier transform infrared spectroscopic studies of the three possible equimolar binary mixtures of cholesterol, a synthetic non-hydroxylated fatty acid N-acyl sphingosine with a C18 chain length (N-stearoylsphingosine, approximating human ceramide 2), and stearic acid were undertaken. The thermotropic responses of the methylene stretching and scissoring vibrations were used to evaluate chain conformation and packing respectively. Selective perdeuteration, of either the stearic acid or the ceramide acid chains, permitted separate and simultaneous evaluation of the conformational order and packing properties of the sphingosine chain, the amide linked fatty acid chains and/or the stearic acid chain. Whereas cholesterol mixed well with ceramide at physiological temperatures, the stearic acid was miscible with the cholesterol only at relatively high temperatures where the fatty acid is disordered. A complex interaction between stearic acid and ceramide was detected. A separate fatty acid-rich phase persisted until at least 50 degrees C, whereas at higher temperatures the components appear to be quite miscible. However, a preferential association of the fatty acid with the ceramide base chain is indicated. None of the binary systems studied exhibit miscibility and interactions resembling those in the ternary mixtures of these substances, which is widely used to model stratum corneum. The role of cholesterol in controlling the miscibility characteristics in the ternary system is evident.  相似文献   

12.
Atopic dermatitis (AD) is a chronic inflammatory disease of the skin that is often associated with other atopic diseases, such as asthma and allergic rhinitis. Although topical steroids have widely been prescribed for patients with AD, skin abnormalities are frequently observed after prolonged steroid treatment. In this study, a novel water-soluble organogermanium compound (Ge-Vit) was prepared because organogermanium is a known INF-γ inducer. The Ge-Vit treatment decreased the basal TEWL and IgE production and attenuated the disruption of the skin barrier function in a murine model of chronic contact dermatitis. The histological examination further supported the anti-AD activities. These results suggested that Ge-Vit can be a useful drug candidate for treating atopic dermatitis.  相似文献   

13.
The administration of n-3 polyunsaturated fatty acids (PUFAs) is known to be effective against allergic diseases by suppressing the production of eicosanoids derived from arachidonic acid. To investigate the mechanisms and efficacy of n-3 PUFA treatment in patients with atopic dermatitis (AD), we administered four different formulas of alpha-linolenic acid for 6 weeks in an AD model using NC/Nga mice. According to the doses of alpha-linolenic acid given, the levels of alpha-linolenic acid, eicosapentaenoic acid, and docosahexaenoic acid in the red blood cell membranes increased while the levels of linoleic acid and arachidonic acid decreased. However, there was no significant difference among the four dose groups in clinical skin severity score, histopathological findings of skin lesions, or levels of total plasma IgE. Moreover, there was no significant difference in the production of leukotriene B(4) and Leukotriene C(4) from skin lesions after stimulation with A23187 among the groups, although the production of prostaglandin E(2) (PGE(2)) was significantly reduced and skin blood flow in the ear was significantly higher in the group given the highest dose of alpha-linolenic acid. Our results suggest that the administration of alpha-linolenic acid can change the fatty acid composition, PGE(2) production, and skin blood flow but may not prevent the development of dermatitis in NC/Nga mice.  相似文献   

14.
Holleran WM  Takagi Y  Uchida Y 《FEBS letters》2006,580(23):5456-5466
Mammalian epidermis produces and delivers large quantities of glucosylceramide and sphingomyelin precursors to stratum corneum extracellular domains, where they are hydrolyzed to corresponding ceramide species. This cycle of lipid precursor formation and subsequent hydrolysis represents a mechanism that protects the epidermis against potentially harmful effects of ceramide accumulation within nucleated cell layers. Prominent skin disorders, such as psoriasis and atopic dermatitis, have diminished epidermal ceramide levels, reflecting altered sphingolipid metabolism, that may contribute to disease severity/progression. Enzymatic processes in the hydrolysis of glucosylceramide and sphingomyelin, and the roles of sphingolipids in skin diseases, are the focus of this review.  相似文献   

15.
周昕  冯佩英 《菌物学报》2019,38(8):1245-1252
真菌在自然界中分布广泛,部分是人体表面常驻的微生物之一。新近研究显示皮肤常驻真菌可通过影响皮肤屏障、调节皮肤免疫平衡和介导炎症反应等,在多种变态反应性疾病中起重要作用。本文就真菌与特应性皮炎、脂溢性皮炎、癣菌疹、荨麻疹等常见的变态反应性皮肤病的相关性研究进展作一综述,并介绍了国内外临床常见真菌变应原检测方法。  相似文献   

16.
The filaggrin story: novel insights into skin-barrier function and disease   总被引:3,自引:0,他引:3  
Recent reports have uncovered the key role of the protein filaggrin in maintaining an effective skin barrier against the external environment. Loss-of-function mutations in the profilaggrin gene (FLG) are common and are present in up to 10% of the population. These mutations are the cause of the semi-dominant skin-scaling disorder ichthyosis vulgaris and are a major risk factor for the development of atopic dermatitis. The discovery of these mutations also provides new data concerning the genetics of atopic asthma as well as intriguing insight into disease mechanisms of systemic allergies involving antigen exposure in skin with defective barrier function. Collectively, these novel findings have significant implications for the classification and future clinical management of patients with atopic and allergic diseases.  相似文献   

17.
Topical skin lipid supplementation may provide opportunities for controlling ceramide (Cer) deficiency in skin diseases such as atopic dermatitis or psoriasis. Here we describe the synthesis of a long-chain 7-nitrobenzo[c][1,2,5]oxadiazol-4-yl (NBD)-labeled Cer and its different penetration through human skin compared to widely used short-chain fluorescent Cer tools.  相似文献   

18.
Three specific linoleate-rich lipids have been identified in pig epidermis and are referred to as O-acylglucosyl ceramide, O-acyl ceramide, and O-acyl acid. The acid moiety is up to 70% linoleic acid and linked via the hydroxyl group of a omega-OH long-chain fatty acid, which itself is linked to sphingosine or glucosyl sphingosine. The identification of O-acyl ceramide confirmed the findings of another group, whereas the structural configuration of the O-acylglucosyl ceramide is different to previous reports. The identification of an O-acyl acid in epidermis is novel. Our evidence allows us to speculate that a hydroxylated derivative of the O-acyl ceramide may be intimately involved in the permeability barrier of skin, perhaps providing sufficient polarity to maintain a lamellar phase in the intercellular space of the lower stratum corneum region, and that it is specifically in this form that linoleic acid is involved in skin barrier function. Alternatively, or concurrently, this species may act as a signal for late keratinisation events.  相似文献   

19.
At the subcellular level, the synthesis of ceramide from free lignoceric acid and sphingosine in brain required reconstituted enzyme system (particulate fraction, heat-stable and heat-labile factors) and pyridine nucleotide (NADPH). The mitochondrial electron transfer inhibitors (KCN and antimycin A), energy uncouplers (oligomycin and 2,4-dinitrophenol), and carboxyatractyloside, which prevents the transport of ATP and ADP through the mitochondrial wall, inhibit the synthesis of ceramide in the presence of NADPH but have very little effect in the presence of ATP. Similar to the synthesis of ceramide, the synthesis of ATP from NADPH and NADH by the particulate fraction also required cytoplasmic factors (heat-stable and heat-labile factors). Moreover, ATP, but not its analog (AMP-CH2-P-O-P), can replace NADPH, thus suggesting that the function of the pyridine nucleotide is to provide ATP for the synthesis of ceramide. The cytoplasmic factors were not required for the synthesis of ceramide in the presence of ATP. The maximum velocity for synthesis of ceramide from free fatty acids of different chain lengths (C16-C26) was bimodal, with maxima around stearic acid (C18) and behenic acid (C22). The relative rate of synthesis of ceramide parallels the relative distribution of these fatty acids in brain cerebrosides and sulfatides.  相似文献   

20.
Abstract

The skin forms a life-sustaining barrier between the organism and physical environment. The physical barrier of skin is mainly localized in the stratum corneum (SC); however, nucleated epidermis also contributes to the barrier through tight, gap, and adherens junctions (AJs), as well as through desmosomes and cytoskeletal elements. Many inflammatory diseases, such as atopic dermatitis (AD) and psoriasis, are associated with barrier dysfunction. It is becoming increasingly clear that the skin barrier function is not only affected by inflammatory signals but that defects in structural components of the barrier may be the initiating event for inflammatory diseases. This view is supported by findings that mutations in filaggrin, a key structural epidermal barrier protein, cause the inflammatory skin disease AD, and that a loss of AJ components, namely epidermal p120 catenin or α-catenin results in skin inflammation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号