首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Evidence for direct binding of vinculin to actin filaments   总被引:6,自引:0,他引:6  
K Ruhnau  A Wegner 《FEBS letters》1988,228(1):105-108
The interaction of vinculin with actin filaments was investigated by methods which exclude interference by contaminating proteins which may occur in vinculin preparations. Vinculin which was blotted from SDS-polyacrylamide gels onto nitrocellulose, was stained specifically by fluorescently labeled polymeric actin (100 mM KCl, 2 mM MgCl2). Vinculin which was purified from alpha-actinin and an actin polymerization-inhibiting protein (HA1), was found to be cosedimented with polymeric actin. Maximally one vinculin molecule was cosedimented per one hundred actin filament subunits. Half maximal binding of vinculin was observed at about 0.25 microM free vinculin. Vinculin could be replaced from actin by the addition of tropomyosin.  相似文献   

2.
Vinculin localizes to membrane adhesion junctions where it links actin filaments to the extracellular matrix by binding to the integrin-binding protein talin at its head domain (Vh) and to actin filaments at its tail domain (Vt). Vinculin can assume an inactive (closed) conformation in which Vh and Vt bind to each other, masking the binding sites for actin and talin, and an active (open) conformation in which the binding sites for talin and actin are exposed. We hypothesized that the contractile activation of smooth muscle tissues might regulate the activation of vinculin and thereby contribute to the regulation of contractile tension. Stimulation of tracheal smooth muscle tissues with acetylcholine (ACh) induced the recruitment of vinculin to cell membrane and its interaction with talin and increased the phosphorylation of membrane-localized vinculin at the C-terminal Tyr-1065. Expression of recombinant vinculin head domain peptide (Vh) in smooth muscle tissues, but not the talin-binding deficient mutant head domain, VhA50I, inhibited the ACh-induced recruitment of endogenous vinculin to the membrane and the interaction of vinculin with talin and also inhibited vinculin phosphorylation. Expression of Vh peptide also inhibited ACh-induced smooth muscle contraction and inhibited ACh-induced actin polymerization; however, it did not affect myosin light chain phosphorylation, which is necessary for cross-bridge cycling. Inactivation of RhoA inhibited vinculin activation in response to ACh. We conclude that ACh stimulation regulates vinculin activation in tracheal smooth muscle via RhoA and that vinculin activation contributes to the regulation of active tension by facilitating connections between actin filaments and talin-integrin adhesion complexes and by mediating the initiation of actin polymerization.  相似文献   

3.
James A. Wilkins  Shin Lin 《Cell》1982,28(1):83-90
Immunofluorescence and microinjection experiments have shown that vinculin (molecular weight 130,000) is localized at adhesion plaques of fibroblasts spread on a solid substrate. We found that this protein affects actin filament assembly and interactions in vitro at substoichiometric levels. Vinculin inhibits the rate of actin polymerization under conditions that limit nuclei formation, indicating an effect on the filament elongation step of the reaction. Vinculin also reduces actin filament-filament interaction measured with a low-shear viscometer. Scatchard plot analysis of the binding of 3H-labeled vinculin to actin filaments showed that there is one high-affinity binding site (dissociation constant = 20 nM) for every 1,500–2,000 actin monomers. These results suggest that vinculin interacts with a specific site located at the growing ends of actin filaments in a cytochalasin-like manner, a property consistent with its proposed function as a linkage protein between filaments and the plasma membrane.  相似文献   

4.
Vinculin and its splice variant, metavinculin (MV), are key elements of multiple protein assemblies linking the extracellular matrix to the actin cytoskeleton. Vinculin is expressed ubiquitously, whereas MV is mainly expressed in smooth and cardiac muscle tissue. The only difference in amino acid sequence between the isoforms is a 68-residue insert in the C-terminal tail domain of MV (MVt). Although the functional role of this insert remains elusive, its importance is exemplified by point mutations that are associated with dilated and hypertrophic cardiomyopathy. In vinculin, the actin binding site resides in the tail domain. In this paper, we show that MVt binds actin filaments similarly to the vinculin tail domain. Unlike its splice variant, MVt did not bundle actin filaments. Instead, MVt promoted severing of actin filaments, most efficiently at substoichiometric concentrations. This surprising and seemingly contradictory alteration of vinculin function by the 68-residue insert may be essential for modulating compliance of vinculin-induced actin bundles when exposed to rapidly increasing external forces.  相似文献   

5.
Vinculin can interact with F-actin both in recruitment of actin filaments to the growing focal adhesions and also in capping of actin filaments to regulate actin dynamics. Using molecular dynamics, both interactions are simulated using different vinculin conformations. Vinculin is simulated either with only its vinculin tail domain (Vt), with all residues in its closed conformation, with all residues in an open I conformation, and with all residues in an open II conformation. The open I conformation results from movement of domain 1 away from Vt; the open II conformation results from complete dissociation of Vt from the vinculin head domains. Simulation of vinculin binding along the actin filament showed that Vt alone can bind along the actin filaments, that vinculin in its closed conformation cannot bind along the actin filaments, and that vinculin in its open I conformation can bind along the actin filaments. The simulations confirm that movement of domain 1 away from Vt in formation of vinculin 1 is sufficient for allowing Vt to bind along the actin filament. Simulation of Vt capping actin filaments probe six possible bound structures and suggest that vinculin would cap actin filaments by interacting with both S1 and S3 of the barbed-end, using the surface of Vt normally occluded by D4 and nearby vinculin head domain residues. Simulation of D4 separation from Vt after D1 separation formed the open II conformation. Binding of open II vinculin to the barbed-end suggests this conformation allows for vinculin capping. Three binding sites on F-actin are suggested as regions that could link to vinculin. Vinculin is suggested to function as a variable switch at the focal adhesions. The conformation of vinculin and the precise F-actin binding conformation is dependent on the level of mechanical load on the focal adhesion.  相似文献   

6.
Properties of smooth muscle vinculin   总被引:18,自引:0,他引:18  
Vinculin, isolated from turkey gizzard smooth muscle, was purified by chromatography on CM-cellulose after isolation from a DEAE-cellulose column. Two-dimensional gel electrophoretic analysis of crude muscle fractions demonstrated that: 1) much of the approximately 130,000-dalton protein present in smooth muscle did not co-isoelectrically focus with the purified 130,000-dalton vinculin and 2) the purified vinculin consisted of three major, closely spaced isoelectric variants that were present only in small amounts in the original smooth muscle sample. Purified vinculin sedimented as a single peak with a sedimentation coefficient S0 20,w of 5.9. Circular dichroism spectra of purified vinculin indicated a considerable degree of secondary structure, with an alpha-helical content of approximately 50% as measured at 208 nm. The ultraviolet absorption spectrum of vinculin gave a measured E1%(278) of 4.64. Digestion of vinculin, much of which is located at the cytoplasmic surface of the cell membrane, with Ca2+-activated neutral protease purified from skeletal muscle yielded major fragments with molecular weights determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of 98,000, 85,000, and 26,000. The factor(s) in DEAE-cellulose-purified vinculin responsible for decreasing the low shear viscosity of actin was removed and found in a crude fraction isolated by CM-cellulose chromatography. The purified vinculin had a small, but positive effect on the MgCl2-induced polymerization of actin as measured by low shear viscometry.  相似文献   

7.
Vinculin localizes to membrane adhesion junctions in smooth muscle tissues, where its head domain binds to talin and its tail domain binds to filamentous actin, thus linking actin filaments to the extracellular matrix. Vinculin can assume a closed conformation, in which the head and tail domains bind to each other and mask the binding sites for actin and talin, and an open activated conformation that exposes the binding sites for talin and actin. Acetylcholine stimulation of tracheal smooth muscle tissues induces the recruitment of vinculin to the cell membrane and its interaction with talin and actin, which is required for active tension development. Vinculin phosphorylation at Tyr1065 on its C terminus increases concurrently with tension development in tracheal smooth muscle tissues. In the present study, the role of vinculin phosphorylation at Tyr1065 in regulating the conformation and function of vinculin during airway smooth muscle contraction was evaluated. Vinculin constructs with point mutations at Tyr1065 (vinculin Y1065F and vinculin Y1065E) and vinculin conformation-sensitive FRET probes were expressed in smooth muscle tissues to determine how Tyr1065 phosphorylation affects smooth muscle contraction and the conformation and cellular functions of vinculin. The results show that vinculin phosphorylation at tyrosine 1065 is required for normal tension generation in airway smooth muscle during contractile stimulation and that Tyr1065 phosphorylation regulates the conformation and scaffolding activity of the vinculin molecule. We conclude that the phosphorylation of vinculin at tyrosine 1065 provides a mechanism for regulating the function of vinculin in airway smooth muscle in response to contractile stimulation.  相似文献   

8.
Vinculin is a conserved actin binding protein localized in focal adhesions and cell-cell junctions. Here, we report that vinculin is tyrosine phosphorylated in platelets spread on fibrinogen and that the phosphorylation is Src kinases dependent. The phosphorylation of vinculin on tyrosine was reconstituted in vanadate treated COS-7 cells coexpressing c-Src. The tyrosine phosphorylation sites in vinculin were mapped to residues 100 and 1065. A phosphorylation-specific antibody directed against tyrosine residue 1065 reacted with phosphorylated platelet vinculin but failed to react with vinculin from unstimulated platelet lysates. Tyrosine residue 1065 located in the vinculin tail domain was phosphorylated by c-Src in vitro. When phosphorylated, the vinculin tail exhibited significantly less binding to the vinculin head domain than the unphosphorylated tail. In contrast, the phosphorylation did not affect the binding of vinculin to actin in vitro. A double vinculin mutant protein Y100F/Y1065F localized to focal adhesion plaques. Wild-type vinculin and single tyrosine phosphorylation mutant proteins Y100F and Y1065F were significantly more effective at rescuing the spreading defect of vinculin null cells than the double mutant Y100F/Y1065F. The phosphorylation of vinculin by Src kinases may be one mechanism by which these kinases regulate actin filament assembly and cell spreading.  相似文献   

9.
A vinculin-like protein was identified in chicken as well as in bovine platelets by ELISA competitive binding assay using antibodies against vinculin from chicken gizzard. By a modified procedure (J. Biol. Chem. (1980) 255, 1194–1199) we succeeded in isolating bovine platelet vinculin to apparent homogeneity. The structural identity of platelet and chicken gizzard vinculin was demonstrated by circular dichroism analysis. It was also shown that platelet vinculin induces a significant decrease in the low shear viscosity of F-actin. Vinculin, in all probability, plays an important role in the organization of actin filaments in platelets, especially in the linkages of microfilaments to the membrane.  相似文献   

10.
Three-dimensional structure of vinculin bound to actin filaments   总被引:5,自引:0,他引:5  
Vinculin plays a pivotal role in cell adhesion and migration by providing the link between the actin cytoskeleton and the transmembrane receptors, integrin and cadherin. We used a combination of electron microscopy, computational docking, and biochemistry to provide an atomic model of how the vinculin tail binds actin filaments. The vinculin tail actin binding site comprises two distinct regions. One of these regions is exposed in the full-length autoinhibited conformation of vinculin, whereas the second site is sterically occluded by vinculin's N-terminal domain. The partial accessibility of the F-actin binding site in the autoinhibited full-length vinculin structure suggests that F-actin can act as part of a combinatorial input framework with other binding partners such as alpha-catenin or talin to induce vinculin head-tail dissociation, thus promoting vinculin activation. Furthermore, binding to F-actin potentiates a local rearrangement in the vinculin tail that in turn promotes vinculin dimerization and, hence, formation of actin bundles.  相似文献   

11.
Vinculin is an essential and highly conserved cell adhesion protein, found at both focal adhesions and adherens junctions, where it couples integrins or cadherins to the actin cytoskeleton. Vinculin is involved in controlling cell shape, motility, and cell survival, and has more recently been shown to play a role in force transduction. The tail domain of vinculin (Vt) contains determinants necessary for binding and bundling of actin filaments. Actin binding to Vt has been proposed to induce formation of a Vt dimer that is necessary for cross-linking actin filaments. Results from this study provide additional support for actin-induced Vt self-association. Moreover, the actin-induced Vt dimer appears distinct from the dimer formed in the absence of actin. To better characterize the role of the Vt strap and carboxyl terminus (CT) in actin binding, Vt self-association, and actin bundling, we employed smaller amino-terminal (NT) and CT deletions that do not perturb the structural integrity of Vt. Although both NT and CT deletions retain actin binding, removal of the CT hairpin (1061-1066) selectively impairs actin bundling in vitro. Moreover, expression of vinculin lacking the CT hairpin in vinculin knock-out murine embryonic fibroblasts affects the number of focal adhesions formed, cell spreading as well as cellular stiffening in response to mechanical force.  相似文献   

12.
Vinculin binds to multiple focal adhesion and cytoskeletal proteins and has been implicated in transmitting mechanical forces between the actin cytoskeleton and integrins or cadherins. It remains unclear to what extent the mechano-coupling function of vinculin also involves signaling mechanisms. We report the effect of vinculin and its head and tail domains on force transfer across cell adhesions and the generation of contractile forces. The creep modulus and the adhesion forces of F9 mouse embryonic carcinoma cells (wild-type), vinculin knock-out cells (vinculin −/−), and vinculin −/− cells expressing either the vinculin head domain, tail domain, or full-length vinculin (rescue) were measured using magnetic tweezers on fibronectin-coated super-paramagnetic beads. Forces of up to 10 nN were applied to the beads. Vinculin −/− cells and tail cells showed a slightly higher incidence of bead detachment at large forces. Compared to wild-type, cell stiffness was reduced in vinculin −/− and head cells and was restored in tail and rescue cells. In all cell lines, the cell stiffness increased by a factor of 1.3 for each doubling in force. The power-law exponent of the creep modulus was force-independent and did not differ between cell lines. Importantly, cell tractions due to contractile forces were suppressed markedly in vinculin −/− and head cells, whereas tail cells generated tractions similar to the wild-type and rescue cells. These data demonstrate that vinculin contributes to the mechanical stability under large external forces by regulating contractile stress generation. Furthermore, the regulatory function resides in the tail domain of vinculin containing the paxillin-binding site.  相似文献   

13.
Vinculin is a protein generally believed to be involved in membrane-cytoskeleton interaction, and its presence in platelets has been verified earlier. Here we show that in resting bovine platelets, vinculin is not associated with the Triton-insoluble cytoskeletal fraction but becomes incorporated into it during the thrombin-induced activation process. The incorporation starts around the same time as the release reaction and only after the shape change and the first phase of aggregation have taken place. Its time course parallels the cytoskeletal association of actin and certain other contractile proteins. Vinculin is a minor component of platelet cytoskeleton and only about 10% of the total platelet vinculin becomes incorporated into the Triton X-100 residue.  相似文献   

14.
Vinculin   总被引:13,自引:0,他引:13  
Vinculin is clearly a key element in the transmembrane assemblages that link cells to each other or to the substrate. However, despite all the studies that have been done on the protein, we still do not know its function within these assemblages. The bulk of the biochemical and cell biological evidence suggests that, in some unknown way, its presence in the junctions may be involved in the stable association of actin with the membrane, yet vinculin by itself does not appear to interact with actin. In the future, identification of additional junctional molecules that interconnect actin and vinculin may resolve this dilemma. Alternatively, studies with vinculin that is phosphorylated or acylated may yield clues to its function. Perhaps the complexity of the protein composition of microfilament-containing junctions suggests that protein assemblages rather than individual proteins provide novel functions. As new proteins belonging to these junctions are discovered, it will be important to assess their interaction with already known components such as vinculin and to ask if the protein combination has a particular function.  相似文献   

15.
Vinculin is an essential cell adhesion protein, found at both focal adhesions and adherens junctions, where it couples transmembrane proteins to the actin cytoskeleton. Vinculin is involved in controlling cell shape, motility and cell survival, and has more recently been shown to play a role in force transduction. The tail domain of vinculin (Vt) has the ability to both bind and bundle actin filaments. Binding to actin induces a conformational change in Vt believed to promote formation of a Vt dimer that is able to crosslink actin filaments. We have recently provided additional evidence for the actin-induced Vt dimer and have shown that the vinculin carboxyl (C)-terminal hairpin is critical for both the formation of the Vt dimer and for bundling F-actin. We have also demonstrated the importance of the C-terminal hairpin in cells as deletion of this region impacts both adhesion properties and force transduction. Intriguingly, we have identified bundling deficient variants of vinculin that show different cellular phenotypes. These results suggest additional role(s) for the C-terminal hairpin, distinct from its bundling function. In this commentary, we will expand on our previous findings and further investigate these actin bundling deficient vinculin variants.  相似文献   

16.
Exposure of BALB/c-3T3 cells (clone A31) to platelet-derived growth factor (PDGF) results in a rapid time- and dose-dependent alteration in the distribution of vinculin and actin. PDGF treatment (6-50 ng/ml) causes vinculin to disappear from adhesion plaques (within 2.5 min after PDGF exposure) and is followed by an accumulation of vinculin in punctate spots in the perinuclear region of the cell. This alteration in vinculin distribution is followed by a disruption of actin-containing stress fibers (within 5 to 10 min after PDGF exposure). Vinculin reappears in adhesion plaques by 60 min after PDGF addition while stress fiber staining is nondetectable at this time. PDGF treatment had no effect on talin, vimentin, or microtubule distribution in BALB/c-3T3 cells; in addition, exposure of cells to 5% platelet-poor plasma (PPP), 0.1% PPP, 30 ng/ml epidermal growth factor (EGF), 30 ng/ml somatomedin C, or 10 microM insulin also had no effect on vinculin or actin distribution. Other competence-inducing factors (fibroblast growth factor, calcium phosphate, and choleragen) and tumor growth factor produced similar alterations in vinculin and actin distribution as did PDGF, though not to the same extent. PDGF treatment of cells for 60 min followed by exposure to EGF (0.1-30 ng/ml for as long as 8 h after PDGF removal), or 5% PPP resulted in the nontransient disappearance of vinculin staining within 10 min after EGF or PPP additions; PDGF followed by 0.1% PPP or 10 microM insulin had no effect. Treatment of cells with low doses of PDGF (3.25 ng/ml), which did not affect vinculin or actin organization in cells, followed by EGF (10 ng/ml), resulted in the disappearance of vinculin staining in adhesion plaques, thus demonstrating the synergistic nature of PDGF and EGF. These data suggest that PDGF-induced competence and stimulation of cell growth in quiescent fibroblasts are associated with specific rapid alterations in the cellular organization of vinculin and actin.  相似文献   

17.
Vinculin is a highly conserved protein involved in cell proliferation, migration, and adhesion. However, the effects of vinculin on gastric cancer (GC) remain unclear. Therefore, we aimed to explore the functional role of vinculin in GC, as well as its underlying mechanism. Expression of vinculin in patients with GC was analyzed by real-time polymerase chain reaction, Western blot analysis, and immunohistochemistry. Overall survival was evaluated by the Kaplan-Meier method with the log-rank test. The relationship between vinculin and clinicopathological characteristics of patients with GC was further identified. In addition, we assessed the expression of vinculin in GC cell lines. Besides, vinculin was suppressed or overexpressed by transfection with small interfering (si-vinculin) or pcDNA-vinculin and then cell viability, cell apoptosis, and/or migration was respectively examined by the 3-(4, 5-dimethylthiazole-2-yl)-2, 5-biphenyl tetrazolium bromide assay, flow cytometer, and scratch assay, respectively. Moreover, the cell cycle- and apoptosis-related proteins were detected by Western blot analysis. The expression of vinculin was significantly increased in the GC tissues and cells compared with the nontumor tissues or cells. Vinculin protein positive staining was mainly located in the cell membrane and cytoplasm. Moreover, vinculin was significantly associated with Tumor Node Metastasis (TNM) and poor differentiation. Patients with high vinculin levels had significantly worse overall survival than those with low levels. Suppression of vinculin significantly decreased cell viability and migration and promoted cell apoptosis. However, overexpression of vinculin statistically increased cell viability but had no effects on cell apoptosis. Vinculin promotes GC proliferation and migration and predicts poor prognosis in patients with GC.  相似文献   

18.
19.
Vinculin, an actin-binding protein, is emerging as an important regulator of adherens junctions. In focal-adhesions, vinculin is activated by simultaneous binding of talin to its head domain and actin filaments to its tail domain. Talin is not present in adherens junctions. Consequently, the identity of the ligand that activates vinculin in cell-cell junctions is not known. Here we show that in the presence of F-actin, α-catenin, a cytoplasmic component of the cadherin adhesion complex, activates vinculin. Direct binding of α-catenin to vinculin is critical for this event because a point mutant (α-catenin L344P) lacking high affinity binding does not activate vinculin. Furthermore, unlike all known vinculin activators, α-catenin binds to and activates vinculin independently of an A50I substitution in the vinculin head, a mutation that inhibits vinculin binding to talin and IpaA. Collectively, these data suggest that α-catenin employs a novel mechanism to activate vinculin and may explain how vinculin is differentially recruited and/or activated in cell-cell and cell-matrix adhesions.  相似文献   

20.
We investigated the mode of association of vinculin with areas of contact between the termini of microfilament bundles and the cell membrane in sites of focal contact with the substrate by selective removal of actin from these areas. Opened-up substrate-attached membranes of chick fibroblasts as well as detergent-permeabilized cells were treated with fragmin from Physarum in the presence of Ca+2. This treatment removed actin filaments from the cytoplasmic faces of the membranes, along with several actin-associated proteins (alpha-actinin, tropomyosin, myosin, and filamin). Vinculin distribution was not affected by treatment. Moreover, rhodamine- or fluorescein-conjugated vinculin, when added to these preparations, became specifically associated with the focal contacts regardless of whether the latter were pretreated with fragmin or not. We conclude that the association of vinculin with focal contacts is largely actin-independent. We discuss the implications of these findings in the molecular mechanisms of microfilament membrane association in areas of cell contact.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号